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Simple Summary: The development of various molecular techniques has led to the introduction
of a new classification for biliary tract cancer and a better understanding of the clinicopathological
features of the disease. Furthermore, as new diagnostic modalities and research findings have been
published, they enable accurate diagnoses, differentiations, and clinical assessments based on the
characteristics of each subtype. This article reviews the current imaging and histologic diagnostic
techniques along with future perspectives on molecular diagnosis, to approach precision medicine
for biliary tract cancer.

Abstract: Biliary tract cancers (BTCs), including intrahepatic, perihilar, and distal cholangiocarci-
nomas, as well as gallbladder cancer, are a diverse group of cancers that exhibit unique molecular
characteristics in each of their anatomic and pathological subtypes. The pathological classification
of BTCs compromises distinct growth patterns, including mass forming, periductal infiltrating, and
intraductal growing types, which can be identified through gross examination. The small-duct and
large-duct types of intrahepatic cholangiocarcinoma have been recently introduced into the WHO
classification. The presentation of typical clinical symptoms, as well as the extensive utilization of
radiological, endoscopic, and molecular diagnostic methods, is thoroughly detailed in the description.
To overcome the limitations of traditional tissue acquisition methods, new diagnostic modalities are
being explored. The treatment landscape is also rapidly evolving owing to the emergence of distinct
subgroups with unique molecular alterations and corresponding targeted therapies. Furthermore,
we emphasize the crucial aspects of diagnosing BTC in practical clinical settings.
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1. Introduction

Biliary tract cancer (BTC) encompasses a range of invasive adenocarcinomas, includ-
ing cholangiocarcinomas (arising in the intrahepatic, perihilar, or distal biliary tree), and
gallbladder cancers. Cholangiocarcinomas arising from the bile ducts proximal to the
second-order ducts are classified as intrahepatic cholangiocarcinoma (iCCA), those orig-
inating between the second-order ducts and the insertion of the cystic duct are termed
perihilar cholangiocarcinoma (pCCA; previously referred to as Klatskin tumors), and those
arising from the bile ducts distal to the insertion of the cystic duct are termed distal cholan-
giocarcinoma (dCCA). Extrahepatic cholangiocarcinoma collectively refers to pCCA and
dCCA [1]. Gallbladder cancer (GBC) originates either from the gallbladder itself or from
the cystic duct.

BTCs exhibit heterogeneous clinical manifestations, molecular characteristics, and
biological behaviors, depending on their anatomical, pathological, and molecular classifi-
cations. In recent years, increasing genomic research has begun to uncover the molecular
underpinnings of BTC and offer many potential treatments, ushering in a new era in preci-
sion medicine. However, in addition to understanding the clinicopathologic development
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of each BTC subtype, there must be an individualized assessment of each subtype and an
effort to overcome clinical diagnostic hurdles. Herein, we review the current techniques for
the imaging and histologic diagnosis of BTC, along with future perspectives on molecular
diagnosis, to approach precision medicine in BTC.

2. Pathologic Classification

The initial step in diagnosing BTC is to identify the anatomical location and growth
patterns, followed by a microscopic assessment of the differentiation and subtype. These
findings should be further supported by immunohistochemistry (IHC) staining, and, finally,
molecular subtyping can be performed. Several classifications have been proposed based
on the anatomical location, histopathological appearance, and molecular characteristics of
BTC [1–3].

2.1. Pathologic Classification of Cholangiocarcinoma

iCCA is grossly classifiable into three growth patterns (Table 1): mass forming type
(60–80% of cases) presents as a mass-like lesion within the hepatic parenchyma; periductal
infiltrating type (15–35% of cases) is characterized by infiltration along the bile ducts
and portal tracts, leading to strictures and thickening of the affected bile ducts, as well
as the dilatation of the peripheral bile ducts; and intraductal growing type (6–29% of
cases) consists of a polypoid or papillary tumor within the dilated bile ducts [1,4–6].
Macroscopically, pCCA and dCCA have similar growth patterns: the flat or nodular
sclerosing type (73% of cases, corresponding to the features of periductal infiltrating type)
and the intraductal papillary type (27% of cases) [7].

Table 1. Clinicopathological features of cholangiocarcinoma.

Cholangiocarcinoma
Type Growth Pattern Precancerous Lesion Main Etiology

iCCA—small-duct
type Mass forming None Chronic hepatitis

Cirrhosis

iCCA—large-duct
type

Periductal infiltrating BilIN

Hepatolithiasis
Liver flukes

PSC

Intraductal growing IPNB, MCN, and
ITNB

pCCA—dCCA
Flat or nodular

sclerosing BilIN

Intraductal papillary IPNB, MCN, and
ITNB

iCCA, intrahepatic cholangiocarcinoma; BilIN, biliary intraepithelial neoplasia; IPNB, intraductal papillary
neoplasm of the bile duct; MCN, mucinous cystic neoplasm; ITNB, intraductal tubular neoplasm of the bile duct;
pCCA, perihilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma; PSC, primary sclerosing cholangitis.

Conventional iCCA can be further divided into two main histologic types based on
the size of the affected duct, which are small duct-type and large duct-type iCCA. These
categories have been recently introduced into the WHO classification [8]. Small duct-type
iCCA (36–84% of cases) is composed of the small-sized tubular growth of cuboidal or
low-columnar tumor epithelial cells with little or no mucin production. Meanwhile, large
duct-type iCCA (8–60% of cases) is characterized by mucin-producing columnar cells that
form irregularly shaped and sized tubules or gland-like structures, which are commonly
accompanied by an aggressive growth pattern and a desmoplastic reaction [8–10].

Cholangiocarcinoma can display various morphological subtypes, which may be
attributed to different cell origins, carcinogenesis, and progression pathways. For instance,
the canals of Hering and interlobular bile ducts are thought to be the cell origins for small
duct-type iCCA, which typically presents as a mass-forming pattern in the context of
chronic hepatitis and cirrhosis [11], whereas the peribiliary glands are likely the origin
of large duct-type iCCA, pCCA, and dCCA, which lead to periductal-infiltrating lesions
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related to biliary inflammation, such as hepatolithiasis, parasite infection in the bile ducts,
and primary sclerosing cholangitis (PSC) [7,11]. Notably, the intraductal growing pattern
illustrates a separate pathway originating from the large bile ducts and is frequently linked
to a more favorable prognosis.

