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Abstract: The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive 

production of reactive oxygen species (ROS) and oxidative stress is one of the most 

important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of 

cancer stem cells arose from observations of similarities between the self-renewal 

mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, 

they are believed to have no control over the cell number. ROS have been implicated in 

diverse processes in various cancers, and generally the increase of ROS in cancer cells is 

known to play an important role in the initiation and progression of cancer. Additionally, 

ROS have been considered as the most significant mutagens in stem cells; when elevated, 

blocking self-renewal and at the same time, serving as a signal stimulating stem cell 

differentiation. Several signaling pathways enhanced by oxidative stress are suggested to 

have important roles in tumorigenesis of cancer or cancer stem cells and the self-renewal 

ability of stem or cancer stem cells. It is now well established that mitochondria play a 

prominent role in apoptosis and increasing evidence supports that apoptosis and autophagy 

are physiological phenomena closely linked with oxidative stress. This review elucidates 

the effect and the mechanism of the oxidative stress on the regulation of stem, cancer, and 

cancer stem cells and focuses on the cell signaling cascades stimulated by oxidative stress 

and their mechanism in cancer stem cell formation, as very little is known about the redox 

status in cancer stem cells. Moreover, we explain the link between ROS and both of 

apoptosis and autophagy and the impact on cancer development and treatment. Better 
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understanding of this intricate link may shed light on mechanisms that lead to better modes 

of cancer treatment. 
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1. Introduction  

Oxidative stress is defined as a disturbance in the equilibrium between free radicals (FR), reactive 

oxygen species (ROS), and endogenous antioxidant defense mechanisms [1], or more simply, it is a 

disturbance in the balance between oxidant-antioxidant states, favoring the oxidant environment [2]. 

Both of the oxidant and antioxidant species are very important for normal metabolism, signal 

transduction and regulation of cellular functions. Therefore, each cell in the human body maintains a 

condition of homeostasis between the oxidant and antioxidant species [3]. Oxidative stress can result in 

injury to all the important cellular components like proteins, DNA and membrane lipids, which can 

cause cell death. Oxidative stress has been demonstrated to be involved in various physiological and 

pathological processes, including DNA damage, proliferation, cell adhesion, and survival. Moreover, 

there are several experimental and clinical data providing compelling evidence for the involvement of 

oxidative stress in large number of pathological states including carcinogenesis [4]. The broad 

definition of the ROS is oxygen-containing, reactive chemical species. Up to 1–3% of the pulmonary 

intake of oxygen by humans is converted into ROS [5]. There are two ROS subgroups; free radicals 

such as superoxide radicals (O2
.−) and non-radical ROS such as hydrogen peroxide (H2O2). Both 

radicals and non-radical ROS are common in the presence of an oxygen atom, which differentiates 

them from the reactive nitrogen species (RNS). ROS can be found in the environment, such as in 

pollutants, tobacco smoke, iron salts, and radiation, or can be generated inside cells, and this can 

happens through multiple mechanisms. Generally, mitochondria are the most important source of 

cellular ROS where continuous production of ROS takes place. This is the result of the electron 

transport chain located in the mitochondrial membrane, which is essential for the energy production 

inside the cell [6,7]. Additionally, some cytochrome 450 enzymes are also known to produce ROS [8]. 

The biological functions of ROS and their potential roles in cancer development and disease 

progression have been investigated for several decades [9]. There are complex interactions between 

ROS generation, ROS signaling, ROS-induced damage, and carcinogenesis. Figure 1 depicts ROS 

regulatory pathways, showing how ROS is controlled in cells and a variety aspect of signaling 

pathways induced by oxidative stress. ROS can directly produce single or double-stranded DNA 

breaks and cross-links. Prolonged DNA damage leads to serious problems such as induction of signal 

transduction pathways, arrest or induction of transcription, replication errors, and genomic instability, 

all of which lead to carcinogenesis [10]. Very little is known about the redox status in cancer stem  

cells [11]. Therefore, we will focus in this review on the effect of oxidative stress on cancer and stem 

cells, as understanding redox control in stem and cancer cells may perhaps provide insights into the 

redox biology of cancer stem cells and development of a new therapeutic strategy [11].  
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Figure 1. The signaling pathways induced by oxidative stress. 

