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Simple Summary: Early diagnosis of skin cancer is vital for providing effective treatment for patients.
Dermoscopy is a non-invasive approach that utilizes specific equipment to examine the skin and is
helpful in determining the specific patterns and features that might confirm the existence of skin
cancer. Recently, Machine Learning (ML) algorithms have been developed to analyze dermoscopic
images and classify such images as either benign or malignant. Convolutional Neural Networks
(CNNs) and other ML techniques, such as the Support Vector Machine (SVM) and Random Forest
classifiers, have been used in the extraction of the features from the dermoscopic images. The
extracted features are then used to classify the dermoscopic images as either benign or malignant.
Therefore, the current study develops a new Deep Learning-based skin cancer classification method
for dermoscopic images, which has the potential to improve the accuracy and efficiency of the skin
cancer diagnosis process and produce better outcomes for the patients.

Abstract: Artificial Intelligence (AI) techniques have changed the general perceptions about medical
diagnostics, especially after the introduction and development of Convolutional Neural Networks
(CNN) and advanced Deep Learning (DL) and Machine Learning (ML) approaches. In general,
dermatologists visually inspect the images and assess the morphological variables such as borders,
colors, and shapes to diagnose the disease. In this background, AI techniques make use of algorithms
and computer systems to mimic the cognitive functions of the human brain and assist clinicians
and researchers. In recent years, AI has been applied extensively in the domain of dermatology,
especially for the detection and classification of skin cancer and other general skin diseases. In
this research article, the authors propose an Optimal Multi-Attention Fusion Convolutional Neural
Network-based Skin Cancer Diagnosis (MAFCNN-SCD) technique for the detection of skin cancer in
dermoscopic images. The primary aim of the proposed MAFCNN-SCD technique is to classify skin
cancer on dermoscopic images. In the presented MAFCNN-SCD technique, the data pre-processing
is performed at the initial stage. Next, the MAFNet method is applied as a feature extractor with
Henry Gas Solubility Optimization (HGSO) algorithm as a hyperparameter optimizer. Finally,
the Deep Belief Network (DBN) method is exploited for the detection and classification of skin
cancer. A sequence of simulations was conducted to establish the superior performance of the
proposed MAFCNN-SCD approach. The comprehensive comparative analysis outcomes confirmed
the supreme performance of the proposed MAFCNN-SCD technique over other methodologies.
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1. Introduction

Melanoma is the most severe type of skin cancer that appears on any part of the skin
or near a mole. This skin cancer is characterized by an uncontrollable growth of the cells
without any apoptosis [1]. In this scenario, such cells of the body parts turn out to be
tumorous and start spreading to other parts of the party. Unlike the rest of the skin cancer
types, such as basal cell carcinoma and squamous cell carcinoma, melanoma is less common
in nature. However, melanoma is highly dangerous compared to the rest of the skin cancer
types, as it spreads to distinct body parts if left untreated or undiagnosed in its early
stages. Melanoma spreads rapidly across the body and affects almost all body parts [2]. The
dermatologists utilize photographic or microscopic instruments to see the additional details
that are relevant to lesions. When diagnosing skin cancer, the clinician refers the individual
to a tumor expert who performs surgery on the lesions [3]. Dermoscopy is a microscopic
technique that inspects the surface of the skin. This technique is utilized to distinguish
benign lesions from malignant ones based on the captured images without removing the
skin and other maddening tests. This analytical procedure is conducted completely based
on the oncologist’s expertise and experience [4]. Such a scenario pushed the current study
authors to develop a computer-aided technique by employing the dermoscopic images and
displaying the outcomes as assisting apparatuses for dermatologists. Various studies have
been conducted so far to attain superior outcomes in the disease diagnosis process.