In an investigation of IHC staining, both large and small duct-type iCCAs displayed
positive staining for EMA (MUC1), HNF-1β, CK7, and CK19. The immunostaining for
CK20 was typically negative or focally positive. Small duct-type iCCA demonstrated
positive staining for NCAM (CD56), CRP, N-cadherin, and IDH 1/2, whereas large duct-
type iCCA, similar to pCCA and dCCA, displayed positive staining for mucin (identified
through mucicarmine or Alcian blue staining), MUC-5AC, MUC-6, S-100, TFF1, MMP, and
KRAS [9,12].

The 2010 WHO classification suggested three types of precancerous lesions in the
biliary tract: the flat type (biliary intraepithelial neoplasia, BilIN), the papillary type (in-
traductal papillary neoplasm of the bile duct, IPNB), and the cystic type (mucinous cystic
neoplasm, MCN). Recently, intraductal tubular neoplasm of the bile duct (ITNB) was pro-
posed as another candidate for preneoplastic lesions; however, its advanced form remains
unclear [13]. IPNB may be associated with the intraductal growing type of iCCA and
intraductal papillary type of pCCA and dCCA. BilIN may precede a periductal infiltrating
(iCCA) and a flat or nodular sclerosing (pCCA and dCCA) pattern [14]. MCN can progress
to an invasive carcinoma that may develop into a cystic lesion with a grossly surrounding
nodular lesion. As of yet, no precursor lesions have been identified for mass-forming
iCCA [7].

2.2. Pathologic Classification of Gallbladder Cancer

Adenocarcinoma is the main histological classification of GBC (approximately 90% of
cases) [15]. GBC can exhibit an infiltrative, nodular, or papillary gross morphology or a
combination of these morphologies. In addition, there are three premalignant lesions of
gallbladder adenocarcinoma: adenoma, BilIN, and intracystic papillary neoplasm (ICPN).
BilIN is invisible on gross inspection but can be microscopically identified around invasive
tumors or chronic cholecystitis. ICPN is grossly identified as an exophytic polypoid mass
or diffuse friable thickening of the mucosa and is composed of mucinous epithelial cells
with papillary and tubular arrangements [16]. Dysplasia of the BilIN and ICPN is typically
categorized using a three-tier system, with high-grade dysplasia placed in the same group
as carcinoma in situ. The current definitions of adenoma and ICPN are unclear and require
revised diagnostic criteria to ensure the consistency and accuracy of diagnoses.

3. Molecular Classification

In addition to the heterogeneity in anatomical locations and growth patterns, molecular
profiling studies have revealed significant molecular heterogeneity across BTCs [17–19].
Driver mutations susceptible to targeted therapy have been identified in each BTC subtype,
which are typically mutually exclusive from one another (Figure 1). For example, small
duct-type iCCA is enriched for actionable targets, such as IDH 1/2 mutations (15–20%) and
FGF2 fusions (10–20%). Large duct-type iCCA tumorigenesis frequently involves KRAS
(15–30%) and TP53 mutations (10–40%). GBC, pCCA, and dCCA are characterized by a
high frequency of KRAS mutations (30–45%), ERBB2 amplification (15–20%), and a low
frequency of IDH 1/2 or FGFR2 fusions. Although rare, gene rearrangements, such as
NTRK, ROS1, or ALK fusions, have been identified in BTC. All subtypes of BTC harbor
similar rates of BRAF alteration (3–5%), homologous recombination deficiency (5–15%),
and microsatellite instability-high (MSI-H)/mismatch repair (MMR)-deficiency (dMMR;
2–5%) [20–22].
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Figure 1. Molecular characteristics of biliary tract cancer according to anatomical location. iCCA,
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Despite this heterogeneity, recurring molecular subtypes with driver mutations suscep-
tible to targeted therapy have been found. These subtypes are typically mutually exclusive
of one another. For example, fibroblast growth factor receptor (FGFR)-2 gene transloca-
tions and isocitrate dehydrogenase-1 (IDH1) mutations occur nearly exclusively in iCCA,
while KRAS proto-oncogene (KRAS) mutations and receptor tyrosine-protein kinase erbB-2
(ERBB2) amplifications are more common in pCCA, dCCA, and GBC [19,23,24]. Targeted
therapy, such as FGFR inhibitors [25–27], mutant-IDH inhibitors [28], BRAF inhibitors [29],
and HER2 inhibitors [30–32], as well as immunotherapy used alone [33] or in combina-
tion [34,35], have undergone clinical studies and have recently been incorporated into
clinical practice to treat patients with BTC.

3.1. Molecular Classification of Cholangiocarcinoma

Integrated multi-omics analyses of cholangiocarcinoma have led to a deeper under-
standing of cancer traits, resulting in the proposal of several molecular classifications
(Table 2). These molecular-subtyping methods are based on genomic, transcriptomic,
proteomic, or tumor microenvironment (TME) analyses, and they primarily include sam-
ples of iCCA. While molecular classifications are evolving to become increasingly refined
and treatment-matched, further studies are needed to better understand the pathological–
molecular correlations and enter the era of precision medicine.
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Table 2. Molecular classifications of intrahepatic cholangiocarcinoma.