  
* Mito-ETC: mitochondrial electron transport chain, SOD: superoxide dismutases; GPX: 
glutathione peroxidase; GR: glutathione reductase; GR: glutathione reductase; GRXo, glutaredoxin 
(oxidized); GRXr: glutaredoxin (reduced); GSHr: glutathione (reduced); TRXo, thioredoxin 
(oxidized); TRXr: thioredoxin (reduced). 

2. Stem Cells 

Stem cells differ from other kinds of cells in the body. Their unique nature comes from their 

proliferative capacity and their ability to become specialized. Until recent time, scientists mainly 

worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-

embryonic somatic or adult stem cells. 

2.1. Embryonic Stem Cells (ESCs)  

As their name suggests, embryonic stem cells (ESCs) are derived from embryos. ESCs result from 

the first five or six divisions of the fertilized egg. ESCs are derived from a group of cells called inner 

cell mass (ICM), which is part of the early (four to five day) embryo called the blastocyst. The progeny 

of ESCs are the precursors for all of the cells of the adult organs. ESCs are pluripotent; they can 

produce cell types derived from all three embryonic germ layers. To date, all of the ESC lines 

generated are pluripotent [12]. 
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2.2. Adult Stem Cells (ASCs)  

Adult stem cells (ASCs) are thought to be undifferentiated cells, found among differentiated cells in 

a tissue or organ, which have a self-renewal property and can differentiate into all of the major 

specialized cell types of the tissue or organ. The sources of ASCs are bone marrow, blood, the cornea 

and the retina of the eye, brain, skeletal muscle, dental pulp, liver, skin, the lining of the 

gastrointestinal tract, and the pancreas [13]. ASCs have a limited potential, and they produce cells that 

differentiate into mature functioning cells and that are responsible for normal tissue renewal. The 

primary function of the adult stem cells is to maintain the steady state functioning of a cell—called 

homeostasis—and, within limitations, to replace cells that die because of injury or disease. 

3. Cancer Cells 

The term cancer indicates more than the various types of the disease. Almost every tissue in the 

body can spawn malignancies. Cancer cells have an insidious property to migrate from their original 

site and form new masses at distant sites of the body. The activation of proto-oncogenes into 

oncogenes may contribute to malignancy. Moreover, mutations can contributeto the conversion of 

proto-oncogenes into carcinogenic oncogenes [14,15]. Basically, cancers originate from normal cells 

that gain the ability to proliferate abnormally and finally turn malignant. Afterwards, these malignant 

cells grow clonally into tumors and finally have the ability to metastasize. From the histological point 

of view, cancer is similar to the tissue of origin. Accordingly, a tumor can be viewed as a dysfunctional 

organ system [16]. 

4. Cancer Stem Cells (CSCs) 

Cancer recurrence after chemotherapy or radiotherapy is initiated by a subpopulation of residual 

malignant cells that are highly resistant to drug treatment and are believed to be cancer stem cells 

(CSCs) [16,17]. Of note, a small subpopulation of primary cancer cells expressing stem cell markers 

was resistant to certain chemotherapeutic agents and radiation [18,19]. The CSCs hypothesis suggests 

that many cancers are maintained in an organization of rare, slowly dividing “tumor-initiating cells” and 

rapidly dividing cells [20]. The CSCs are capable of self-renewal and can undergo differentiation to 

generate the phenotypic heterogeneity observed in tumors. Recently, the defined CSCs have been 

identified in hematologic, brain, breast, prostate, liver, pancreas, and colon cancers. CSCs are not only 

the source of the tumor, but also may be responsible for tumor progression [20], metastasis [21], 

resistance to therapy, and subsequent tumor recurrence [22]. In regard to the significant contribution of 

redox adaptation in drug resistance, one could speculate that the highly drug-resistant CSC population 

might use redox regulatory mechanisms to promote cell survival and tolerance to anticancer agents.  

It is worth noting that there are three key observations that classically define the existence of a 

CSCs population: (1) Within each tumor, only minor populations of cancer cells usually have a 

tumorigenic potential when transplanted into immuno-deficient mice; (2) One of the important 

characteristics of the tumorigenic cancer cells is the presence of a unique profile of surface markers, 

which allows them to be isolated from non-tumorigenic ones by means of flow-cytometry or other 

immuno-selection procedures; (3) Tumors originating from tumorigenic cells contain mixed 
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populations of tumorigenic and non-tumorigenic cancer cells. As a consequence, they give rise to the 

full phenotypic heterogeneity of the parent tumor. Accordingly, the term CSC represents a working 

definition with an operational significance: this term is used to indicate a tumor-initiating cell subset 

that can give rise to a heterogeneous progeny, similar in composition to the tissue of origin.  

