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Simple Summary: Biomarkers reliably predicting treatment response to immune checkpoint in-
hibition (CKI) therapy in advanced non-small cell lung cancer (NSCLC) are warranted. Baseline
18F-FDG-PET-CT (PET-CT) is an integral part of the diagnostic algorithm of NSCLC. However, there
is poor evidence on the predictive and prognostic value of initial PET-CT imaging in these patients.
The use of Radiomics has gained prominence in the last decade allowing for the extraction and artifi-
cial intelligence-based analysis of additional imaging parameters, so-called radiomic features (RFs).
We aimed to find RFs predicting treatment response for CKI-based first-line therapy in advanced
NSCLC patients, out of whole-body metabolic PET and morphological CT imaging. PET RFs might
additionally be predictive and prognostic and could thus provide important information for future
therapy monitoring and guidance.

Abstract: We aimed to evaluate the predictive and prognostic value of baseline 18F-FDG-PET-CT
(PET-CT) radiomic features (RFs) for immune checkpoint-inhibitor (CKI)-based first-line therapy in
advanced non-small-cell lung cancer (NSCLC) patients. In this retrospective study 44 patients were in-
cluded. Patients were treated with either CKI-monotherapy or combined CKI-based immunotherapy–
chemotherapy as first-line treatment. Treatment response was assessed by the Response Evaluation
Criteria in Solid Tumors (RECIST). After a median follow-up of 6.4 months patients were stratified
into “responder” (n = 33) and “non-responder” (n = 11). RFs were extracted from baseline PET and CT
data after segmenting PET-positive tumor volume of all lesions. A Radiomics-based model was de-
veloped based on a Radiomics signature consisting of reliable RFs that allow classification of response
and overall progression using multivariate logistic regression. These RF were additionally tested
for their prognostic value in all patients by applying a model-derived threshold. Two independent
PET-based RFs differentiated well between responders and non-responders. For predicting response,
the area under the curve (AUC) was 0.69 for “PET-Skewness” and 0.75 predicting overall progression
for “PET-Median”. In terms of progression-free survival analysis, patients with a lower value of
PET-Skewness (threshold < 0.2014; hazard ratio (HR) 0.17, 95% CI 0.06–0.46; p < 0.001) and higher
value of PET-Median (threshold > 0.5233; HR 0.23, 95% CI 0.11–0.49; p < 0.001) had a significantly
lower probability of disease progression or death. Our Radiomics-based model might be able to
predict response in advanced NSCLC patients treated with CKI-based first-line therapy.
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1. Introduction

Lung cancer is one of the most common cancers in men and women, with non-
small cell lung cancer (NSCLC) accounting for up to 90% of primary lung tumors [1].
Unfortunately, more than 50% of patients are diagnosed at an advanced stage of disease
(stage IV) and therefore have a limited survival rate [2]. In terms of therapy regimes, most
patients have benefited only marginally from platinum-based therapy alone, which has
been the standard of care for many decades [3].

Immune checkpoint inhibition (CKI) is a novel therapeutic option in early and ad-
vanced disease stages and has revolutionized anticancer treatment strategies [4]. Immune
checkpoint signaling pathways allow tumor cells to evade immune surveillance resulting in
tumor progression. Monoclonal antibodies targeting these signaling pathways boost host
immunity against tumor cells by recruiting pre-existing tumor-specific cytotoxic T-cells [5].
Nowadays, monoclonal antibodies to the “programmed cell death protein 1” (PD-1) or to
its ligand “programmed death-ligand 1” (PD-L1) either as monotherapy or in combina-
tion with chemotherapy are the standard of care for the treatment of advanced NSCLC
patients [6].

Pivotal phase III trials have evaluated CKI in advanced NSCLC, both as monotherapy
and in combination with chemotherapy as first-line treatment. Different clinical trials,
which enrolled patients with advanced NSCLC and a high PD-L1 score (i.e., an immuno-
histochemical tumor proportion score (TPS) of at least 50%) compared CKI monotherapy
with standard chemotherapy, showing a significant increase in progression-free (PFS) and
overall survival (OS) in favor of the CKI-treated patient group [7–9]. For those patients
with a TPS score < 50%, the addition of CKI to standard chemotherapy also demonstrated
a significant survival benefit [10,11].

