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Simple Summary: MR-Class is a deep learning-based MR image classification tool for brain images
that facilitates and speeds up the initialization of big data MR-based studies by providing fast, robust
and quality-assured imaging sequence classifications. Our studies observed up to 10% misclassifi-
cation rates due to corrupt and misleading DICOM metadata. This highlights the need for a tool
such as MR-Class to help with data curation. MR-Class can be integrated into workflows for DICOM
inconsistency checks and flagging or completing missing DICOM metadata and thus contribute to
the faster deployment of clinical artificial intelligence applications.

Abstract: Background: MR image classification in datasets collected from multiple sources is compli-
cated by inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for
the efficient automatic classification of MR brain sequences. Methods: Deep convolutional neural net-
works (DCNN) were trained as one-vs-all classifiers to differentiate between six classes: T1 weighted
(w), contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI. Each classifier yields a probability,
allowing threshold-based and relative probability assignment while excluding images with low
probability (label: unknown, open-set recognition problem). Data from three high-grade glioma
(HGG) cohorts was assessed; C1 (320 patients, 20,101 MRI images) was used for training, while
C2 (197, 11,333) and C3 (256, 3522) were for testing. Two raters manually checked images through
an interactive labeling tool. Finally, MR-Class’ added value was evaluated via radiomics model
performance for progression-free survival (PFS) prediction in C2, utilizing the concordance index
(C-I). Results: Approximately 10% of annotation errors were observed in each cohort between the
DICOM series descriptions and the derived labels. MR-Class accuracy was 96.7% [95% Cl: 95.8, 97.3]
for C2 and 94.4% [93.6, 96.1] for C3. A total of 620 images were misclassified; manual assessment of
those frequently showed motion artifacts or alterations of anatomy by large tumors. Implementation
of MR-Class increased the PFS model C-I by 14.6% on average, compared to a model trained without
MR-Class. Conclusions: We provide a DCNN-based method for the sequence classification of brain
MR images and demonstrate its usability in two independent HGG datasets.

Keywords: content-based image classification; data curation and preparation; convolutional neural
networks (CNN); deep learning; artificial intelligence (AI)
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1. Introduction

Magnetic resonance imaging (MRI) has become a crucial imaging modality in the
detection and staging of various types of cancer, including brain tumors [1]. With its
high-resolution images, MRI can distinguish between healthy and diseased tissues, pro-
viding high soft-tissue contrast and overcoming limitations of other imaging techniques,
specifically in disease monitoring [1]. Therefore, there has been an increase in interest in
MRI-based artificial intelligence (AI) applications and studies in recent years [2]. An essen-
tial step in the data preparation phase of such studies is accurately classifying MR images,
since each image communicates specific anatomical or physiological information [1]. An
example is brain tumor segmentation algorithms requiring information from multiple MR
modalities, as distinguishing between healthy brain tissue and tumors is often challenging.
Ensuring that the right sequences are used for analysis, i.e., the classification of sequences,
can be a demanding and time-intensive task. This is particularly true when dealing with
a large amount of data from different sources, such as multiple scanners and treatment
centers, which may have inconsistent naming schemes. In particular, retrospective data
collection introduces additional challenges (non-prespecified protocols and sequences).

Gueld et al. found that relying on image metadata (i.e., information stored in the
DICOM header) to classify medical images can often lead to unreliable results [3]. This is
because there may not always be a consistent match between the DICOM tags and the actual
examination protocols used. These inconsistencies are often introduced in order to improve
the quality of the imaging, such as implementing different imaging protocols for different
regions of the body to account for variabilities in patients’ anatomies [3]. Harvey et al.
report data labeling as the costliest part of radiomics studies [4] and that consistent and
unbiased labeling should be performed across the entire dataset to yield robust machine
learning models [4]. However, this can be challenging when large amounts of data are
considered. Therefore, automating the retrieval of medical images and classifying data
based on its content would bring several advantages, including improved time efficiency,
accuracy, and ultimately, reproducibility.