The CSC concept answered many raised but unsolved questions [23]. The CSC concept arose from 

observation of similarities between the self-renewal mechanism of stem cells and those of cancer cells. 

The CSCs not only have the capacities of self-renewal and multi-lineage differentiation, but are also 

similarly surrounded by a specialized cell microenvironment, termed the stem cell niche [24,25]. On 

the other hand, CSCs are believed to have no control over the cell numbers.  

Both normal stem cells and cancer stem cells are common in several aspects such as: 

(1) Self-renewal ability (Asymmetric divisions): This property contributes toward developing a 

critical mass of cells. Moreover, it generates a quiescent stem cell and a committed progenitor [21]; 

(2) Self-renewal regulation: Control of the self-renewal ability occurs by similar signaling pathways 

such as, Wnt, Sonic Hedgehog, Notch, and Polycomb genes (BMI-1 and EZH2); 

(3) Telomeres and telomerase activity: This telomerase activity increases the cellular life span. Both 

have extended telomeres and telomerase activity; 

(4) ATP-binding cassette (ABC) transporters: Both express the ABC transporters, which are 

implicated in the cellular resistance against specific growth-inhibitory drugs; 

(5) Surface receptor expression: Both express similar surface receptors such as, c-kit, c-met, LIF-R, 

CD133, and CXCR4. These surface receptors were identified as stem cell markers or associated  

with metastasis; 

(6) Longevity (Long life span): Both are long-lived; 

(7) Resistance to deleterious agents: Both are resistant to deleterious agents; 

(8) Metastasis: Both have the metastatic property; 

(9) Tumor suppressors: Tumor suppressors, such as p53, p16INK4a, and p19ARF inhibit cancer cell 

proliferation and stem cell self-renewal [26,27].  

Therefore, because of all the forementioned similarities between the normal and the cancer stem 

cells, it is reasonable to assume that they share some common molecular mechanisms that regulate this 

critical stem cell function. There are several signaling pathways that have been implicated in both 

cancer and stem cells [28]. For example, molecular pathways, which play a critical role in controlling 

stem cell self-renewal, are often deregulated in a number of tumors [29]. PTEN/PI3K/mTOR/STAT3 

signaling forms a complex signaling network which maintains the cancer stem cell population within 

the whole cell population [30]. Recently, there are some therapeutic approaches proposed for the 

elimination of CSCs by targeting signaling pathways required for the maintenance of self-renewal and 

differentiation capacities. Various studies have been conducted to investigate the signaling pathways 

important in the regulation of stem and cancer cells and the role they may have in CSCs. Table 1 

summarizes the differences in the signaling pathways among cancer cells, stem cells, and CSCs.  

Table 2 highlights the differences between normal stem cells and CSCs.  
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Table 1. The differences among the cancer cells, cancer stem cells, and normal stem cells 

in the signaling pathways.  

Signal pathway Normal stem cells Cancer and cancer stem cells 
Polycomb-
group protein 
family (Bmi-1) 

 Self-renewal in both hematopoietic 
and neural stem cells [154] 

 Leukemic stem cells (LSCs)  
self- renewal by suppression of the 
Ink4a/ARF locus [155]. 
 Highly expressed in acute myeloid 
leukemia patients [156,157] as it is 
essential for the LSC self-renewal. 

Notch  Neural stem cell expansion 
regulation in vivo and in vitro [158]. 
 Notch targets genes activation, 
which is involved in T-cell 
differentiation and self-renewal [159]. 

 Notch signaling pathway mutations 
result in T-cell acute lymphopblastic 
leukemia (T-ALL) [122]. 

Wnt/β-catenin  Self-renewal [160]. 
 HoxB4 and Notch-1 gene 
activation, which is implicated in the 
self-renewal of Hematopoietic stem 
cells (HSC)s [151]. 

 Colon carcinoma and blood diseases 
 β-catenin accumulation has been 
associated with breast or brain cancer, 
melanoma, and myeloid leukemia [162]. 
 β-catenin mutations observed in 
hepato-cellular, endometrial, and prostate 
carcinomas [162]. 