Despite advances in advanced NSCLC treatment, not all patients benefit equally
from CKI-based therapy. Many patients suffering from early disease progression [11].
Against the background of high therapy costs and potential treatment-related side effects,
better patient selection and identification of prognostic markers for treatment response and
disease progression to CKI-based therapy is crucial. However, to date, it is still not possible
to reliably predict treatment response in advanced NSCLC using biomarkers [12].

Today, [18F]-Fluorodeoxyglucose-(FDG)-positron emission tomography-computed to-
mography (further: PET-CT) is an integral part of the initial diagnostic work-up in NSCLC
patients [13,14]. However, while PET-CT could be shown to have higher accuracy in tumor
staging, most studies have failed to demonstrate prognostic value for various quantitative
PET parameters [15]. The predictive value of imaging is limited as factors influencing
therapeutic efficacy cannot be assessed using standard imaging parameters. Therefore, ad-
vanced imaging features which go beyond standard visual assessment are required to make
further improvements. The extraction of high-throughput digital and quantitative imaging
information and its conversion from encrypted imaging data to mineable numerical data
allows its Radiomics analysis. Radiomics represents a groundbreaking new technique to
analyze radiological data including the use of artificial intelligence that provides important
insights into cancer phenotype and tumor heterogeneity [16–18]. In contrast to results on
standard imaging assessment, several recently published studies found promising results
on radiomic feature (RF)-based analysis in oncologic imaging for outcome prediction in
several entities, including markers of tumor heterogeneity [16,19–21].

There is still limited evidence for Radiomics analysis using PET-CT imaging for pre-
dicting both the tumor expression of PD-L1 and the outcome in advanced NSCLC [22].
Hence, there is also limited evidence for the potential of Radiomics analysis to predict
treatment response and outcome following first-line CKI-based treatment regimens in stage
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IV NSCLC patients. This is particularly true for studies not only including conventional
CT imaging, but also PET-based RFs [16]. Because of the disseminated, highly hetero-
geneous disease manifestations, we included total tumor burden on PET-CT to identify
significant RFs.

This study aimed to evaluate the benefit of a Radiomics-based model including quanti-
tative morphological and metabolic information of PET-CT for predicting the response and
survival of treatment-naïve patients with advanced NSCLC undergoing treatment with
either CKI-monotherapy or CKI in combination with chemotherapy.

2. Materials and Methods
2.1. Study Design

This study was performed as a retrospective single-center observational trial in a
tertiary care academic medical center. All patients received CKI with Pembrolizumab
(Keytruda®Merck/MSD, Kenilworth, NJ, USA) as a monotherapy or in combination with
chemotherapy according to pivotal study protocols. In patients treated with combined
immunotherapy–chemotherapy, Pembrolizumab was combined with Cisplatin/Carboplatin
and Pemetrexed for non-squamous carcinomas, whereas combination therapy with Carbo-
platin/Paclitaxel was administered for squamous cell carcinomas [23,24].

This study was approved by the local ethics committee (No. 2022-391-f-S, Ethics
Commission of the Medical Association Westphalia-Lippe and the University Muenster).
This study was performed in accordance with the ethical standards in the 1964 Declaration
of Helsinki and its later amendments.

2.2. Patient Selection

The following inclusion criteria were applied to these patients to determine the study
population: (a) histologically confirmed advanced NSCLC without driver alterations (only
stage IV); (b) available TPS for PD-L1; (c) baseline PET-CT with available follow-up imaging
data for response evaluation; (d) approval of the interdisciplinary lung tumor board for
CKI-based therapy (assignment to TPS > 50%: CKI monotherapy, assignment to TPS < 50%:
platinum-based immunotherapy chemotherapy); (e) no pretreatments; (f) age ≥ 18 years.

2.3. Baseline 18F-FDG-PET-CT Imaging

Patients of the final cohort underwent a baseline PET-CT based on institutional stan-
dard protocols following current literature recommendations [13,25]. The imaging acqui-
sition was performed using a Siemens Biograph mCT 128 System (Siemens Healthcare,
Erlangen, Germany). All patients were imaged after a minimum of six hours of fasting with
a blood glucose level < 6.7 mM. Images were acquired at 60 min after injection of 3 MBq/kg
body weight of [18F]-FDG after appropriate standardized quality control. Whole-body
images from skull base to proximal femur were acquired. An additional low-dose CT
scan was performed in standard end-expiratory position for attenuation correction and
anatomical correlation.