Compared to text-based image classification, content-based image classification (CBIC)
is independent of inconsistencies between different image sources, is unaffected by human
error, and is less labor-intensive [5]. CBIC methods for medical images include the use of
traditional classification machine learning techniques such as K-nearest neighbor (kNN) [6],
support vector machine [7] (SVM), as well as deep learning methods [8]. After the success
of the deep convolutional neural network (DCNN) AlexNet [9] in the ImageNet [10]
classification challenge, an increase in interest in DCNN has been seen when dealing with
image classification tasks [11–13]. Regarding the utilization of DCNNs for medical image
retrieval and classification, four studies have been identified that achieved high levels
of accuracy (>90%) in classifying body organs and MR images [14–17]. A summary of
these models can be seen in Supplementary Table S1. One limitation of these methods is
their inability to address the open-set recognition problem, which refers to the failure of
a network trained to classify a specific number of classes to handle unknown classes [18].
This problem is frequently encountered in clinical cohorts since datasets exported from
hospitals’ picture archiving and communication systems (PACS) usually comprise all
available medical images and data, leading to various medical image modalities and
sequences.

This work addresses the open-set recognition problem by training a DCNN-based MR
image classifier using a one-vs-all approach. Following a comparison study of published
DCNNs for medical image classification to determine the chosen DCNN model, one-vs-all
binary class-specific DCNN classifiers were trained to recognize a particular MR image,
thus forming MR-Class.
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2. Materials and Methods
2.1. Datasets

This study included three datasets: The training/validation cohort (C1) consisted
of 320 primary/recurrent high-grade glioma (HGG) patients with a median of 9 image
acquisition time points, resulting in 20,101 MR images acquired between 2006 and 2018.
The dataset was collected retrospectively from 23 scanners at the Heidelberg University
Hospital (UKHD). The first testing cohort (C2) consisted of 197 HGG patients, with a
median of 7 time points, resulting in 11,333 images acquired between 2009 and 2017. The
dataset was collected retrospectively from 15 different scanners at the UKHD. A public
data cohort (C3) was also utilized for the second testing of MR-Class. The data cohort
was retrieved from the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) data
collection [19]. The cohort included scans from 256 GBM patients with a median of 3 time
points, resulting in 3522 MR images acquired between 1986 and 2019 and collected from 17
scanners. Patient demographics of all three cohorts can be seen in Supplementary Table S2.

2.2. MR Scans

Multiparametric MRIs (mpMRI) were collected from multiple scanners in all three
datasets, resulting in heterogeneous modalities and MR sequence protocols (Supplementary
Table S3). Both conventional multislice (2D) scans acquired in the axial, sagittal, or coronal
planes, as well as 3D scans, are available. The MR sequences found in the cohorts are the
widely used sequences for brain tumor imaging [20] in clinical routines and trials [21–23].
All MR images discovered in the training cohort were utilized for training. However, one-
vs-all DCNN classifiers were only trained for T1w, contrast-enhanced T1w (T1wce), T2w,
T2w fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC), and
susceptibility-weighted imaging (SWI). It should be noted that no SWI scans were found
in C3. The in-plane resolution ranged from 0.33 × 0.33 to 2 × 2 mm for C1, 0.45 × 0.45
to 1.40 × 1.40 mm for C2, and 0.45 × 0.45 to 1.14 × 1.14 mm for C3. The slice thickness
of all MR scans ranged from 0.9 to 7.5 mm. Each MR image was manually labeled by
human experts using an in-house interactive labeling tool. The “Series Description” (SD)
and “Contrast/Bolus Agent” DICOM attributes were then extracted and compared to the
derived labels to evaluate the consistency of the metadata. Sample images found in the
training and testing cohorts are shown in Figure 1.

Figure 1. Cont.
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Figure 1. Sample images of the different MR images present in the three datasets C1–C3.

2.3. DCNNs Comparison Study

In the context of medical image retrieval and classification using DCNNs, three differ-
ent DCNNs are present, i.e., ResNet-18 [15], Φ-Net [16], and DeepDicomSort [17]. Hence,
a comparison study was performed where the architecture with the highest classification
accuracy was adopted in the one-vs-all training approach. Both 2D and 3D ResNet-18
were considered. C1 was used for training, while C2 was for independent testing. C3
was not included in the comparison study as it did not contain all considered MR scans.
The comparison study was only performed with the images belonging to one of the six
classes considered, resulting in 11,246 MR from C1 (8997/80% for training, 2249/20% for
validation) and 8326 MR from C2 for testing.