Reference Tumor Type n Classification Molecular Characteristics and Prognosis

Sia et al. [17] iCCA 149

Inflammation class
Activation of inflammatory signaling pathways
Overexpression of IL-4 and IL-10 (Th2 marker)

Favorable prognosis

Proliferation class
Activation of oncogenic signaling pathways
Overexpression of EGF, RAS, AKT, and MET

Worse prognosis

Andersen et al. [18] Cholangiocarcinoma 104

Cluster 1
No KRAS mutation

Absence or weak expression of HER2 and MET
Good prognosis

Cluster 2
Enriched VEGF/ERBB, CTNNB1/MYC, and KRAS

mutations
Poor prognosis

Farshidfar et al. [36] Cholangiocarcinoma 32

IDH-mutant cluster *
IDH1/2 mutation

Elevated mitochondrial gene expression
Loss of function of ARID1A and PBRM1

CCND1 amplification
cluster * Highly hypermethylated

BAP1/FGFR cluster * BAP1 mutation or FGFR2 fusion

Jusakul et al. [19] Cholangiocarcinoma 69

Cluster 1
ARID1A, BRCA1/2, and TP53 mutations

ERBB2 amplification
CpG island hypermethylation

Cluster 2 Enriched in TP53 mutations
High expressions of CTNNB1, WNT5B and AKT1

Cluster 3 High CNA burden
Enriched immune-related pathways

Cluster 4

BAP1 or IDH1/2 mutation
High expression of FGFR family proteins

CpG shore hypermethylation
Favorable prognosis

Job et al. [37] iCCA 78

Immune desert subtype Minimal expression of all TME signatures

Immunogenic subtype

High adaptive immune cell presence
Strong activation of fibroblasts and inflammatory and

immune checkpoint pathways
Best prognosis

Myeloid-rich subtype Strong monocyte-derived myeloid cell signatures
Weak lymphoid signatures

Mesenchymal subtype Strong activation of fibroblast signatures
Worst prognosis

Dong et al. [38] iCCA 262

S1

Enriched KRAS mutations
Upregulated inflammatory pathways and

immunosuppressive TME signature
Worst prognosis

S2 High expression of proteins related to CAFs and ECM
(FAP, POSTN, and FLT1)

S3
Enriched in TP53 mutations

Upregulated pathways of cell cycle and MAPK
signaling

S4

FGFR2 alterations, and BAP1 and IDH1/2 mutations
High expression of adhesion and biliary-specific

proteins (ANXA4, KRT18, and EPCAM)
Best prognosis
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Table 2. Cont.

Reference Tumor Type n Classification Molecular Characteristics and Prognosis

Martin-Serrano
et al. [39] iCCA 122

Immune classical
High infiltration of immune cells (type-1 IFN)

Enriched in TP53 mutations alone
Elevated metabolic-related pathways

Inflammatory stroma **
Abundance of stromal deposition, TGFβ signaling,

and T cell exhaustion
Enriched KRAS mutations alone

Hepatic stem-like

High M2-like macrophage levels in TME
FGFR2 alterations, and BAP1 and IDH1/2 mutations
Elevated stemness-related pathways (NOTCH and

YAP1)

Tumor classical **
Enriched in TP53 mutations alone and co-occurrence

of TP53 and KRAS mutations
High expression of cholangiocyte markers

Desert-like

Scarce immune infiltration and abundance of Tregs in
TME

Enriched in TP53 mutations alone
Enriched in mitotic spindles and WNT/β-catenin

signaling

Cho et al. [40] iCCA 102

Metabolism IDH1 and BAP1 mutations
Favorable prognosis

Stem-like High expression of ALDH1A1 and ALDH families

Poorly immunogenic TP53 and KRAS mutations
Poor prognosis

iCCA, intrahepatic cholangiocarcinoma; CNA, copy number aberration; TME, tumor microenvironment; CAFs,
cancer-associated fibroblasts; ECM, extracellular matrix; Tregs, regulatory T cells; ALDH, aldehyde dehydrogenase.
* Survival is not significantly different between the clusters. ** Inflammatory stroma and tumor classical classes
are linked to more aggressive disease, although they are not independent predictors of survival.

3.2. Molecular Classification of Gallbladder Cancer

Previous molecular studies have generally focused on characterizing the differences
between cholangiocarcinomas rather than specifically examining GBC due to its rarity
and relatively low mutation burden [21,41]. Nepal et al. recently investigated the GBC
prognostic subtypes (subtype 1~3) based on their molecular profiles using an integrative
multi-omics approach [42]. Subtype 2 is linked to a positive prognosis, characterized by
higher levels of immune infiltrates and a gastric foveolar-like histomorphology. In contrast,
subtypes 1 and 3, which have poor survival, were associated with an advanced stage, im-
munosuppressive TME features (myeloid-derived suppressor cell accumulation, extensive
desmoplasia, and hypoxia), and T-cell dysfunction [42]. Other next-generation sequenc-
ing (NGS) data for GBC samples indicated that molecular alterations were distributed
differently across GBC pathologic subtypes [43].

4. Clinical Presentation

The appearance and characteristics of clinical symptoms are contingent upon the
anatomical site of the primary tumor and its associated metastasis. Patients with extrahep-
atic cholangiocarcinoma typically become symptomatic when biliary obstruction caused by
the disease results in jaundice. Patients with iCCA are less likely to experience jaundice
and instead exhibit non-specific symptoms, such as dull right upper quadrant pain or
unexplained weight loss. Approximately 20–25% of patients are asymptomatic, with the
lesions detected incidentally [44]. Patients with early GBC are also usually asymptomatic
and are often diagnosed incidentally through preoperative imaging studies or intra- or
postoperative examinations.

Laboratory tests are generally not useful for diagnosis; high levels of alkaline phos-
phatase or serum bilirubin may suggest biliary obstruction. Serum tumor markers such as
carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) are frequently
elevated but do not provide diagnostically useful results due to their lack of specificity and
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sensitivity [45–47]. Although an established diagnosis is present, tumor markers can still
offer useful information about the response to treatment and prognosis.

5. Diagnostic Tool
5.1. Ultrasonography

Many patients initially undergo transabdominal ultrasonography to assess the biliary
tree, and the results may aid in identifying the location of the lesion: an abrupt change in
the extrahepatic duct diameter with intrahepatic and extrahepatic biliary dilatation (dCCA
case); intrahepatic ductal dilatation with normal-caliber extrahepatic ducts (pCCA case);
mass lesions, occasionally in a non-cirrhotic liver, without radiographic characteristics
of hepatocellular carcinoma (HCC) (iCCA case); or a protruding mass in the gallbladder,
which sometimes extends directly into the liver bed (GBC case).