Numerous methods have been modeled so far for the automatic detection of melanoma-
affected skin parts [5]. At first, handcrafted features-related methods were presented for
diagnosing melanoma. But, such methods did not yield good outcomes due to dissimilari-
ties in the color, shape, and size of the melanoma moles [6]. Then, segmentation-related
methods such as the Iterative Selection Thresholding (ISO) and adaptive thresholding were
proposed to enhance the detection accuracy of such automated mechanisms. Such methods
tend to work on the segmented part of the melanoma called ‘RoI’ [7]. DL-related techniques
have gained more popularity in medical imaging and diagnostics processes in recent years.
In techniques such as the CNN, a small portion of the images, with melanoma-affected
portions, is considered to train the automatic identification mechanism [8]. There exist
numerous potential applications for deep unsupervised learning-based feature extraction
from these images, such as object detection, image classification, image retrieval, anomaly
detection, generative modeling, etc. Such methods execute the segmentation process on
the test images that are related to the trained method. The DL-related techniques exhibit
superior performance in detecting and segmenting melanoma images than the handcrafted
feature-related methods [9]. Such procedures can automatically calculate the complicated
and representative feature set. Furthermore, the DL methods can also easily trace the
skin moles of different sizes in the occurrence of noise, blur, the incidence of light, color
variations, and intensity [10].

The current research article develops an Optimal Multi-Attention Fusion Convolu-
tional Neural Network-based Skin Cancer Diagnosis (MAFCNN-SCD) technique for the
diagnosis of melanoma cancer from dermoscopic images. In the presented MAFCNN-SCD
technique, the data pre-processing is performed initially. Next, the MAFNet method is en-
forced as a feature extractor with Henry Gas Solubility Optimization (HGSO) algorithm as a
hyperparameter optimizer. Finally, the Deep Belief Network (DBN) method is exploited for
the detection and classification of skin cancer. A sequence of experiments was conducted
to validate the improved performance of the proposed MAFCNN-SCD approach. The key
contributions of the current research work are listed herewith.

• An automated MAFCNN-SCD technique has been proposed in this study with pre-
processing, MAFNet-based feature extraction, DBN classification, and HGSO-based
hyperparameter tuning processes for skin cancer detection and classification. To the
best of the authors’ knowledge, the proposed MAFCNN-SCD model is the first of its
kind in this domain.

• The authors employed MAFNet as a feature extractor with DBN as a skin cancer
detection and classification classifier.
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• The hyperparameter optimization of the MAFNet model, using the HGSO algo-
rithm with cross-validation, helped to boost the predictive outcomes of the proposed
MAFCNN-SCD model for unseen data.

2. Literature Review

Shorfuzzaman [11] presented an interpretable CNN-based stacked ensemble structure
for the detection of melanoma skin tumors at earlier stages. In this study, the Transfer
Learning (TL) model was employed in the stacked ensemble framework, whereas a distinct
number of CNN sub-models that apply similar classifier tasks were also gathered. A novel
approach called meta-learner was employed in the prediction of every sub-model, and
the last prediction outcomes were attained. Bhimavarapu and Battineni [12] intended to
integrate the DL techniques for the automatic classification of melanoma in dermoscopic
images. A Fuzzy-based GrabCut-stacked CNN (GC-SCNN) technique was validated using
the trained images. The image extraction feature and the lesion classifier were leveraged,
and the model’s efficacy was tested using distinct openly-accessible databases. The purpose
of the study, conducted by Lafraxo et al. [13], was to automate the procedure of classifying
the dermoscopic images comprising skin lesions as either benign or malignant. Thus, an
enhanced DL-based solution with CNN was presented in this study. Data augmentation,
regularization, and dropout were performed to avoid the over-fitting issue that is generally
experienced in the CNN technique.

Banerjee et al. [14] examined a DL-based YOLO technique on the basis of the applica-
tion of DCNNs. This technique was used to detect melanoma in digital and dermoscopic
images. The authors suggested a faster and a precise outcome related to the typical CNNs.
But, particular resourceful models were infused under two stages of segmentation. This seg-
mentation is created by combining a graph model using a minimal spanning tree model and
an L-type fuzzy number. The latter is related to approximation and mathematical extraction
of the actual affected lesion regions in the feature extraction method. Daghrir et al. [15]
established a hybrid system for melanoma skin tumor classification, and the method was
employed for examining a few suspicious lesions. The presented method was dependent
on the prediction of three distinct approaches, such as CNN and two typical ML techniques.
These techniques were trained with a group of characteristics that explain the texture,
border, and color of the skin tumor.