Brief descriptions of the exemplary models behind Φ-Net and DeepDicomSort are
given. Visual Geometry Group (VGG) was introduced in 2014 by Simonyan and Zisserman
in a paper titled “Very Deep Convolutional Networks for Large-Scale Image Recogni-
tion” [24]. The VGG network architecture is simple, formed with 3 × 3 convolutional layers
stacked on top of each other as depth increases, pooling layers, and fully connected output
layers. Residual Networks (ResNet) were introduced in 2015 to address the problem of
degradation in network accuracy as the network depth increases [25]. In addition to the
conventional DCNN architecture for classification purposes, which involves an alternating
stack of convolutional, activation, and pooling layers, ResNet introduces skip-connections
that allow the network to skip one or more layers. These skip connections fit the unmodi-
fied input from the previous layer to the next layer, preserving the original image signal
through identity mapping. This approach helps to preserve the gradient norm and solve
the degradation problem. A softmax layer is then added to the end layer to generate
probabilistic predictions of the classes. Schematics of the ResNet and VGG architectures are
shown in Supplementary Figure S1. Besides the dimensionality increase, no changes were
applied to the 3D ResNet-18 architecture. Diagrams and explanations of the architectures
of Φ-Net [15] and DeepDicomSort [17] are presented in the authors’ original papers.

2.3.1. Data Preprocessing

Before training, different preprocessing steps were implemented. The preprocessing
pipelines provided by the authors’ GitHub pages were used for the DCNNs trained with
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Φ-Net and DeepDicomSort. As for the 2D and 3D ResNet-18 DCNNs, magnetic field
inhomogeneities of the T1w images were first corrected using the N4ITK algorithm [26].
After reorienting to a common orientation, in-plane cropping was performed to remove
background voxels. Then, to account for resolution variability, all MR scans were resampled
to a uniform pixel spacing of 2 × 2 mm2, and volumes were interpolated to a 2 mm slice
thickness. Images were then cropped around the brain into a digital grid of 224 × 224 × 224.
Padding was performed when the image shape was smaller than the target grid. Lastly, a
z-score normalization of the brain voxels was applied to bring all MR images to the same
intensity scale. The formula of the Z-score normalization is as follows:

x − µ

σ
= z (1)

where x is the voxel intensity, µ is the mean of the intensity distribution, and σ is the
standard deviation.

2.3.2. DCNN Training and Testing

The 2D and 3D ResNet-18 DCNNs were trained using the deep learning Python
library PyTorch (1.7.1) [27]. A stochastic gradient descent optimizer with a momentum
of 0.9 was used with a learning rate scheduler that started with 0.001 and decayed by 0.1
when the training loss did not decrease for three epochs. A categorical cross-entropy loss
was considered as the loss function. A learning rate scheduler with a patience number of 3
was used. Early stoppage was performed when no improvement in the loss was observed
for five successive epochs. The maximum number of epochs was 100. The batch size
was 5 for the 3D ResNet and 50 for the 2D ResNet. The 2D ResNet-18 training included
ten slices around the middle slice, extracted from the corresponding preprocessed MR
scan acquisition plane. Φ-Net and DeepDicomSort were trained through the training
code provided by the authors’ GitHub pages. All 4 DCNNs were finally tested on the
independent C2, with the 2D DCNNs classifying an MR image as a class through a majority
vote (25 slices for DeepDicomSort and 10 slices for the 2D ResNet-18). The 3D ResNet-18
models required 8–10 h of training time, while the 2D ResNet-18 models took 1.7–2 h.
The models were trained on an Intel Xeon processor with 8 cores, 32 Gb of RAM, and an
NVIDIA GeForce GTX 1060 graphics card (6 Gb). The average inference time was 0.15 s for
a single 2D slice and 4.92 s for a 3D image.

2.4. MR-Class: One-vs-All DCNNs

MR-Class comprises multiple one-vs-all binary classifiers instead of a single multi-
class classifier, as used in the comparison study. The rationale behind training multiple
one-vs-all DCNNs is the open-set recognition problem and the difficulty of training a
DCNN image classifier for every possible MR image. The architecture used for MR-Class
was based on the DCNN that achieved the highest accuracy in the comparison study. The
training was performed twice using scans from C1. The first training included all MR
images available in the dataset, while the second was performed using only the image
volumes of the six considered classes (the same images used in the comparison study
during training). The latter was conducted to enable a fair comparison of the performance
of the one-vs-all dual-class classifiers (MR-Class) against a multi-class DCNN classifier,
both trained on the same number of images. For each binary classifier, the classes were
defined as follows: class 1 included all images corresponding to the targeted class, while
class 0 contained all remaining images in the dataset. A stratified dataset split (by class) of
80% for training and 20% for validation was used (as shown in Table 1).
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Table 1. Number (%) of MR images from the training cohort, C1, considered for each one-vs-all
DCNN classifier. T2w-FL: T2-FLAIR.