5.2. CT and MRI

Computed tomography (CT) is the standard method for diagnosing and staging BTC. It
offers a thorough assessment of the primary tumor, taking into account its relationship with
adjacent structures (specifically, portal vein and hepatic artery involvement, determining
resectability), and potential thoracic and abdominal spread [48]. Magnetic resonance
cholangiography (MRI) has comparable accuracy to CT for diagnosis and staging, but it
includes particular sequences such as diffusion-weighted imaging (DWI) and the capability
to carry out magnetic resonance cholangiopancreatography (MRCP), which is crucial for
pCCA staging [49].

5.2.1. Radiologic Findings of Mass-Forming Cholangiocarcinoma

The most common imaging pattern of mass-forming iCCA in both CT and MRI is
characterized by an arterial peripheral rim enhancement that progresses centripetally with
homogeneous contrast agent uptake, which continues until the delayed phase or remains
stable during the late dynamic phases [49]. In the hepatobiliary phase of gadoxetic acid-
enhanced MRI, most mass-forming iCCA exhibits ‘EOB-cloud’, which features a central
area of mild hyperintensity that is cloud-like in appearance, surrounded by a hypointense
area in the periphery of the tumor [50]. However, as no specific radiological pattern exists,
histopathological or cytological results are necessary to confirm the diagnosis.

The primary differential diagnoses for mass-forming iCCA are HCC, metastatic ade-
nocarcinoma, inflammatory pseudo-tumors, and angiosarcoma. It is crucial to differentiate
HCC, the most common primary hepatic malignancy, due to its different prognoses and
treatments. Early arterial enhancement and washout of contrasts are the key patterns in
favor of HCC, while capsular retraction and peripheral bile duct dilatation are more sug-
gestive of iCCA. The target sign in DWI, defined as central hypointensity and a peripheral
hyperintense rim, helps in the distinction of iCCA from HCC [51]. However, scirrhous
HCC can be challenging to distinguish from mass-forming iCCA in imaging, making it
necessary for tissue diagnosis. Metastatic adenocarcinoma can show many typical findings
of iCCA, including central hypointensity or intrahepatic bile duct dilatation. It can also be
difficult to differentiate based on histopathology and requires special immunohistochemical
studies [52]. Therefore, when approaching a suspected mass-forming iCCA, it is essential
to exclude extrahepatic primary malignancies, especially colorectal cancer.

5.2.2. Radiologic Findings of Periductal-Infiltrating Cholangiocarcinoma

The most common growth pattern in pCCA and dCCA is characterized by a narrowed
biliary duct displaying irregular circumferential wall thickening (usually with a thickness
of ≥5 mm) along with upstream biliary tree dilatation. These tumors slowly enhance to a
peak in the delayed phase; however, they are rarely hypervascular and are enhanced in the
arterial phase [53]. When infiltration is nodular, the bile ducts appear protuberant, whereas
they appear narrowed and stretched when infiltrated diffusely [54].
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Periductal-infiltrating cholangiocarcinoma can be misleadingly similar to other biliary
diseases such as PSC, Mirizzi syndrome, portal biliopathy, IgG4-related sclerosing cholan-
gitis, benign idiopathic stricture, and hepatobiliary sarcoidosis or lymphoma. PSC typically
presents as multiple intra- and extrahepatic biliary strictures with a beaded appearance
in MRCP. The intervening segments exhibit only slight dilation, with the strictures typi-
cally being quite short in length [55]. On MRCP of Mirizzi syndrome, an abrupt stricture
of the common hepatic duct is evident, along with a normal common bile duct and an
impacted gallstone located in the neck of the distended gallbladder [56]. Portal biliopathy
refers to the narrowing of the extrahepatic biliary tract as a result of extrahepatic portal
vein obstruction. This leads to the obstructive effect of peribiliary collateral vessels or
ischemic damage to the biliary tract. Imaging studies revealed a circumferential, long, and
smooth stricture of the common bile duct accompanied by the presence of collaterals and
choledochal varices [57]. IgG4-related sclerosing cholangitis is a chronic inflammatory
condition affecting the biliary system, which is frequently observed in conjunction with
other manifestations of IgG4-related disease. IgG4-related sclerosing cholangitis shows
circumferential symmetric wall thickening of the bile ducts, frequently involving the ex-
trahepatic segments, and features smooth outer and inner margins, a visible lumen in the
thickened segments, and delayed homogenous contrast enhancement [58]. Nine out of
ten cases exhibit pancreatic involvement, which typically presents with diffuse or focal
pancreatic enlargement, a peripheral capsule-like rim, and a pancreatic duct stricture [59].
The diagnosis of IgG4-related sclerosing cholangitis is typically made by combining several
factors, including characteristic imaging results, serum IgG4 antibody levels, histological
findings, and the patient’s response to steroid therapy [60].

5.2.3. Radiologic Findings of Intraductal-Growing Cholangiocarcinoma

The reported incidence of the intraductal-growing type ranges between 8% and 18%
of all types of cholangiocarcinoma [49]. These tumors generally appear as polypoid or
sessile masses that are restricted within the bile duct, accompanied by proximal ductal
dilatation caused by either occlusion or the overproduction of mucin. These lesions exhibit
imaging characteristics similar to those of mass-forming types, displaying a heterogeneous
enhancement that begins early and reaches its peak in the delayed phase. A significantly
dilated intrahepatic bile duct segment can give the appearance of a cystic mass such as
cystadenoma, cystadenocarcinoma, or a liver abscess [61].

5.2.4. Radiologic Findings of Gallbladder Cancer

GBC can present in various ways, such as a polypoid mass protruding into the lumen
or completely filling it, focal or diffuse wall thickening, or a substantial mass in the gallblad-
der fossa with an indistinguishable gallbladder [62]. The indicators of GBC complicated by
cholecystitis, rather than simple cholecystitis, include a higher frequency of lymph node
enlargement, a more extensive wall thickness, focal irregularity in the wall thickness, and
less distention of the gallbladder [63].