Tan et al. [16] presented an intelligent Decision Support System (DSS) for skin tumor
classification. Specifically, the authors integrated the medically-essential features such
as asymmetry, color, border irregularity, and other such dermoscopic structural features
with the texture extraction features using the Histogram of Oriented Gradients (HOG),
Grey Level Run Length Matrix and LBPs functions for tumor representations. Afterward,
the authors presented two improved PSO techniques for the optimization of the features.
In literature [17], a Hybrid DL (HDL) system was proposed fusing the sub-band of 3D
wavelets. It was a non-invasive and objective system that was used for the inspection of
skin images. During the primary phase of the HDL system, an easy Median Filter (MF)
was utilized to remove unwanted data like noise and hair. During the secondary phase, the
sub-band fusion method was used, and the 3D wavelet transform was executed to obtain
the textural data in the dermoscopic images. In the last phase, the HDL system carried out
a multiclass classification with the help of the fused sub-band.

Though several models have been proposed in the literature, the existing models
do not focus on the hyperparameter selection process. This is a crucial process as it
mostly influences classification performance. The hyperparameters such as epoch count,
batch size, and learning rate selection are essential to attain effectual outcomes. Since the
trial-and-error method for hyperparameter tuning is a tedious and erroneous process, the
metaheuristic algorithms are applied. Therefore, in this research work, the HGSO algorithm
is employed to select the parameters for the MAFNet model.
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3. The Proposed Model

In this study, a new MAFCNN-SCD method has been proposed for the detection and
classification of skin cancer from dermoscopic images. The major aim of the proposed
MAFCNN-SCD technique is to diagnose and classify the type of skin cancers from der-
moscopic images. It encompasses various stages such as image pre-processing, MAFNet
feature extraction, HGSO hyperparameter tuning, and DBN classification. Figure 1 defines
the overall procedure of the proposed MAFCNN-SCD system.
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3.1. Image Pre-Processing

In the presented MAFCNN-SCD approach, the data is pre-processed initially by
following the Weiner Filter technique. The corrupted image is determined as Î(x, y),
whereas the local mean is denoted by µ̂L on a pixel window, the noise variance with the
entire value is demonstrated by σ2

y , whereas the local variance in the window is designated
by σ̂2

y . Then, the probable method of denoising the image is shown below [18]:

ˆ̂I = Î(x, y)−
σ2

y

σ̂2
y

(
Î(x, y)− µ̂L

)
(1)

Here, when the noise variance across the image is equivalent to 0, then σ2
y = 0 => ˆ̂I = Î(x, y).

If the global noise variance is smaller, then the local variance is larger than the global variance,
according to which the ratio becomes almost equal to 1.

If σ̂2
y � σ2

y , then ˆ̂I = (x, y). Whereas a higher local variance portrays the occurrence
of the edges in the image windows [19]. In this case, when the local and global variances
correspond together, the formulation progresses as follows: ˆ̂I = µ̂Lasσ̂2

y ≈ σ2
y .

3.2. Feature Extraction Model

In this study, the MAFNet method is applied as a feature extractor. MAFNet en-
compasses 1× 1× 1 convolution layers [20]; four convolution models exist in the middle,
whereas three convolution structures exist across all the modules. The convolution module
is disseminated in a symmetrical structure like [2,2,2,2]. At last, the FC layer is present
with a total of 26 convolution modules [21,22]. Afterward, the images are fed as input, and
the 1× 1 convolutional process is initially performed. Next, four convolution models are
passed over four convolution models. The 3× 3 convolutional operation is substituted
by the Contextual Transformer (CoT) blocks in the original ResNet convolution blocks.
After the preceding convolution, pooling, and excitation operations, the features extracted
are then fed as input to the FC layers that perform the role of “classification” in the CNN
technique [23]. The architecture of the MAFNet model is shown in Figure 2. The FC layers
perform the “classification” process in the CNN method that incorporates the preceding
and extremely-abstracted feature and maps the learned feature to a sample space. It also
employs the So f tmax function to evaluate the probability of classification. At last, the
output of the classifier outcome is given as follows.

So f tmax
(
zj
)
=

ezi

∑n
i=1 ezi

, (2)
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Equation (2) demonstrates the number of classes, zj represents the output value of the
j-th node, zi indicates the output value of the i-th node, and e shows the natural constant,
which can be determined as follows.