2.4. Response Assessment and Follow-Up

All patient and procedural data were retrospectively acquired from the electronic
patient records as well as from the hospital’s image archiving and communications sys-
tem. Electronic patient records have been reviewed for clinical data and therapy valida-
tions. Second follow-up imaging was performed to assess treatment response using a
contrast-enhanced CT-scan. At this time, patients were classified by the RECIST (1.1) into
“responders” (i.e., complete (CR)/partial response (PR) and stable disease (SD), mentioned
as disease control rate (DCR)) and “non-responders” (i.e., progressive disease (PD)). CR
was defined as a complete decrease in the primary lesion; PR as a decrease in the longest
diameter by 20%; PD as an increase in the longest diameter by 30%; SD as neither a decrease
nor an increase in the longest diameter as defined for PR or PD [26,27]. PFS was defined as
time from starting CKI-based treatment until progression (PD) or death. Patients for whom
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follow-up information was not available after a certain time point were classified as “lost
to follow-up”.

2.5. Image Segmentation and Feature Extraction

In this study the total tumor volume was initially defined based on a segmentation
of the PET dataset. In agreement with previously published PERCIST criteria (1.1) a
threshold was set to 1.5 × mean liver “standardized uptake value” (SUV) + 2 standard
deviations to define FDG-positive tumor volume [28,29]. Two experienced nuclear medicine
physicians, blinded for clinical data, each independently adjusted FDG-positive lesion
volume manually and removed physiological uptakes, e. g., for liver, heart, and bladder.
For image segmentation, the reader-specific label map volume, based on the PET-positive
tumor volume, was then transferred to the CT images (Figure 1A). RFs from labelled
PET and CT data were extracted twice, each by the same independent readers for inter-
observer analysis. This included 36 first-order logic features and 48 gray level co-occurrence
matrix (GLCM) features. These features are used to quantify tumor size (e.g., volume),
shape (e.g., compactness and sphericity), and intensity (e.g., histogram statistics of mean,
standard deviation and median) as well as texture matrices including the GCLM where
the differences represent the heterogeneity of the tumor (Figure 1B). Image analysis and
feature extraction was performed by using a freely available software package (3D slicer,
version 4.11.2).
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plying a model-derived threshold (D). Modified to Yang et al. [30]. 
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trained on this augmented dataset (original features plus shadow features) and the im-
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that are either strongly or weakly relevant to the response variable (responder vs. non-
responder) [33]. Subsequently, a correlation matrix was calculated since there is no rele-
vant gain in information in closely correlated features (Figure 1C).  

Figure 1. Radiomic features examination: PET positive volumes in baseline 18F-FDG-PET-CT were
defined by application of a standardized threshold (PERCIST criteria) and manual adjustments, then
transferred to low-dose CT dataset (A). RF extraction from a specific generated label map volume was
done using an open source and multi-platform software package called 3D-Slicer, Version 4.11.2 (B).
A Radiomics-based model was built based on a Radiomics signature consisting of reliable RFs that
allow classification of second follow-up response using multivariate logistic regression (C). For
predicting second follow-up response, the area under the receiver operating characteristic curve and
the threshold of the Radiomics-based model was generated. These features were additionally tested
for their prognostic value (PFS) with Kaplan–Meier and log-rank tests in all patients by applying a
model-derived threshold (D). Modified to Yang et al. [30].
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2.6. Feature Selection and Model Analysis

Feature selection and dimension reduction were necessary, as the number of RFs
(n = 84) exceeded the number of patients (n = 44) [18,31]. The reproducibility of the ex-
tracted features between the two readers was assessed by calculating the concordance
correlation coefficient (CCC) for each of the features as a measure of intra-class correlation.
Features with a coefficient between 0.8 and 1 were classified as “excellent” and included in
further analysis [32].

Using z-score standardization, all feature values were normalized to a range between
0 and 1, which improves comparability. The normalized dataset was randomly subdivided
into a balanced training and test dataset (70/30 ratio). Further feature reduction was
performed only on the training dataset using a Boruta machine learning algorithm. The
Boruta algorithm applies a machine-learning-based random forest algorithm by making
copies of all features that are called shadow features. Then, a random forest classifier
is trained on this augmented dataset (original features plus shadow features) and the
importance of each feature is evaluated. At each iteration, the Boruta algorithm checks
whether a real feature has a higher importance. In doing so, it constantly removes features
that are considered to be very unimportant. Finally, the Boruta algorithm stops when
either all features are confirmed or discarded. On the other hand, Boruta finds all features
that are either strongly or weakly relevant to the response variable (responder vs. non-
responder) [33]. Subsequently, a correlation matrix was calculated since there is no relevant
gain in information in closely correlated features (Figure 1C).