Training Validation
DCNN

Classifier
Targeted

Class
Remaining

Images
Targeted

Class
Remaining

Images

T1w-vs-all 3152 (15.7) 12,929 (64.3) 788 (3.9) 3232 (16.1)
T2w-vs-all 1576 (7.9) 14,505 (72.1) 394 (2.0) 3626 (18.0)

T2w-FL-vs-all 1535 (7.6) 14,546 (72.4) 384 (1.9) 3636 (18.1)
ADC-vs-all 1550 (7.7) 14,530 (72.3) 388 (1.9) 3633 (18.1)
SWI-vs-all 1183 (5.9) 14,898 (74.1) 296 (1.5) 3724 (18.5)

2.4.1. Training and Preprocessing

The preprocessing and training approach employed for the 2D/3D ResNet-18 were
also utilized for the one-vs-all DCNNs. However, additional steps were taken to address
the imbalanced classes that arise from the one-vs-all classification design. Firstly, data aug-
mentation was implemented using the TorchIO Python library [28]. This involved applying
various transformations such as adding random Gaussian noise, blurring, performing
random affine or elastic deformations, and adding random MR motion artifacts such as
motion, ghosting, or spikes. Secondly, a weighted binary categorical cross-entropy loss was
used, where the weights of a class were equal to the size of the largest class divided by the
size of that specific class. Finally, the learning rate scheduler was adjusted to decay based
on the targeted class training loss instead of the loss of both classes. Figure 2 provides an
overview of the training workflow.

Figure 2. MR-Class training workflow. MR-Class comprises five one-vs-all DCNNs, one for each
class, and the T1w-vs-T1wce binary DCNN. After MR image preprocessing, each DCNN was trained
with an 80%/20% training/validation split, with class 1 representing the DCNNs’ target class and
0 for the rest. For the T1w-vs-T1wce DCNN, class 0 was assigned to T1w and 1 to T1wce. T2w-FL:
T2w-FLAIR, T1wce: T1w contrast-enhanced.

2.4.2. Inference and Testing

C2 and C3 were utilized to conduct independent testing of MR-Class. During inference
mode, the MR images were preprocessed using the same approach as during training and
then passed to each DCNN classifier to infer the corresponding class. A classification prob-
ability threshold of 0.95 was employed, which was determined based on the distribution of
the probabilities of correctly and incorrectly labeled images when C1 was inferred back to
MR-Class. If an image is labeled by more than one classifier, the classifier with the highest
probability determines the class. If none of the classifiers assigns a label to an image (i.e.,
assigned to class 0 by each classifier), it is deemed unclassifiable. For the 2D DCNNs, an
MR scan is classified as a class based on the majority vote of 10 inferred slices extracted
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from around the middle slice of the corresponding MR acquisition plane. Figure 3 provides
an overview of the inference workflow.

Figure 3. MR-Class inference workflow. C2 and C3 were used for testing. After preprocessing, MR
images are passed to the 5 one-vs-all DCNN classifiers. A classification probability threshold of 0.95
was used. If none of the classifiers labels an image, it is rendered as other. If more than one classifier
labels a specific image, then the image is labeled by the classifier with the highest probability.

The classifications were compared to the ground truth labels, and accuracy was
calculated as the number of correct predictions divided by the total number of images.
A 95% confidence interval (CI) was determined using the Wilson interval method [29].
Classification sensitivity and specificity were also calculated to assess the performance of
each classifier. Additionally, misclassified images were examined to determine the causes
of misclassifications.