LCE = −
N

∑
i=1

lilogpi, (3)

In Equation (3), li refers to the unique thermal encoding of the tag i(i ∈ (0, · · · , N − 1)
and N indicates the number of tags; when the target label is i, then li = 1, whereas the rest
of the labels are equivalent to 0, and pi denotes the predictive probability of the i-th label,
i.e., the Softmax value.

It must be noted that the lowest learning rate might result in slower convergence, and
the largest learning rate might result in a constant oscillation of the loss functions. In order
to construct a model with high accuracy and optimum parameters followed by its quick
training, a dynamic-learning-rate approach is utilized. This helps in adjusting the learning
rate per 30 epochs, for which the formula is given below [24].

lr = lr0 × 0.1
epoch

30 , (4)

In Equation (4), lr denotes the present learning rate, lr0 indicates the primary learning
rate, and epoch represents the overall number of training rounds.

In this study, the HGSO algorithm is applied as a hyperparameter optimizer. Hashim et al. [25]
presented the HGSO technique, which is a newly-found physics-inspired optimization algorithm.
This technique has been constructed based on Henry’s gas law which defines the rules for the
solubility of a gas in a liquid. In general, temperature and pressure are two major elements that
significantly impact the outcome of solubility. In regard to pressure, the ability of a gas to become
solvable in the liquid increases when the pressure increases. At high temperatures, the solubility of
the solid increases. On the other hand, gases cannot dissolve. By utilizing these two significant
characteristics, the HGSO approach comprises eight steps, as listed herewith. Initially, the values
of Henry’s constant per group j

(
Hj(t)

)
, the number of gases (population), position, and the

partial pressure Pi,j of the gas i at every group j are generated and are given as a mathematical
form herewith.

Xi(T + 1) = Xmin + r× (Xmax − Xmin), (5)

In Equation (5), Xi signifies the location of the i-th gas in population N, r is determined
by the chaotic number between 0 and 1, and Xmin and Xmax denote the bounds of the search
space and (t) shows the iteration.

Hj(t) = l1 × rand(0t1)tPi,j = l2 × rand(0, 1)tCj = l3 × rand(0, 1), (6)

In Equation (6), l1 to l3 indicate the constant numbers that correspond to the values
between 5 × 10−2, 100 and 1 × 10−2.

Next, the clustering process is executed in which the population of the gas is catego-
rized according to the type of gas. In all the groups, each gas has a similar Hj.

Then, the evaluation process is conducted to determine the most suitable gas from
every cluster j that attains the maximum equilibrium location over the rest of the gases. In
this stage, the ranking is used to find the most suitable gas among the entire swarm [26].

Henry’s coefficient is expressed in the following equation.

Hj(t + 1) = Hj(t)× e

(
−Cj

( 1
T(t) 1

Tθ

))
, T(t) = e(−

τ
iter ) (7)

In Equation (7), Hj demonstrates the coefficient of Henry’s gas rules in all the groups j,
T characterizes the temperature, and Tθ describes the fixed quantity with a value of 298.
Furthermore, iter signifies the overall iteration count. The solubility updating formula
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is given below in which Si,j demonstrates the solvability of a gas i in all the groups j,
Pi,j characterizes the parochial pressure on gas i in all the groups j, and K denotes a
fixed value.

Si,j(t) = K× Hj(t + 1)× Pi,j(t). (8)

Step 6 characterizes a formula to upgrade the location of all the gases in Equations (9) and (10):

Xi,j(t + 1) = Xi,j(t) + F× r× γ×
(
Xi,besτ(t)− Xi,j(t)

)
+

F× r× α×
(
Si,j(t)× Xi,best(t)− Xi,j(t)

) (9)

γ = β× exp(− Fbest(t) + ε

Fi,j(t) + ε
)tε = 0.05 (10)

In Equation (10), Xi,j characterizes the condition of all the gases i in all the groups j,
r denotes the random numbers between 0 and 1, whereas τ denotes the iteration time, and
Xi,best illustrates the most suitable gas i in all the groups j. Further, Xbest characterizes the
most suitable gas amongst the entire population [27]. In addition to these, γ signifies the
ability of all the gases j in all the groups i to interact through the gases in its group, and
α illustrates the effect of the remaining gases on i in every group j and takes the value of 1.
Additionally, a certain number is allocated to β. Fi,j shows the fitness of all the gases i in all
the groups j at the same time, and Fbest demonstrates the fitness of the most suitable gas in
the entire population. The formula to prevent the local optima situation is given below.