Finally, to select features that allow either differentiation of responder and non-
responder after the second follow-up or overall progression (see above) based on the
training data set, a logistic regression analysis was performed on the test data set to fit
and test the model. The discriminatory efficacy of the features was quantified by calcu-
lating the area under the curve (AUC) using receiver operating characteristic (ROC) by
applying a model-derived threshold. Based on the ROC curve an optimal cut-off was
defined using Youden’s index (Figure 1D) [34]. RF selection and dimension reduction
was performed by using an open-source software package (R/R studio, version 4.0.5; R
Foundation, Vienna, Austria).

2.7. Survival Analysis

After RF selection, significant parameters were tested for their prognostic value (PFS)
with the Kaplan–Meier survival analysis. The log-rank test (Mantel–Cox) was used to assess
between-group differences. Hazard ratios (HR) and associated 95% confidence intervals
(95% CI) were calculated using a stratified Cox proportional hazards model. Higher TPS
in advanced NSCLC patients treated with CKI-based first-line therapy and response to
first-line therapy are known to be significantly associated with longer PFS [35–37]. These
two clinical parameters were therefore additionally included in the survival analysis.

2.8. Statistical Analysis

Clinical and demographic parameters were presented as total number, percentage, and
range. p-values < 0.05 were set and considered to be statistically significant. Survival and
statistical analysis were performed using the SPSS Statistics version 26 (SPSS Inc., Chicago,
IL, USA).

3. Results
3.1. Patients’ Characteristics

Between January 2017 and February 2022, a total of 44 patients with the initial diagnosis
of stage IV NSCLC met all our above-mentioned inclusion criteria and were retrospectively
analyzed. None of these patients had previously received therapy (i.e., thoracic radiotherapy,
neoadjuvant or adjuvant therapy) for non-metastatic lung cancer. The median age of our
patient cohort was 65 years (range: 35–82), and most patients were of male gender (70.5%).
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For the majority of patients (n = 30, 68.2%), continued (n = 10, 22.7%) or former (n = 20, 45.5%)
smoking status could be documented at the time of initial NSCLC diagnosis.

Of the 44 patients whose samples could be evaluated for PD-L1, 21 (47.7%) had a
TPS of 50% or greater and all these patients underwent Pembrolizumab monotherapy.
This compared with 13 patients (29.5%) and 10 patients (22.7%) with a TPS of 1–49% and
<1%, respectively. In 35 patients (79.5%) pathologic work-up revealed non-squamous
histology, whereas squamous carcinoma was found in 9 patients (20.5%). The demographic
characteristics of the patients and the disease characteristics are summarized in Table 1.

Table 1. Patients’ characteristics. Values are presented as median (interquartile range) or frequency
(percentage).

Subjects 44

Male 31 70.5%
Female 13 29.5%

Age [Years] 65 (33–82)

Smoking status
Current 10 22.7%
Former 20 45.5%
Never 2 4.5%

Unknown 12 27.3%

Eastern Cooperative Oncology Group (ECOG)
ECOG 0 2 4.5%
ECOG 1 32 72.7%
ECOG 2 10 22.7%

Histology
Non-squamous carcinoma 35 79.5%

Squamous carcinoma 9 20.5%

Tumor Proportion Score (TPS)-PD-L1
TPS > 50% 21 47.7%

TPS > 1%–(<49%) 13 29.5%
TPS < 1% 10 22.7%

Response after Second Follow-Up (RECIST)
Complete Response (CR) 1 2.3%

Partial Response (PR) 17 38.6%
Stable Disease (SD) 15 34.1%

Progressive Disease (PD) 11 25.0%

3.2. Treatment

Following initial PET-CT imaging a Pembrolizumab-based therapy protocol was
administered to all patients. According to current treatment guidelines 21 patients (47.7%)
with TPS > 50% received Pembrolizumab monotherapy whereas 23 patients (53%) with
a TPS < 50% received Pembrolizumab as combined immunotherapy chemotherapy. The
median time from baseline PET-CT imaging to therapy start was 23 days (IQR: 22 days). All
patients received at minimum four cycles of treatment with Pembrolizumab-based therapy.
The median number of treatment cycles was 13 (range: 4–52).