2.5. MR-Class Application: Progression-Free Survival Prediction Modeling

To demonstrate the applicability of MR-Class in MR-based radiomics applications, Cox
proportional hazard models (CPHs) were trained with the T1wce MR sequences of cohort
C2 to predict the patients’ progression-free survival (PFS) after performing a text-based
curation using the DICOM SDs and a content-based curation using MR-Class [30]. PFS
was calculated as the number of days between the beginning of the radiotherapy treatment
and disease progression. Progression events were derived from the clinical follow-up
reports. After performing a series of preprocessing steps on both curated datasets (DICOM
SD-based and MR-Class-based curated datasets), radiomics features were calculated auto-
matically from the gross tumor volume (GTV) segmentations extracted from the DICOM
RT structure set and the original image, as well as from derived images (Wavelet and
Laplacian of Gaussian filtering) from each dataset using Pyradiomics (v 3.0) [31]. The
MR preprocessing diagram is shown in Supplementary Figure S3. The different feature
classes and corresponding feature numbers can be seen in Supplementary Table S5. A
Spearman rank-order correlation coefficient was next used on the total number of features
to exclude redundant features (rs > 0.80). Three feature selection methods, including a
univariate analysis under Cox proportional hazard (CPH) models (p < 0.05), a random
forest (RF)-based method, and lasso regression, were applied separately on 1000 random
subsamples of the text-based curated and MR-Class-curated T1wce datasets (10% left out)
to identify features correlated to PFS. Significant features identified at least 950 times were
selected, and survival analyses were conducted using CPH. Model performances were
finally evaluated based on the resampled concordance index (C-I).

3. Results
3.1. Metadata Consistency

Between all three datasets, 2704 different DICOM SDs were found (an overview of
the number of SDs found for each MR scan is shown in Supplementary Table S4). A total
of 11.4%, 10.6%, and 10.7% of the SDs for C1, C2, and C3, respectively, had misleading
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or inconsistent entries, not allowing for the proper identification of the MR image class
(Table 2).

Table 2. Percentage of labeling errors for each class considered in the cohorts. T2w-FL: T2w-FLAIR.

C1 C2 C3
n % Error n % Error n % Error

T1w 2023 15.1 1189 11.2 433 13.4
T1wce 1917 13.9 4315 13.4 1096 9.9
T2w 1970 9.3 630 11.7 347 10.3

T2w-FL 1919 7.2 811 10.5 389 8.2
ADC 1938 7.6 895 8.4 122 5.5
SWI 1479 6.3 486 6.6 - -

Other 8855 13.1 3007 7.3 1135 12.1
All 20,101 11.4 11,333 10.6 3522 10.7

3.2. DCNN Comparison Study

Table 3 summarizes the testing C2 MR scan classification accuracies of all four multi-
class DCNN classifiers.

Table 3. Classification accuracy of the different DCNN architectures in the study. T2w-FL: T2w-
FLAIR.

2D-ResNet DeepDicomSort Φ-Net 3D-ResNet

T1w 98.4 98.8 97.7 96.5
T1wce 97.4 95.2 97.5 96.2
T2w 98.1 97.2 96.6 97.1

T2w-FL 99.7 99.4 96.5 98.7
ADC 99.9 99.3 98.5 99.2
SWI 98.2 98.5 97.5 98.9
All 98.6 98.1 97.4 97.8

All classifiers achieved a high comparable accuracy, with the 2D ResNet-18 having the
highest overall accuracy of 98.6%. The training took 18–20 h for the 3D DCNN (Φ-Net and
3D ResNet-18) and 8–10 h for the 2D DCNN (DeepDicomSort and 2D ResNet-18) on an
Intel Xeon processor with 8 cores and 32 Gb of RAM and a graphics card NVIDIA GeForce
GTX 1060 (6 Gb). The average inference time was 0.15 s for a single 2D slice and 4.92 s for a
3D image. Thus, the DCNN one-vs-all architecture implemented in MR-Class was that of
the 2D ResNet-18 (a schematic representation is shown in Figure 4).

Figure 4. The one-vs-all ResNet-18 architecture. An alternating stack of convolutional activations
and pooling layers. The skip connections (indicated by arrows) fit the unmodified input from the
previous layer to the next, preserving the original image signal. FC (2) refers to a fully connected
layer with two neurons as output, representing the sequence and the other possible sequences.
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3.3. MR-Class: One-vs-All DCNNs

Table 4 summarizes the classification accuracies in the validation sets of all six DCNN
classifiers on C1.

Table 4. Validation classification accuracies of all six binary DCNN classifiers on C1. T2wFL: T2w-
FLAIR.