Nw = N ∗ (rand((C2 − C1) + C1), C1; C1 = 0.1, C2 = 0.2, (11)

In Equation (11), Nw and N indicate the worst agent and the number of search agents.
Lastly, the formula for updating the location of the worst agent is given below.

Gi,j = GMin(i,j) + r× (GMax(i,j) − GMin(i,j))t
(12)

In Equation (12), Gi,j demonstrates the condition for all the gases i in group j, r de-
notes a number that is disseminated between 0 and 1, and GMin(i,j) and GMax(i,j) indicate
the bounds for the algorithm. Algorithm 1 illustrates the steps followed in the HGSO
approach. The HGSO method derives a Fitness Function (FF) for the enhancement of the
classification outcome. It sets a positive value to designate the superior outcomes of the
candidate solutions.

Algorithm 1: Pseudocode of HGSO Algorithm.

Initialization: i(1 = 1, 2, . . . N), number of gas kinds i, Hj, Pi, j, Cj, l1, l2, and l3.
Split the population agent into a number of gas kinds (cluster) with a similar Henry’s constant
value (Hj).
Estimate every cluster j.
Obtain the more suitable gas Xi, better in all the clusters, and the better search agent Xbest.
While t < maximal iteration count, do
For every search agent, do
Upgrade the position of each search agent through Equations (9) and (10).
End for
Upgrade Henry’s s coefficient of all the gas kinds based on Equation (7).
Upgrade solubility of all the gases based on Equation (8).
Select and Rank the amount of worst agents based on Equation (11).
Upgrade the position of the worst agent based on Equation (12).
Upgrade the more suitable Xi, better, and the better search agent Xbest.
End while
t = t + 1
Return Xbest
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In this work, the reduced classifier error rate is signified as FF as mentioned in Equation (13).

Fitness =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (13)

3.3. Skin Cancer Detection Model

In this last stage, the DBN model is exploited for the detection and classification of skin
cancer. DBN is a NN that comprises numerous Restricted Boltzmann Machines (RBM) [28].
The input unit specifies the character of the original dataset, whereas the output unit
specifies the label of this dataset. From the input to the output layers, the key features of
the data are mined from the deep architecture via the layer abstraction process. The DBN
can be accomplished by stacking numerous RBMs. The initial-layer RBM is the input of the
DBN of pipeline leak detection, whereas the output is characterized by the latter, i.e., RBM
Hidden Layer (HL). The DBN is processed as an MLP, and applied to the classifier, after
which the LR is added to the output. The DBN model comprises certain RBMs. Every RBM
has a visible layer (VL) and an HL. Consider v = {0, 1}n and h = {0, 1}m as the states of VL
and HL, correspondingly. The quantity of the RBM joint configuration energy comprises
biases and weights.

E(v, h; θ) = −
n

∑
i=1

ajvj −
m

∑
j=1

bjhj −
n

∑
i=1j

m

∑
=1

wijvjhj (14)

Here, θ =
{

aj, bj, wij
}

represents the model parameter, wi.
j

indicates the weight be-

tween the hidden unit j and the visible unit i; aj and bj show the biases of the VL and HL,
correspondingly; n and m denote the count of visible and hidden units, correspondingly.
The joint likelihood equation for VL and HL is given below.

p(v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)) (15)

In Equation (15), Z(θ) refers to the normalizing factor that is formulated as follows.