5.3. PET-CT

Positron emission tomography (PET)-CT can be employed to complement CT and MRI
in order to provide additional information about lymph node involvement, the presence of
distant metastasis, and postoperative recurrence. In fact, preoperative PET scanning has
been shown to result in a change in surgical management in approximately one-fourth of
cases, primarily by detecting occult distant metastases. However, due to its low specificity,
it is not sufficient for the diagnosis of primary lesions, and cytological or histological
confirmation is still necessary [64].

5.4. EUS

Endoscopic ultrasound (EUS) is a diagnostic tool that can visualize the local extent
of the primary tumor and the status of the regional lymph nodes, particularly in cases
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where dCCA lesions are suspected. EUS-guided fine needle aspiration (FNA) of tumors
and enlarged lymph nodes can also be performed. EUS-FNA has a higher sensitivity for
detecting malignancies in distal tumors than endoscopic retrograde cholangiopancreatog-
raphy (ERCP) with brushings [65]. However, EUS has been found to be less effective in
imaging and staging proximal lesions compared with distal lesions, and clinical experience
with this technique is relatively sparse [66].

EUS is also considered a useful modality for both detecting and distinguishing gall-
bladder polyps, as well as for staging early GBC. In particular, EUS is helpful in assessing
the depth of tumor invasion within the gallbladder wall [67,68] and defining lymph node
involvement in the portal hepatis or peripancreatic regions. Although some authors have
reported accurate and safe results of EUS-FNA for GB wall lesions [69], this procedure poses
a potential risk of bile leakage after gallbladder biopsy. When comparing the diagnostic
performance and safety of EUS-FNA in patients with suspected GBC between GB samples
and lymph node samples, EUS-FNA showed a safe and high diagnostic performance re-
gardless of the target site. In particular, endoscopists preferred lymph node sampling in the
following clinical situations: GB lesions of <4 cm in size, a wall-thickening type, a fundal
location, and an absence of liver invasion [70].

5.5. ERCP or Percutaneous Transhepatic Cholangiography (PTC)

Preoperative cholangiography, which can be performed using either ERCP or PTC,
may be necessary either for diagnostic or therapeutic purposes for patients with biliary
obstruction. Recently, MRCP or CT scanning, which is non-invasive and highly accurate,
has largely replaced invasive cholangiography for diagnostic purposes.

5.5.1. Intraductal Ultrasound (IDUS)

IDUS uses a small wire-guided ultrasound catheter that provides high-resolution
images, enabling the precise evaluation of the biliary tract during ERCP. The utility of
IDUS lies in its ability to characterize malignant biliary strictures and determine the local
staging of cholangiocarcinoma. It can detect early lesions in the biliary tree, estimate the
longitudinal tumor extent, and identify tumor infiltration into adjacent organs (e.g., the
pancreas) and major vessels (e.g., the portal vein and hepatic artery) [71–73]. Unlike EUS,
IDUS is frequently more effective in assessing the proximal biliary system and surrounding
structures, including the right hepatic artery, portal vein, and hepatoduodenal ligament.
However, IDUS limits the evaluation of more distant tissues or lymph nodes and cannot be
used to perform FNA.

5.5.2. Peroral Cholangioscopy (POC)

POC, which entails the direct visualization of the bile ducts using a highly specialized
cholangioscope during ERCP, is a valuable tool for assessing indeterminate biliary stric-
tures. For example, in the cases of biliary strictures where sampling techniques, such as
brush cytology or biopsy, during routine ERCP are unable to determine whether they are
benign or malignant, POC with targeted biopsies of bile duct lesions can provide a more
accurate diagnosis for indeterminate strictures [74–77]. It can also be used to investigate
equivocal ERCP findings, evaluate the extent of cholangiocarcinoma before surgery, and
identify undetectable stones using conventional cholangiography. “Tumor vessels” may
be observable during POC in patients with cholangiocarcinoma, which are characterized
by irregularly dilated and tortuous blood vessels. Other characteristic findings suggesting
malignancy include nodules or masses, infiltrative or ulcerative strictures, and papillary
or villous mucosal projections [78]. A recent study reported 100% sensitivity and 89.5%
specificity for visual impressions during POC examinations [79].

5.5.3. Tissue Biopsy

ERCP or PTC-guided biopsies and brush cytology are the traditional standard methods
for the tissue diagnosis of periductal-infiltrating or intraductal-growing cholangiocarci-
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noma. Brush cytology is a highly specific diagnostic tool; however, its low sensitivity
is a significant drawback (e.g., 97% specificity and 43% sensitivity for detecting cholan-
giocarcinoma in patients with PSC) [80]. The incorporation of endoscopic biopsies for
malignant strictures increases the diagnostic accuracy to only 43–88% [81–83]. These diag-
nostic tests can be beneficial if they yield positive results, but they cannot entirely exclude
the possibility of malignancy if their results are negative.

Fluorescence in situ hybridization (FISH) is a cytological technique that makes use of
labeled DNA probes to detect any abnormal loss or gain of chromosomes or chromosomal
loci in cells routinely collected through the brush technique. This method can improve the
sensitivity of brush cytology [84]. A meta-analysis of FISH demonstrated that this method
is highly specific, with a pooled specificity of 70%, but it has limited sensitivity (68%) for
the diagnosis of cholangiocarcinoma in patients with PSC [85].

Another auxiliary technique for improving the diagnostic ability of bile cytology is
the implementation of a new scoring system for evaluating cytologic results. Hayakawa
et al. introduced a scoring system based on four cytological features: abnormal chromatin,
irregularly arranged nuclei, irregularly overlapped nuclei, and irregular cluster margins.
The scoring system yielded an area under the receiver operating characteristic (ROC) curve
(AUC) of 0.981, with a sensitivity of 87% and specificity of 98% [86]. A different study
reported that the diagnostic sensitivity of bile cytology increased from 31.6% to 80.3% after
combined p53 immunostaining [87].