Classifier Val Acc (%) Classifier Val Acc (%)

T1w-vs-all 99.1 T2wFL-vs-all 99.4
T1w-vs-T1wce 97.7 ADC-vs-all 99.6

T2w-vs-all 99.3 SWI-vs-all 99.7

All six classifiers demonstrate high validation accuracies, with the lowest being 97.7%
for the T1w-vs-T1wce and the highest being 99.7% for the SWI-vs-all, with a value of
99.6% for the ADC-vs-all tasks. Upon passing back the training set dataset I to MR-Class
during inference mode, an accuracy of 97.4% [95% CI: 96.2, 98.4] was achieved, meaning
that out of 20101 MR scans, MR-Class was unable to learn 519. In the multi-class versus
multiple binary one-vs-all classification experiment, where only the image volumes of the
six considered MR sequences were considered, the validation accuracy was comparable at
98.6% and 98.1%, respectively.

Figure 5 illustrates the distributions of the classification probabilities obtained by the
MR-Class for all three cohorts. Based on C1, a probability cutoff threshold of 0.95 was set
for testing MR-Class on C2 and C3.

Figure 5. Distribution of the probabilities of correct and wrong labeled images for all three cohorts
in the study when inferred to MR-Class. Based on the distributions of C1, a cutoff classification
threshold probability of 0.95 was used. Histogram bin width = 0.01.

When tested against the independent C2 dataset, MR-Class achieved an accuracy of
96.7% [95% CI: 95.8, 97.3], with 424 out of 11333 images being misclassified. All DCNNs
exhibited specificity ranging from 93.5% (T2w-vs-all) to 99.6% (SWI-vs-all). T1w-vs-T1wce
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and T1w-vs-all had the lowest sensitivity at 91.9% and 96.6%, respectively, while all other
DCNNs had high sensitivity (>99%) (Figure 6A, upper panel). In the multi-class normalized
confusion matrix (Figure 6A, lower panel), T1w classification was found to be the least
reliable, with an accuracy of 91.17%. When tested against the independent C3 dataset,
MR-Class achieved an accuracy of 94.4% [95% CI: 93.6, 96.1], with 196 out of 3522 scans
being misclassified. T1w-vs-T1wce exhibited the lowest sensitivity at 97.4%, while all
other DCNNs had a sensitivity greater than 98%. Specificity ranged from 91.3% (T2w-
vs-all) to 98.8% (T1w-vs-T1wce) (Figure 6B, upper panel). In the multi-class confusion
matrix (Figure 6B, lower panel), T2w classification was found to be the least reliable,
with an accuracy of 91.35%, with 8.65% classified as “other”. The next section includes
investigations on the misclassified images.

Figure 6. Confusion matrices of the six DCNNs for C2 (A) and C3 (B). The upper panels in (A,B) show
the confusion matrices for datasets C2 and C3. The lower panels in (A,B) show MR-Class normalized
confusion matrices for datasets C2 and C3, i.e., the percentages (%) of correct classification results
per class. SE: sensitivity; SP: specificity. Class ‘Other’: when none of the DCNNs labels an image; n:
number of scans per class, T2w-FL: T2w-FLAIR.
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3.4. Analyses of Misclassified Images

Of the 14,855 inferred images from C2 and C3, MR-Class classified 620 images incor-
rectly. The misclassifications can be sorted into different categories: MR artifact-middle
slice blurring, MR artifacts-other, similar image content for different MR sequences (e.g., a
T1w-FLAIR sequence instead of T2w), misclassified diffusion-weighted imaging (DWI) as
T2w, and DICOM corrupted scans (sample images shown in Figure 7).

Figure 7. Examples of misclassified images. The first two images are examples of a misclassified MR,
possibly due to blurry images (left) and alterations in expected anatomy (displaced ventricles, large
tumor, right). The next three MR images show incorrect predictions due to different MR artifacts
(shading, motion, aliasing). All of these images are falsely classified as “other”. The last image is a
diffusion-weighted image (DWI), specifically a trace DWI, misclassified as T2w.

Upon manual evaluation, it was discovered that MR-Class frequently misclassified
images (n = 122, 19.68%) when the ventricle architecture was altered, such as in cases where
it was displaced by large tumors. This misclassification was investigated in detail by using
122 randomly selected correctly labeled images as a reference group. The ground truth
volumes (GTVs) and brain were manually segmented, and the Euclidean distance between
the CoM of the brain and the CoM of the tumor volume was calculated. A t-test was then
performed between the reference and misclassified CoM distributions, which returned a
p-value of 0.04. The median distance between CoMs was 46.15 voxels for the correctly
labeled images and 66.31 for the misclassified images, indicating a statistical difference
between the two groups. In other words, the further the GTV was from the ventricles, the
less likely the image was to be misclassified. The frequencies of misclassification categories
are presented in Table 5.