Z(θ) = ∑
v

∑
h

exp(−E(v, h; θ)) (16)

Since the visible–visible and hidden–hidden cases are independent of each other, the
conditional probability of this unit can be formulated using the following equation [29]:

p
(
hj = 1

∣∣θ) = 1
1 + exp

(
−bj −∑i wijvi

) (17)

p
(
vj = 1

∣∣θ) = 1

1 + exp
(
−ai −∑j wijhj

) (18)

The layer-wise learning mechanism of the DBN comprises three HLs. The training
dataset originates from a similar pipeline with similar experimental conditions and leakage
sizes. Firstly, the training dataset is transferred to the VLs on the initial RBM unit. Then,
the hidden unit feeds the input dataset in the VL. At last, the VLs of the 2nd RBM unit
obtain a hidden unit in the RBM [30]. The subsequent individual RBM units accomplish
the exercises of the DBN structure. Figure 3 demonstrates the infrastructure of the DBN.
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4. Performance Evaluation

The proposed model was simulated using Python 3.6.5 tool on a PC with configura-
tions such as i5–8600 k, GeForce 1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD.
The parameter settings are given herewith: learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50, and activation: ReLU.

4.1. Dataset Used

The presented MAFCNN-SCD model for the skin cancer classification process was
validated using two benchmark databases such as the ISIC 2017 database [31] and the
HAM10000 database [32]. The ISIC 2017 dataset comprises 2000 images under three
classes, whereas the HAM10000 dataset holds a total of 10,082 samples under seven classes.
Tables 1 and 2 show a detailed description of the datasets under study. Figure 4 demon-
strates some of the sample images from the datasets.

Table 1. Details of the ISIC 2017 dataset [31].

ISIC 2017 Dataset

Label Class No. of Samples

Class-1 Melanoma 374
Class-2 Seborrheic Keratosis 254
Class-3 Nevus 1372

Total Number of Dataset 2000
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Table 2. Details on HAM10000 Dataset [32].

HAM10000 Dataset

Description Class No. of Samples

Actinic Keratoses AKIEC 327
Basal Cell Carcinoma BCC 541

Benign Keratosis BKL 1099
Dermatofibroma DF 155

Melanocytic Nevus NV 6705
Melanoma MEL 1113
Vascular VASC 142

Total No. of Dataset 10,082
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4.2. Results Analysis

The confusion matrices generated by the proposed MAFCNN-SCD approach on ISIC
2017 dataset are demonstrated in Figure 5. The figure states that the proposed MAFCNN-
SCD system proficiently recognized all three types of skin cancers from the applied dermo-
scopic images.
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Table 3 portrays the overall skin cancer classification outcomes achieved by the pro-
posed MAFCNN-SCD method on ISIC 2017 dataset. On the entire dataset, the MAFCNN-
SCD method attained the average accuy, sensy, specy, Fscore, and Mathew Correlation
Coefficient (MCC) values, such as 93.47%, 79.92%, 90%, 85.50%, and 79.26%, respectively.
Concurrently, on 70% TR database, the proposed MAFCNN-SCD approach achieved
the average accuy, sensy, specy, Fscore, and MCC values, such as 94.00%, 81.31%, 90.61%,
86.61%, and 80.66%, correspondingly. In parallel, on 30% of the TS database, the presented
MAFCNN-SCD method achieved the average accuy, sensy, specy, Fscore, and MCC values,
such as 92.22%, 77.07%, 88.67%, 83.05%, and 76.23%, correspondingly.
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Table 3. Skin cancer classification outcomes of the proposed MAFCNN-SCD system upon the ISIC
2017 dataset.

Labels Accuy Sensy Specy Fscore MCC

Entire Dataset

Class-1 94.4 71.66 99.63 82.72 80.84

Class-2 95.75 68.9 99.66 80.46 79.56

Class-3 90.25 99.2 70.7 93.32 77.39

Average 93.47 79.92 90 85.5 79.26

Training Phase (70%)

Class-1 94.71 72.9 99.74 83.77 82

Class-2 96.29 71.86 99.59 82.19 81.22

Class-3 91 99.18 72.49 93.86 78.77

Average 94 81.31 90.61 86.61 80.66

Testing Phase (30%)