5.6. Liquid Biopsy Based on Bile Samples

Liquid biopsy is a blood test that identifies circulating tumor cells, cell-free nucleic
acids, and secreted proteins present in body fluids, such as blood, urine, saliva, and bile.
Unlike tissue biopsy, liquid biopsy is less invasive, and it is easier to obtain biological fluids.
Due to the distinct anatomical location of BTC, bile is recognized as a promising body fluid
for diagnosing BTCs.

Recently, various emerging analytical methods for extracellular vesicles (EVs), nucleic
acids, proteins, and metabolites in bile have been developed as potential biomarkers for
BTC diagnosis [88]. For example, circular RNA (Circ-CCAC1) in serum-derived or bile-
derived EVs has a diagnostic role, with an AUC of 0.857 [89]. In a prospective study on
bile samples, KRAS mutations detected in bile cell-free DNA indicated the possibility of
cholangiocarcinoma in high-risk lesions such as PSC [90]. A study screened four DNA
methylation biomarkers (COD1, CNRIP1, SEPT9, and VIM) based on DNA methylation
analysis of ERCP brush samples and achieved 85% sensitivity and 98% specificity with
an AUC of 0.944 [91]. Based on this study, the role of a four-gene methylation panel in
bile was investigated to predict early diagnosis of BTC in patients with PSC. The findings
indicated that the AUC for predicting the diagnosis of cholangiocarcinoma in patients with
PSC within one year ranged from 0.84 to 0.98, with a sensitivity of 67–96% and a specificity
of 93–98% [92]. sB7-H3, a cancer-related immune protein, is elevated in the bile of patients
diagnosed with malignant biliary obstruction, including BTC and pancreatic cancer. The
ROC-AUC for diagnosing malignant biliary obstruction was 0.878, with a sensitivity and
specificity of 81.2% and 81.6%, respectively [93]. A different study uncovered the usefulness
of bile multi-omics analysis that incorporates metabolomics for the molecular diagnosis
of GBC by integrating lipidomics and metagenomics in bile to define microbial and lipid
variations that contribute to the onset of GBC. Using the random forest classifier model,
this research developed a diagnostic model comprising eight lipid substances that can
accurately distinguish GBC from gallstones or healthy groups, with an AUC of one [94].
Table 3 summarizes the previous studies on bile EVs, nucleic acids, and protein detection
for the diagnosis of BTC (Table 3). Despite the advances in the use of liquid biopsy in bile
for BTC diagnosis, more research is still needed to improve its sensitivity and specificity
and validate it in large sample studies before its translation to routine clinical practice.
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Table 3. Diagnostic studies of bile EVs, nucleic acids, and proteins.

Biomarkers n ROC-AUC Sensitivity (%) Specificity (%) Reference

Exosomal cargoes
MicroRNA (miR-191, miR-486-3p, miR-1274b, miR-16, and

miR-484) 96 0.67 0.69 [95]

MicroRNA (miR-483-5p, and miR-126-3p) 92 0.81, 0.74 0.811, 0.73 0.811, 0.865 [96]
MicroRNA (miR-141-3p, miR-200a-3p, miR-200c-3p,

miR-200b-3p, and ENST00000588480.1) 100 0.757~0.869 0.63~0.83 0.6~0.867 [97]

LncRNA (ENST00000588480.1 and ENST00000517758.1) 91 0.709 0.829 0.589 [98]
Circle-RNA (circ-CCAC1) 316 0.857 [89]

Protein (claudin-3/CLDN3) 20 0.945 0.875 0.875 [99]

DNA 20 0.667 0.33 1 [100]
KRAS mutation 115 0.25 0.96 [101]
KRAS mutation 46 0.738 0.476 1 [102]
KRAS mutation 43 0.742 0.526 0.958 [103]

KRAS mutation and TP53 mutation 109 0.564/0.508 0.279/0.047 0.848/0.970 [104]
KRAS mutation and TP53 mutation 50 0.783, 0.750 0.567, 0.5 1, 1 [105]
KRAS mutation and TP53 mutation 49 0.733 0.467 1 [106]

TP53, ERBB2, and KRAS 42 0.955 0.909 1 [102]
KRAS, TP53, CDKN2A, SMAD4, and BRAF 60 0.737/0.715 0.536/0.462 0.937/0.969 [107]

Promotor methylation INK4a/ARF 243 0.84~0.98 0.67~0.96 0.93~0.98 [92]
Promotor methylation of COD1, CNRIP1, SEPT9, and VIM 80 0.775 0.773 0.778 [108]

Methylation of DKK3, p16, SFRP2, DKK2, NPTX2, and
ppENK 125 0.71~0.83 0.94 [109]

CCND2, CDH13, GRIN2B, RUNX3, and TWIST1 241 0.92 0.98 [110]
Gene mutations in KRAS, TP53, SMAD4, and CDNK2A;

methylation changes in SOX17, 3-OST-2, NXPH1, SEPT9,
and TERT

150 tumor-related genes (widely targeted deep sequencing) 10 0.947 0.999 [111]
520 tumor-related genes (widely targeted deep sequencing) 28 0.955 [112]

RNA
Human telomerase reverse transcriptase mRNA 20 0.833 1 [113]

miR-9, miR-145, and miR-944 18 0.765~0.975 [114]
RNU2-1f 23 0.856 0.67 0.91 [115]

miR-412, miR640, miR-1537, and miR-3189 83 0.78~0.81 0.5~0.67 0.89~0.92 [116]
miR-30d-5 and miR-92a-3p 106 0.730, 0.652 0.811, 0.657 0.605, 0.667 [117]

Protein
CEACAM6 73 0.74 87.5 69.1 [118]
CEACAM6 41 0.92 83.3 93.1 [119]

SVV and CA199 102 0.78, 0.75 67.3, 96.4 80.9, 46.7 [120]
MUC1 68 0.85 90.0 76.3 [121]
MUC4 134 27 93 [122]

MUC5AC 46 0.85 75 76.9 [123]
Mac-2BP 78 0.70 69 67 [124]

VEGF 53 0.89 99.3 88.9 [125]
MCM2 and MCM5 42 0.80 [126]
HSP27 and HSP70 20 0.86, 0.81 90, 80 90, 80 [127]

SSP411 67 0.913 * 90.0 83.3 [128]
NGAL 40 0.74 77.3 77.2 [129]
NGAL 38 0.76 94 55 [130]

LCN2/NGAL 144 0.81 87 75 [131]
S100P 24 0.861 92.9 70 [132]

sB7-H3 323 0.878 81.2 81.6 [93]
α-1-antitrypsin 8 0.833 80 75 [133]

Amylase 239 0.751 66 74 [134]
PE-3B/amylase 68 0.877 81.8 89.3 [135]

M2-PK 167 90.3 84.3 [136]
GSH, hydrogen peroxide, GPx, Fe2+, and FNTA 46 0.683~0.852 67.9~100 52.9~76.5 [137]

* Serum samples for ROC analysis.