Table 5. Frequency (n) and percentage (%) of the misclassified images.

Category n %

MR artifact-other 146 26.84
MR artifact-middle slice blurring 127 23.35
Tumor/GTV displacing ventricles 122 22.43
Similar content-different sequence 80 14.71

DWI as T2w 76 13.97
DICOM corrupted images 69 12.68

3.5. MR-Class Application: Progression-Free Survival Prediction Modeling

Figure 8 shows the box plots of the 1st–99th percentiles resulting from the three
resampling approaches following the fitting of the PFS CPH models by the radiomics
signatures derived from the text-based and MR-Class-based curated datasets. Four and
two significant features were identified from the text-based and MR-Class-based curated
datasets, respectively. The average C-Is across the three different resampling approaches
were 0.57 [0.55, 0.59] and 0.66 [0.64, 0.68] for the DICOM-SD and MR-Class models. The
range represents the minimum and maximum C-I achieved. The DICOM SD-curated
dataset included 7 misclassified T1w and 3 T2w sequences and excluded 10 T1wce images.
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The MR-Class-curated dataset excluded 4 misclassified T1wce images as they were labeled
“other”.

Figure 8. Box plots of the 1st–99th percentile C-Is attained by the MR-class and DICOM series
description (SD) curated dataset models fitted by the respective signatures after three resampling
approaches. MCCV: Monte Carlo cross-validation, BStrap: bootstrapping, CV: cross-validation.

4. Discussion

In this manuscript, we present an MRI image sequence classifier, MR-Class, which
differentiates between T1w, contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI
while handling unknown classes. Testing was performed on two independent cohorts,
where classification accuracies of 96.7% [95% CI: 95.8, 97.3] and 94.4% [95% CI: 93.6,
96.1] were observed. MR-Class consists of five one-vs-all DCNNs (one for each class),
followed by a binary classifier for T1w images, to determine whether a contrast agent was
administrated. This design enables MR-Class to handle unknown classes since each DCNN
only classifies an image if it belongs to its respective class, and thus an image not labeled
by any of the DCNNs is rendered as unknown. In order to compare the effectiveness of
the multiple one-vs-all binary classifier approach with the basic multi-class classification
method, we conducted a multi-class vs multiple dual-class classification experiment. The
results showed that both methods achieved a similar classification accuracy for MR brain
image classification, with the multi-class method achieving a 98.6% accuracy and the
multiple one-vs-all method achieving a 98.1% accuracy. However, the latter approach has
an advantage in that it can handle the open-set recognition problem often encountered
when dealing with data from clinical cohorts, which can ultimately help reduce MRI study
design times.

MR image DICOM series description (SD) entries usually follow the MR sequence
protocol applied. However, they are MR model specific and are sometimes edited by clinical
staff. We observed around 10% discrepancies in each cohort when the SD was compared to
the manually derived labels. Typical SDs that do not allow for clear MR scan classifications
are SDs with only the sequence name, e.g., spin echo (SE), or the scan direction, e.g., axial,
which can stand for any MR sequence. Typographical errors and empty SD attributes were
also observed.

Overall, high accuracies were obtained for all DCNNs in the comparison study. In
conjunction with the high performance achieved in the literature on medical image classi-
fication [13,14,16,17], it is apparent that DCNNs can learn the intricacies behind different
medical image modalities. In the DCNN architecture comparison study, 2D ResNet-18 had
the best overall accuracy and thus was the architecture chosen for MR-Class. Furthermore,
it was seen that the 2D DCNNs outperformed their 3D counterparts in MR sequence clas-
sification. MR scans correctly classified by the 2D DCNNs, while misclassified by the 3D
DCNNs, are mainly conventional 2D axial, sagittal, or coronal scans with slice thicknesses
ranging between 5 and 9 mm. Scans with a field of view that only encompassed the tumor
area were misclassified by both 3D DCNNs (representative images can be seen in Supple-
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mentary Figure S2). It is important to note that no data augmentation was performed in
the comparison study.

All six one-vs-all classifiers had high validation accuracies, with the lowest being
97.7% for the T1w-vs-T1wce. After inferring back the training cohort C1 to MR-Class, it
was observed that 519 images could not be learned, out of which 336 belonged to class
“other”, representing 3.8% of the other images used for training. This low error percentage
demonstrates that MR-Class can learn to handle different sequences indirectly.