Class-1 93.67 68.75 99.39 80.21 78.1

Class-2 94.5 63.22 99.81 76.92 76.28

Class-3 88.5 99.25 66.83 92.02 74.32

Average 92.22 77.07 88.67 83.05 76.23

Both the Training Accuracy (TRacc) and the Validation Accuracy (VLacc) values ac-
quired by the MAFCNN-SCD approach under ISIC 2017 dataset are presented in Figure 6.
The simulation results emphasize that the proposed MAFCNN-SCD algorithm gained
increased TRacc and VLacc values, while the VLacc values were better than the TRacc values.
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Both Training Loss (TRloss) and the Validation Loss (VLloss) values realized by the
proposed MAFCNN-SCD system under ISIC 2017 dataset are exhibited in Figure 7. The
simulation results represent that the proposed MAFCNN-SCD approach obtained the least
TRloss and VLloss values, while the VLloss values were lesser than the TRloss values.
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The precision-recall examination outcomes achieved by the proposed MAFCNN-SCD
system under ISIC 2017 dataset are shown in Figure 8. The figure portrays that the proposed
MAFCNN-SCD method produced high precision-recall values under each class label.
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Figure 8. Precision recall analysis outcomes of the proposed MAFCNN-SCD system upon the ISIC
2017 dataset.

The confusion matrices generated by the proposed MAFCNN-SCD algorithm on the
HAM10000 dataset are exhibited in Figure 9. The figure shows that the MAFCNN-SCD
approach proficiently recognized all seven types of skin cancer on the applied dermo-
scopic images.
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Table 4 depicts the overall skin cancer classification results attained by the proposed
MAFCNN-SCD method on the HAM10000 dataset. On the entire dataset, the proposed
MAFCNN-SCD system achieved the average accuy, sensy, specy, Fscore, and MCC values
such as 99.39%, 92.25%, 99.49%, 93.08%, and 92.60%, correspondingly. At the same time, on
70% of the TR database, the MAFCNN-SCD algorithm attained the average accuy, sensy,
specy, Fscore, and MCC outcomes such as 99.42%, 92.40%, 99.51%, 93.27%, and 92.82%,
correspondingly. Concurrently, on 30% of the TS database, the proposed MAFCNN-SCD
algorithm achieved the average accuy, sensy, specy, Fscore, and MCC values such as 99.34%,
91.92%, 99.44%, 92.67%, and 92.15%, correspondingly.
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Table 4. Skin cancer classification outcomes of the proposed MAFCNN-SCD system upon the
HAM10000 dataset.

Labels Accuy Sensy Specy Fscore MCC

Entire Dataset

AKIEC 99.52 92.35 99.76 92.64 92.39

BCC 99.27 92.42 99.65 93.11 92.73

BKL 99.56 99 99.63 98.02 97.78

DF 99.62 87.1 99.82 87.66 87.47

NV 98.64 99 97.93 98.98 96.95

MEL 99.58 98.38 99.73 98.12 97.88

VASC 99.55 77.46 99.87 83.02 83.01

Average 99.39 92.25 99.49 93.08 92.6

Training Phase (70%)

AKIEC 99.53 93.33 99.74 92.72 92.48

BCC 99.35 92.78 99.7 93.56 93.22

BKL 99.6 99.09 99.67 98.21 97.99

DF 99.66 87.85 99.84 88.68 88.51

NV 98.7 99.03 98.03 99.03 97.06

MEL 99.52 98.19 99.68 97.81 97.54

VASC 99.56 76.53 99.89 82.87 82.94

Average 99.42 92.4 99.51 93.27 92.82

Testing Phase (30%)

AKIEC 99.5 90.2 99.83 92.46 92.24

BCC 99.07 91.71 99.54 92.22 91.73

BKL 99.47 98.77 99.56 97.58 97.29

DF 99.54 85.42 99.76 85.42 85.18

NV 98.51 98.94 97.7 98.87 96.7

MEL 99.74 98.83 99.85 98.83 98.68

VASC 99.54 79.55 99.83 83.33 83.2

Average 99.34 91.92 99.44 92.67 92.15

Both TRacc and VLacc values acquired by the MAFCNN-SCD methodology under
the HAM10000 dataset are exhibited in Figure 10. The simulation results confirm that
the proposed MAFCNN-SCD approach obtained the maximum TRacc and VLacc values,
whereas the VLacc values were better than the TRacc values.

Both TRloss and VLloss values realized by the proposed MAFCNN-SCD system under
the HAM10000 dataset are shown in Figure 11. The simulation results manifest that the
presented MAFCNN-SCD approach obtained the least TRloss and VLloss values, while the
VLloss values were lesser than the TRloss values.