3.3. Response and Clinical Outcome

A second follow-up imaging with contrast-enhanced CT scans was performed to
assess treatment response at a median of 6.4 months (95% CI, 6.2–6.7 months) (Figure 2).
At this time, in accordance with the RECIST criteria, CR, PR, and SD were demonstrated in
1 patient (2.3%), 17 patients (38.6%), and 15 patients (34.1%), respectively. This contrasted
with 10 patients (25%) who suffered from disease progression and were therefore classified
as non-responders.
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At the time of data cut-off 22 patients (50%) were still receiving assigned first-line
treatment and 22 patients (50%) had received at least one subsequent therapy. With a
median follow-up time of 18 months (range: 6–57), 22 patients suffered from disease
progression (50.0%) and 10 patients (22.7%) died due to cancer-related circumstances.
Hence, in our patient collective, based on 33 total events of progression or death, the
median PFS was found to be 8 months (95% CI, 3–52).
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Figure 2. Initial staging and second follow-up in two patients with different response: Patient with
adrenal (marked with green arrow), bone, and lymph node metastases in initial staging PET-CT.
Partial response was shown in contrast-enhanced CT in second follow up (A). Patient with multiple
intra-pulmonal (marked with red arrow) and bone metastases in initial staging PET-CT. Progressive
disease was shown in contrast-enhanced CT in second follow up (B).

3.4. Outcome Prediction

Following data analysis, two radiomic PET features (“PET-Skewness” and “PET-Median”)
revealed predictive value. PET-Skewness differentiated well between responder and non-
responder at the second follow-up imaging (Figure 3). Hence, patients with a higher value
and pronounced heterogeneity had a higher probability of disease progression at the second
follow-up. PET-Median differentiated well between progression and no progression overall
(Figure 3). Here, patients with a lower value had a higher probability of progressive disease
following CKI-based first-line treatment.

For predicting response, the AUC-ROC of the Radiomics-based model was 0.69 for
PET-Skewness. For predicting progression overall, the AUC-ROC of the Radiomics-based
model was 0.75 for PET-Median.
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Figure 3. Radiomic features boxplot. The radiomic PET feature PET-Skewness differentiated well
between non-responders (red) and responders (green) to immunotherapy after the second follow-
up. The Radiomic PET feature PET-Median differentiated well between progression (green) and
no-progression (red) overall.

3.5. Survival Analysis for PFS

With respect to the entire patient population that was examined, within the final
model of the Kaplan–Meier analysis and log-rank (Mantel–Cox) test, patients with a lower
value of PET-Skewness (threshold 0.2014: 80.0% vs. 71.6%; p = 0.027) and higher value of
PET-Median (threshold 0.5233: 93.3% vs. 45.7%; p = 0.004) had a significantly improved PFS
at 6 months (Figure 4A,B). In addition, TPS (i.e., ≥50%, ≥1–49%, and <1%) also showed a
significant impact on PFS (p < 0.001) (Figure 4C). Using Cox regression analysis, patients
with a lower value of PET-Skewness (threshold < 0.2014: HR 0.17, 95% CI 0.06–0.46; p <
0.001) and a higher value of PET-median (threshold > 0.5233: HR 0.23, 95% CI 0.11–0.49; p
< 0.001) had a statistically significantly lower probability of disease progression or death.
Similarly, TPS > 50% (HR 0.23, 95% CI 0.09–0.61; p = 0.003) and TPS 1%–49% (HR 0.29, 95%
CI 0.09–0.95; p = 0.041) were each associated with a lower likelihood of disease progression
or death compared with a TPS < 1%.