5.7. Liquid Biopsy Based on Blood Samples

Blood-based liquid biopsy has numerous potential applications in managing BTC.
These include aiding in diagnosis as an adjunctive method when traditional investigations
are deemed unfeasible or inconclusive, conducting risk stratification and prognosis evalua-
tions, developing personalized medicine strategies, and identifying relapse and emerging
resistance mechanisms [138].
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Cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) are considered to reflect
changes in tumor aggressiveness and size as they have been detected in both the tumor
tissues and blood samples of patients with BTC [139]. According to Kumari et al., higher
levels of cfDNA can assist in distinguishing between benign conditions and GBC, and
they are associated with the burden of the tumor [140]. Another study reported that the
methylation levels of OPCML and HOXD9, as determined in cfDNA, can help discriminate
between cholangiocarcinoma and benign biliary disease [141]. In addition, several blood-
based cfDNA and ctDNA assays feature a significant level of concordance with tumor
tissue analyses [139,142–144]. Moreover, Okamura et al. indicated a higher concordance
when comparing matching ctDNA-metastatic tumor tissues with ctDNA-primary tumor
tissues [145]. Blood-based liquid biopsy can also be used to identify clinically relevant
genomic alterations when guiding precision medicine [144,146–148]. A retrospective analy-
sis of the ClarIDHy trial, which examined the efficacy of the IDH1 inhibitor ivosidenib in
mutant IDH1 cholangiocarcinoma, showed that the clearance of IDH1 mutation, as assessed
in plasma ctDNA in patients monitored over time, was associated with disease control [149].
De novo multiple point mutations within the FGFR2 kinase domain have been identified in
post-progression cfDNA samples from patients with cholangiocarcinoma who developed
resistance to FGFR inhibitors [150]. Yang et al. reported that lower copy number variations
(CNVs) detected in cfDNA could predict favorable responses to immunotherapy in 187
hepatobiliary cancer patients [151].

Proteins and cytokines serve as potential diagnostic and prognostic biomarkers for
liquid biopsies. CYFRA 21-1 [152,153], MMP-7 [154,155], osteopontin [156], periostin [157],
and IL-6 [158] were found to be increased in the sera of patients with cholangiocarcinoma
compared with healthy individuals and patients with benign biliary disease, including
PSC. Among these diagnostic biomarkers, elevated CYFRA 21-1 and osteopontin levels
demonstrated superior diagnostic potential for cholangiocarcinoma compared with CA
19-9 and CEA [152,158]. In addition, increased periostin levels have been identified as
an independent predictor of overall survival in patients with iCCA [157]. The diagnostic
utility of proteomic signatures in serum EVs for patients with iCCA, HCC, and PSC has
been found to be effective, with a high degree of accuracy for the differential diagnosis of
these liver diseases. These proteomic signatures have demonstrated higher AUC values
than both CA 19-9 and α-fetoprotein levels [159]. Another study proposed an algorithm
containing six serum metabolites that could differentiate iCCA from HCC or PSC (AUC:
0.9) [160].

6. Clinical Aspects for Pathologic and Molecular Diagnosis
6.1. Pathologic Diagnosis

Pathologic diagnosis for patients suspected of having BTC can be determined using
a range of methods, including ERCP or PTC-guided biopsy, brush cytology, EUS-FNA,
and ultrasonography/CT/MRI-guided biopsy. However, obtaining tissue can be chal-
lenging, especially in patients with perihilar lesions. In cases of potentially resectable
tumors with typical findings of malignant biliary obstruction, a solitary intrahepatic mass,
or early GBC confined to the gallbladder, surgery can be performed without preopera-
tive pathologic diagnosis. In patients with biliary obstruction resulting from pCCA and
dCCA without extraductal metastasis, it is recommended to perform ERCP or PTC-guided
biopsies or brush cytology to obtain sufficient tissue for pathological diagnosis and molec-
ular profiling. EUS-FNA is a potential alternative approach for obtaining biopsies of
enlarged regional lymph nodes or distally located tumors. It may be considered if ERCP
or PTC-guided biopsies yield negative or inconclusive results. In addition, EUS-FNA and
ultrasonography/CT/MRI-guided biopsy via the transperitoneal approach rarely result in
the seeding of tumor cells in the biopsy tract [161]. Therefore, it is necessary to establish
tissue diagnosis prior to surgery in a multidisciplinary setting.

Pathological diagnosis is important in the following situations: clinically indeterminate
strictures, patients requiring diagnostic documentation before nonsurgical treatment, and
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situations where a physician or patient is hesitant to proceed with surgery without tissue
diagnosis [162]. Conversely, tissue diagnosis is not mandatory for unresectable patients
who are scheduled to receive only palliative management, such as biliary drainage.

6.2. Molecular Diagnosis

Molecular profiling is recommended for advanced diseases and is considered suitable
for systemic treatments [163]. Parallel tests for several genes using focused NGS are
preferred over single-gene sequencing. NGS can be performed on formalin-fixed and
paraffin-embedded tumor tissues, making it an excellent option for tissue biopsies. In
cases where adequate tumor tissue is not available for NGS, liquid biopsies that utilize
cell-free circulating DNA can be considered as an alternative [163]. The MSI status can be
evaluated by IHC staining for MMR proteins, including MLH1, MSH2, MSH6, and PMS2.
DNA-based assays can be used to analyze the composition and length of microsatellites.
The preferred methods for NGS, IHC staining, or RNA sequencing depend on the target of
interest and availability of materials, such as tissue or ctDNA.