PTEN  Hematopoietic stem cells and 
neural stem cells maintenance 
 

 Loss of expression of Pten in mice 
results in aberrant self-renewal of HSCs 
and eventually leukemia [163]. 
 Loss of Pten eventually leads to 
myelo-proliferative disease and the 
emergence of a transplantable leukemia. 
 Mutations and/or loss of heterogeneity 
of Pten can cause glioblastoma, prostate, 
and endometrial carcinoma [164]. 

Sonic hedgehog 
(Shh) 

 Bmi-1 activation in the brain 
[165]. 
 The Shh signaling pathway is 
essential for the embryonic 
development of hair follicles and 
sebaceous glands [166]. 
 Shh signaling pathway is 
implicated in postnatal and adult brain 
development [167]. 

 Shh activation leads to both skin and 
brain carcinogenesis [168]. 
 Shh mutation leads to Gorlin’s 
syndrome [168]. 

Hox family  HSCs self-renewal [169].  Overexpressed in T-ALL with 
chromosome translocations [159]. 
 Hoxb 3, 8, and 10 are associated with 
leukemo-genesis in mice [169]. 
 HoxA9 is over-expressed in AML 
patients [170]. 
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Table 2. The differences between cancer stem and normal stem cells. 

 Cancer stem cells Normal stem cells 

Surface markers 
AML (CD123+/CD117–), Prostate 
(CD133+/–), Breast (CD44+/CD24–) 

Absent 

Self-renewal capacity Extensive and indefinite Limited 
Nature Tumorigenic Organogenic 
Karyotype Abnormal Normal 

Tumor suppressor genes 
Present (Interferon factor-1, Death 
associated protein kinase-1)  

Absent 

For a better understanding of CSCs biology, we must know the unique properties of normal stem 

cells. Normal stem cells are defined by an extensive capacity for self-renewal and by their ability to 

undergo a broad range of differentiation. ESCs are omnipotent and have limitless replicative life span, 

which is ascribed to their telomerase expression [31]. Much effort has been devoted to the 

identification and characterization of CSCs [32–35]. For isolation of CSCs, fractionation of tumor cells 

using cell-surface markers characteristic of stem cells can be used. The CD133 cell-surface marker was 

used to purify putative CSCs in several tumor types, with the exception of breast [36], prostate [37] 

and head and neck carcinomas [31] where CD44 was utilized instead. CD133 (prominin-1) was 

discovered as a marker of normal hematopoietic stem cells and later was found to mark 

stem/progenitor cells from a wide variety of tissues [38]. CSCs have been isolated from cancers of the 

breast, brain, blood (leukemia), skin (melanoma), head and neck, thyroid, cervix, lung, gastrointestinal 

tract, reproductive tract, and retina [39]. 

4.1. Breast CSCs  

As epithelial CSCs, we focus in this review on breast CSCs. Despite recent breakthroughs in mouse 

mammary stem cells and lineage determination in mammary glands, little has been determined in 

human mammary stem cells. Breast cancer is one of the major causes of cancer-related deaths in 

women; in the USA alone, more than 40,000 breast cancer fatalities occur annually. The origin of 

breast CSCs is from mammary multipotent stem cells as a result of genetic defects caused by 

deleterious agents that affect pathways controlling self-renewal and differentiation [40]. Importantly, 

breast CSCs have been shown to express higher levels of oxidative stress-responsive genes, which 

could confer part of their ability to resist anticancer therapy, compared to non-CSCs [41]. Several 

studies indicate that breast cancer is caused by CSCs, and the cure of breast cancer requires eradication 

of breast CSCs [42,43]. Basically, the adult human mammary gland is composed of a series of 

branched ducts and lobular-alveolar units embedded in fatty tissue and is composed of three forms of 

the basal layer of ducts and alveoli; (a) Myo-epithelial cells which express the a form of smooth 

muscle actins (SMA), common acute lymphoblastic leukemia antigen (CALLA, also known as CD10 

and CK14 (b) ductal epithelial cells which express MUC-1, CK8, CK18 and CK19; and (c) Alveolar 

epithelial cells [44].  