The results of the subgroup analysis with respect to patients with a TPS score > 50%
or a score of 1–49% are shown in Figure 5. Regarding the subgroup of patients with a
TPS score > 50%, the parameter PET-Skewness also showed a trend in favor of patients
with a value below the above-mentioned threshold (HR for disease progression or death,
0.57; 95% CI, 0.22 to 1.48; p = 0.247; Figure 5A). Similarly, in this group of patients, a
lower probability of disease progression was shown for a PET-Median above the calculated
threshold (HR for disease progression or death, 0.26; 95% CI, 0.08 to 0.81; p = 0.021;
Figure 5C). When considering patients with a TPS score of 1–49%, the respective thresholds
for PET-Skewness (HR 0.43; 95% CI, 0.13 to 1.40; p = 0.163; Figure 5B) and PET-Median (HR
0.80; 95% CI, 0.17 to 3.76; p = 0.785; Figure 5D) were also associated with a lower probability
of disease progression.
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Figure 5. PFS subgroup analyses of RFs according to TPS. TPS > 50% subgroup (n = 21): For PET-
Skewness (A) patients had a lower probability of disease progression or death with a value below a
threshold of 0.2014 (HR: 0.57; 95% CI, 0.22 to 1.48; p = 0.247). For PET-Median (B) patients had a lower
probability of disease progression or death with a value above a threshold of 0.5233 (HR: 0.26; 95% CI,
0.08 to 0.81; p = 0.021). TPS >1–(<49%) subgroup (n = 13): For PET-Skewness (C) patients had a lower
probability of disease progression or death with a value below a threshold of 0.2014 (HR: 0.43; 95% CI,
0.13 to 1.40; p = 0.163). For PET-Median (D) patients had a lower probability of disease progression or
death with a value above a threshold of 0.5233 (HR: 0.80; 95% CI, 0.17 to 3.76; p = 0.785).
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4. Discussion

Despite novel therapeutic options, management of advanced NSCLC remains chal-
lenging in modern clinical oncology due to the limited response of therapy and disease
progression in the majority of patients, resulting in high mortality rates [2]. However, over
the past decades, treatment outcomes have significantly improved with the introduction of
targeted therapies and CKI-based treatment regimens. In this context, numerous clinical tri-
als have demonstrated a significant advantage of these new therapeutic regimens in terms
of PFS and OS compared to conventional chemotherapies [38]. Although the introduction
of CKI either as monotherapy or in combination with chemotherapy has improved the
prognosis of NSCLC, still most patients die in the long-term course of their disease [39,40].

4.1. Radiomic Features as Potential Markers for Predicting Treatment Response and Survival

Immune checkpoint inhibitors interacting with PD1 and PD-L1 already showed im-
proved OS for different tumor entities. Nevertheless, only 20–40% of patients benefit from
this treatment option. Immunohistochemical assays are used to quantify PD-L1 in tumor
cells to select appropriate patients. Hence, PD-L1 is the most studied, validated, and
accepted biomarker according to current research. However, there are various challenges in
clinical usage for this biomarker: (1) there is no unified standardized immunohistochemical
assay; (2) the different assays show a high variance among each other, which leads to a
higher variability; and (3) there is no prospective evidence between the different assays
regarding treatment outcome [41].

For better patient management, it is crucial to identify other pretherapeutic markers
that can predict the response to therapy and the outcome, thus enabling early treatment
adjustments. Novel markers derived from initial patient imaging, such as PET-CT, could
therefore provide a complementary option for guiding therapy and predicting treatment
response and prognosis.

Analysis of our data suggests that imaging parameters derived from initial imaging
before therapy initiation may have prognostic significance for evaluation of the response to
therapy or disease progression. In this regard, our analysis identified significant differences
for the overall population studied in terms of both treatment response at the second follow-
up imaging (PET-Skewness) and PFS overall (PET-Median).

Hence, an important clinical issue in the treatment of lung cancer patients, will be to
select patients that will benefit from early intensification of therapy to improve response to
the first-line treatment and to delay disease progression. In particular, imaging parameters
may therefore be important for treatment guidance in patients with a TPS > 50% who
may be treated with CKI alone or combined with chemotherapy according to the current
guidelines [42].

Up to now, no prognostic marker has been identified to indicate which patients in
this subgroup (TPS > 50%) will benefit from more intensive treatment with the addition of
chemotherapy to CKI. Considering HR for disease progression, the results of our subgroup
analysis suggest that the identified parameters may also have prognostic significance for
this subgroup of patients. However, statistical significance could not be achieved here
for all parameters and subgroups, which is probably due to the small number of patients
included in our analysis. Our data must therefore be viewed with caution. Hence, analysis
of larger patient collectives is essential for further investigation of our hypothesis.