The testing of MR-Class against C2 and C3 yielded an average accuracy of 96.1%,
where 620 images (4.2%) were classified incorrectly. Overall, T2w-vs-all had the worst
performance, with a specificity of 93.5% and 91.3% in C2 and C3. This is mostly due to
the presence of diffusion-weighted imaging (DWI) sequences (frequently encountered
in the datasets), which are inherently a series of T2w sequences. Similarly, C3 included
T1w-FLAIR images falsely misclassified as T1w or T2w-FLAIR. Thus, different sequences
with similar content are prone to misclassification by MR-Class. A solution could be to
train a subsequent classifier to distinguish between similar sequences, as performed for
the T1wce images. The majority of misclassified images had severe blurring or other MR
artifacts. A higher prevalence of misclassifications was observed in C3 compared to C2, and
many of these misclassifications were false negatives, resulting in images being labeled as
unclassifiable by MR-Class. This could be beneficial for radiomics models as any corrupted
images would be automatically disregarded, and all images labeled as a specific class
would have analogous content. Another subset of misclassified images showed tumor
volumes overlapping with the ventricles, and statistical analysis confirmed that altered
anatomy (specifically, ventricle displacement by large tumors) could be a possible reason
for misclassification. However, further analysis is needed to assess the impact of surgery
on alterations in overall anatomy, such as biopsy, partial resection, total resection, as well
as the effect of treatments such as chemotherapy and radiotherapy on tumor patterns and
contrast enhancement.

To improve the accuracy of MR-Class and reduce misclassifications, additional data
including more diverse MR images should be considered. Additionally, for DWI images
misclassified as T2w, a possible solution would be to train a subsequent classifier to
distinguish between different MR image protocols, as was done for T1wce images. Another
approach to reducing misclassification is to design a workflow that incorporates both
text-based and content-based classification (MR-Class). In cases of mismatch between
the two methods, manual intervention can be introduced to classify the image correctly.
Misclassifications can be corrected through manual label adjustments, and upon the user’s
acceptance, these images can be used to retrain the models using a transfer learning
approach to improve MR-Class accuracy.

An essential step in building a radiomics application is to verify the input data labels
before training the machine learning model, as inconsistent data can lead to the model
drastically failing [32]. However, this was not performed while building the different
survival models to demonstrate the applicability of MR-Class in MR-based radiomics
applications. CPHs models were built with the T1wce MR sequences of cohort C2 to
predict the patients’ PFS after performing a text-based curation using the DICOM SDs
and a content-based curation using MR-Class. The MR-Class-curated model achieved an
average C-I increase of 14.6%. This is mainly due to the content dissimilarity between the
different images in the DICOM SD-curated dataset compared to the MR-Class-curated
dataset.

MR-Class can facilitate the preparation of longitudinal studies for RT treatment assess-
ment as MR data from the three cohorts include scans taken before, after, and throughout
the delivery of the RT fractions, which resulted in different tumor volume masses between
the different scans, as well as apparent radiation scaring in some of the MR images. Fur-
thermore, the data cohort includes images taken directly after the surgical resection of the
tumor, resulting in visible surgical holes and void tumor beds.
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The 2D DCNNs in this study outperformed their 3D counterparts in classifying
MR brain images. This was mostly due to the multiple conventional 2D multislice MR
scans acquired in the axial, sagittal, or coronal plane in the three cohorts. However, the
classification of MR sequences of a different entity, e.g., abdominal and pelvic MRI, might
be more challenging and demand the intrinsic power of 3D DCNN. Due to the frequent
presence of 2D images in MR datasets, the reconstruction of these low-resolution 2D
slices to a high-resolution 3D MR might be a necessary preprocessing step before training.
Nevertheless, the one-vs-all classification pipeline implemented in this study on brain
MR images can be used for different anatomy sites and other medical image classification
problems, for example, the classification of different body parts and organs.

5. Conclusions

MR-Class is a helpful tool for automating the classification of MR images, thus elimi-
nating the need for manual sorting and saving time for researchers. The tool is particularly
useful for studies involving large amounts of data and different naming schemes, as it
classifies images based on their content rather than metadata, and can automatically dis-
regard corrupted images. Future work includes expanding the tool to include additional
modalities and sequences for different anatomical sites.
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