The precision-recall analysis results achieved by the MAFCNN-SCD system upon
the HAM10000 dataset are exhibited in Figure 12. The figure demonstrates that the pro-
posed MAFCNN-SCD method produced the maximum precision-recall values under each
class label.

4.3. Discussion

Table 5 and Figure 12 report the comparative study outcomes of the MAFCNN-SCD
model and other recent models on the ISIC 2017 dataset. The simulation results imply
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that the MobileNet method reached a poor performance while the MSVM model gained a
slightly raised outcome. Next, the NB, KELM, and DenseNet169 models produced closer
skin cancer classification performance. However, the proposed MAFCNN-SCD model
accomplished the maximum performance with an accuracy of 92.22%.

Table 6 reports the comparative analysis outcomes achieved by the proposed MAFCNN-
SCD method and other recent techniques on the HAM10000 dataset. The simulation out-
comes imply that the NB methodology performed poorly, whereas the MobileNet approach
acquired a slightly raised outcome.
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Table 5. Comparative analysis outcomes of the proposed MAFCNN-SCD model and other recent
methodologies upon the ISIC 2017 dataset [33,34].

ISIC 2017 Dataset

Methods Accuracy Sensitivity Specificity F-Score

MAFCNN-SCD 92.22 77.07 88.67 83.05
Naïve Bayes 89.77 74.7 84.02 81.37

KELM 88.04 77.03 84.49 83.2
MSVM 87.15 75.44 83.19 81.45

MobileNet 85.03 74.17 87.98 81.18
DenseNet169 89.42 76.83 86.28 83.27

Table 6. Comparative analysis outcomes of the proposed MAFCNN-SCD system and other recent
algorithms upon the HAM10000 Dataset [33,34].

ISIC 2017 Dataset

Methods Accuracy Sensitivity Specificity F-Score

MAFCNN-SCD 92.22 77.07 88.67 83.05
Naïve Bayes 89.77 74.7 84.02 81.37

KELM 88.04 77.03 84.49 83.2
MSVM 87.15 75.44 83.19 81.45

MobileNet 85.03 74.17 87.98 81.18
DenseNet169 89.42 76.83 86.28 83.27

Then, the KELM, MSVM, and DenseNet169 algorithms achieved closer skin cancer clas-
sification performance. But, the proposed MAFCNN-SCD model achieved the maximum
performance. The comprehensive comparative analysis outcomes established the enhanced
performance of the MAFCNN-SCD technique over other methodologies with maximum
accuracy values such as 92.22% and 99.34% on the ISIC 2017 and HAM10000 datasets,
respectively. These results establish the effectual skin cancer classification performance of
the proposed MAFCNN-SCD method. The enhanced performance of the proposed model
is due to the implementation of the HGSO algorithm in the hyperparameter tuning process.
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5. Conclusions

In this study, a new MAFCNN-SCD approach has been modeled for skin cancer
detection and classification from dermoscopic images. The major aim of the proposed
MAFCNN-SCD technique is to identify and classify skin cancer from dermoscopic images.
In the presented MAFCNN-SCD technique, the data pre-processing is performed initially.
Next, the MAFNet methodology is applied as a feature extractor with the HGSO algorithm
as a hyperparameter optimizer. Finally, the DBN method is exploited for skin cancer
detection and classification. A sequence of experiments was conducted to showcase the
supreme performance of the proposed MAFCNN-SCD approach. The comprehensive
comparative analysis outcomes establish the enhanced performance of the MAFCNN-SCD
technique over other methodologies with maximum accuracy values, such as 92.22% and
99.34% on the ISIC 2017 and HAM10000 datasets, respectively. Thus, the proposed model
can be employed for the automated skin cancer classification process. In the future, the
deep instance segmentation process can be incorporated to extend the detection rate of
the MAFCNN-SCD technique to achieve low error rates in quantifying the skin lesion’s
structure, boundary, and scale. To further increase the system’s performance, huge training
datasets should be utilized to avoid under- and over-segmentation cases. Besides, the
computation complexity of the proposed model should also be investigated in the future.
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