4.2. PET-CT Derived Radiomic Features in Lung Cancer

PET parameters reflecting the whole tumor burden, such as the metabolic tumor
volume or total lesion glycolysis, can be used as predictive parameters for lung cancer, as
previously shown by [43–47]. However, these parameters often only indirectly represent
the stage of the disease as, for example, a higher tumor volume is frequently associated
with metastases. Especially when including patients with different stages of the disease
in the study [19,20]. In contrast to studies including patients with different disease stages,
PET-based tumor volume has not been identified to be a predictive factor for response
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to therapy in our study. Additional imaging-based parameters are needed to overcome
these limitations, including information on tumor heterogeneity. Extracting additional
information reflecting changes at the cellular level from metabolic and morphological
imaging by Radiomics analysis might overcome these limitations.

A systematic review by Morland et al. analyzed 107 different studies that addressed
Radiomics in lung cancer based on PET-CT. However, the data on Radiomics-based ap-
proaches in advanced NSCLC patients treated with immunotherapy either as monotherapy
or in combination with chemotherapy are still sparse [16]. In particular, investigations
including both morphological and metabolic RFs equally, are rare [19–21]. Two of these
studies with comparable populations included patients with several pretreatments before
immunotherapy [19,20]. In these studies, some patients were diagnosed with stage IV at
initial diagnosis, but some had progressed during or after previous therapies. However, it
is known that progress during initial therapy is, a priori, a factor with a negative impact
on survival [35–37]. Further, these two previous investigations did not subdivide datasets
into a training and a test dataset, which is highly recommended when applying machine
learning algorithms to validate RFs [48,49].

To avoid selection and performance biases, we therefore aimed to examine a treatment-
naïve population that received CKI-based treatment as first-line therapy. The most valuable
approach is presented in the study by Mu et al. (2020) with a retrospective analysis of
a training and test dataset followed by an additional prospective validation of the RFs,
resulting in a reliable assessment of their predictive power [21].

Although the primary advantage of whole-body PET imaging is the assessment of
metabolic tumor properties in primary tumors and metastases, all three previous studies
in contrast to our study only focused on the primary tumor for the assessment of RFs.
However, in line with our results, all three previous publications identified radiomic
metabolic features as significant for the prediction of PFS and OS. Moreover, these studies
identified parameters reflecting tumor heterogeneity, albeit not identical to the predictive
RFs identified in our study. Possible explanations are the above-mentioned differences
in inclusion criteria, patient cohort, and segmentation for RFs of total tumor burden in
baseline PET-CT. An advantage of PET RFs is their reproducibility and robustness to all
degrading factors [17].

Regarding the morphological imaging component, no low-dose CT parameters were
found to have significant predictive value concerning response or progression, which was
comparable to the results from prior studies [19,20]. One bias could be the lower informa-
tion output in low-dose CT compared to contrast-enhanced CT. In other studies, significant
RFs were found in contrast-enhanced CT to predict therapy response to immunotherapy
in advanced NSCLC [50,51]. Advances in CT techniques, such as photon counting CT,
might further improve the assessment of tumor phenotype and should be combined with
functional PET imaging in the future.

4.3. Limitations

This investigation is naturally limited due to its retrospective design and by its small
patient cohort. Hence, a meaningful statistical analysis was not possible for the subgroups of
patients that received either CKI monotherapy or combined immunotherapy–chemotherapy.
Therefore, analyses of these subgroups in further investigations with more patients are
warranted. Furthermore, due to the short follow-up period, no meaningful analysis of
the impact of RFs on OS was performed in our investigation. Hence, future studies will
therefore need to consider the impact of RFs on OS.

To avoid bias through differences in background metabolic activity, instead of using a
fixed threshold we used a reliable background-based quantification of tumor volume, as
recommended in the PERCIST 1.1 criteria [28,29]. Open-source and deep learning programs
for inter- and intra-observer and inter-software reliability are available and can minimize
the bias of manually performed segmentation [33,52].
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5. Conclusions

Our analysis suggests that PET-CT-based Radiomics may provide parameters with
predictive value for response to first-line CKI-based treatment in patients with advanced
NSCLC. Prospective studies are needed to translate a potential prognostic value of Ra-
diomics analysis in this proof-of-concept study. Together with clinical and biological
tumor-specific data, advanced image analysis could be a key element that might impact
patient stratification and therapy guidance in advanced NSCLC patients.
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