7. Approach to the Patient
7.1. Suspected iCCA

When an intrahepatic lesion is suspected, cross-sectional imaging (multiphasic contrast-
enhanced CT or MRI) is performed to differentiate between HCC and mass-forming iCCA.
However, the classical radiologic features of iCCA are present in only 70% of cases [50],
and some small mass-forming iCCAs may resemble HCC, displaying hyperenhancement
during the arterial phase and washout during the delayed phase. If the initial imaging test
is non-diagnostic, other imaging modalities (CT or MRI) can be conducted. A biopsy or
surgery of the lesion is performed if the diagnosis remains uncertain.

The complexity of the issue is exacerbated by the presence of mixed hepatocellular–
cholangiocellular carcinomas, where both cholangiocarcinoma and HCC elements are
found in the same nodule [164]. Studies have suggested that these tumors exhibit a
unique appearance in cross-sectional imaging examinations. A mixed hepatocellular–
cholangiocellular carcinoma is indicated by a strongly enhanced rim and an irregular shape
in gadoxetic acid-enhanced MRI, while a mass-forming iCCA is suggested by a lobulated
shape, weak rim, and target appearance [165]. The target appearance can also be used to
distinguish mixed hepatocellular–cholangiocellular carcinomas from atypical hypovascular
HCC [166]. Additionally, the existence of liver capsule retraction and biliary dilatation near
an intrahepatic lesion may lead to the suspicion of an iCCA diagnosis; however, a biopsy
may be needed to confirm the diagnosis. These mixed tumors are staged as iCCA and not
as HCC.

IHC staining of tissue biopsies is required to differentiate iCCA from metastatic lesions
and mixed hepatocellular–cholangiocellular carcinoma. Tumors that test negative for TTF-1
(lung), CDX2 (colon), and DPC4 (pancreas) and positive for AE1/AE3, CK7, and CK20
(biliary epithelium) are indicative of iCCA [167].

7.2. Suspected pCCA

Undertaking a thorough assessment with cross-sectional imaging studies (particularly,
enhanced MRI with MRCP is preferred over CT) and EUS is crucial for defining the tumor
location, size, morphology, involvement of the hepatic artery or portal vein, volume of
the potential liver remnant, lymph node involvement, and presence of distant metastases.
If imaging studies and/or tissue samples strongly indicate pCCA, the tumor staging
proceeds directly. In situations where the diagnosis is uncertain, we generally opt for an
ERCP procedure that incorporates brush cytology (with or without IDUS). When feasible,
performing POC to evaluate the bile ducts can be considered. Alternatively, an MRI- or
CT-guided biopsy can be carried out if the imaging reveals a mass lesion, although there
is a small risk of needle tract seeding. In cases where the diagnosis remains uncertain,
surgical intervention may be necessary to establish a diagnostic confirmation.
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7.3. Suspected dCCA

In cross-sectional imaging, dCCA may be observed as an abrupt narrowing of the bile
duct accompanied by upstream biliary dilatation. Typically, a nodular mass or concentric
and asymmetric thickening of the bile duct with enhancement often occur together. In
uncommon cases of thickening or stricture of the distal bile ducts without the presence
of a mass, it is difficult to differentiate them from benign strictures. While ERCP has
traditionally dominated the initial workup of dCCA owing to tissue sampling for diagnosis
and biliary decompression, EUS has recently become the preferred method for the direct
visualization and sampling of the distal bile duct. ERCP carries a risk of enhancing
cholangitis by injecting contrast, whereas EUS-FNA poses a risk of seeding the biopsy tract.
If the radiographic findings for dCCA are conclusive enough that a negative biopsy would
be considered a potential false-negative and the tumor appears resectable, then a biopsy
is unnecessary.

7.4. Patients with PSC

PSC is a prevalent risk factor for BTC, with the incidence of cholangiocarcinoma in PSC
patients estimated to be 5–10% [168,169]. Cholangiocarcinoma in PSC usually infiltrates and
manifests as progressive strictures in the perihilar areas [169,170]. In these cases, patients
may sometimes have a dominant benign biliary stricture that is difficult to differentiate
from cholangiocarcinoma. Rarely do mass lesions appear in imaging scans, and patients
typically do not exhibit substantial intrahepatic biliary dilation. However, the discovery of
a new parenchymal lesion near the bile ducts, the sudden emergence of bile duct dilatation,
and the presence of disproportionate regional/segmental bile duct dilatation are indicators
of potential cholangiocarcinoma development in these patients.

In patients with PSC and suspected cholangiocarcinoma, CA 19-9 levels greater than
129 U/mL were found to be 79% sensitive and 98% specific in confirming the diagnosis [171].
However, the positive predictive value for cholangiocarcinoma, which is the likelihood of a
patient with PSC and a CA 19-9 level of ≥129 unit/mL having the disease, was only 57%.

The initial step of the work-up is MRCP, which helps to determine the segmental extent
of ductal involvement, search for intrahepatic metastases, and identify any abnormalities
in the ductal anatomy. If the MRCP is non-diagnostic or if a dominant stricture is detected,
an ERCP or PTC is obtained with brush cytology, which is almost 100% specific; however,
despite the use of FISH, only 40–70% of patients with PSC and cholangiocarcinoma can be
properly diagnosed [172,173]. In cases of negative cytologic results, it is recommended to
perform MRI/MRCP and/or ERCP plus CA 19-9 tests again within 3–6 months.

8. Conclusions

BTC is a heterogeneous disease that arises from the biliary tree. Although it has histor-
ically been classified as a single disease, extensive molecular characterization has recently
led to more informative anatomical, pathological, and molecular classification of BTC. The
development of radiologic and endoscopic tools for accurate diagnosis strengthens our
understanding of BTC carcinogenesis. Precision medicine for BTC patients is facilitated by
pathological and molecular profiling. We anticipate that advancements in diagnostic and
personalized strategies for BTC management will lead to improved patient outcomes in the
near future.
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