There are several signaling pathways controlling the self-renewal ability of human and mouse 

normal and malignant mammary stem cells such as Notch [45], Hedgehog [46], Wnt/b-catenin [47], 

epidermal growth factor (EGF)-like/EGF receptor (EGFR)/Neu [41], leukemia inhibitory factor (LIF) [48], 
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TGF- [49], integrins [50], telomerase [51], SDF-1/CXCR4 [52], the insulin-like growth factor-1 

(IGF-1) system [53], and ER/PR [53]. The identification of markers of a breast CSC really began the 

current excitement [21], and the identification of CSCs in various cancer types using candidate surface 

markers is an area of active research. Primary human breast cancer cells are immuno-phenotypically 

heterogeneous and CD44+ subpopulations are tumorigenic in NOD/SCID mice bearing estrogen  

pellets [21]. Breast CSCs, or tumor-initiating cells, can be isolated by the immuno-sorting of breast 

cancer cells that express the hyaluronian receptor CD44, a gene that is overexpressed in basal-like 

tumors [54] and lack the expression of CD24, an endogenous inhibitor of the chemokine receptor 

CXCR [21,55]. CD44-positive cells isolated from ductal breast carcinoma and from normal mammary 

glands were found to express low levels of ER alpha and high levels of CK5 [56]. For better 

understanding of putative breast CSCs at the molecular level, Shipitsin et al. carried out SAGE (serial 

analysis of gene expression) profiling of CD24−/low/CD44+ and CD24+/CD44+/−cell populations from 

normal and neoplastic human breast tissue. The identification of new markers was mainly based on the 

CD44+/CD24− specific criteria to isolate breast CSCs. By using gene expression profiling of CD44 

positive cells from breast carcinoma-derived pleural effusions, Shipitsin et al. identified a CD44 

positive cell-specific gene, PROCR. PROCR encodes a cell surface receptor and its expression is 

specific to CD44 positive epithelial cells [56]. CD133 is a known marker of CSCs in several organs 

including brain, blood, liver, and prostate [57–59]. Interestingly, they found that the CD133+ stem cell-

like population did not overlap with the CD44+/CD24− population and that both populations had a 

similar capacity for self-renewal and could reconstitute cell fractions found in the respective parental 

cells [60]. This finding suggests that there might be different kinds of breast cancer stem cell 

subpopulations that express surface markers other than CD44. NF-κB–regulated genes play a 

fundamental role in mammary gland morphogenesis, therefore, pointing out a primary role in the 

regulation of stem cells [61,62]. Recently, it was observed that the inhibition of NF-κB activity halts 

mammosphere (MS) formation from mouse and human mammary glands [63]. Overexpression of  

NF-κB–regulated genes in CD44 positive breast CSCs was found, and this finding is similar to what 

occurs to hemopoietic stem cells [64]. The upregulation of NF-κB–regulated targets in CD44 positive 

breast CSCs may be functionally linked to the overexpression of hypoxia-induced factor 1-alpha  

(HIF-1α) in such cells, in the absence of a hypoxic environment [56]. The expression profiles of stem-like 

cells from normal and neoplastic breast tissue were highly similar, and both expressed numerous stem 

cell markers, whereas both normal and breast cancer CD24+/CD44+/− cells had features of  

luminal differentiation.  

4.2. Prostate CSCs 

The prostate is a hormonally regulated male secretary organ composed of a multitude of cells, some 

of which possess renewal properties [65,66]. Recently, several laboratories have developed interest in 

the isolation and characterization of candidate prostate CSCs from both mouse and human prostates. 

Normal human prostatic basal cells express the cell adhesion molecule CD44 [67]. Recently, CD44 

isoforms, or splice variants, have been evidenced to be a marker of CSCs in a variety of tissues, 

including the breast and prostate [68,69]. 
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4.3. Neuronal CSCs 

Isolation of central nervous system (CNS) CSCs has been carried out by means of antigenic 

markers and by exploiting in vitro culture conditions developed for normal neural stem cells. CNS 

cells grown on nonadherent surfaces, as was first detected in 1992 [70,71], give rise to neurospheres 

(balls of cells) that have the capacity for self-renewal and can give rise to all of the principal cell types 

of the brain (i.e., oligodendrocytes, neurons, and astrocytes). 

4.4. ROS and CSCs  

ROS production from cells occurs via multiple mechanisms. A major source of ROS is produced in 

the mitochondria. In comparison to normal cells, malignant cells seem to function with higher levels of 

endogenous oxidative stress in vitro and in vivo [72,73]. High levels of oxidative stress have been 

observed in various types of cancer cells. For instance, leukemia cells freshly isolated from blood 

samples of patients with chronic lymphocytic leukemia showed increased ROS production in 

comparison to normal lymphocytes [74,75]. Importantly, the levels of ROS-scavenging enzymes such 

as superoxide dismutases (SOD), glutathione peroxidase and peroxiredoxin have been shown to be 

significantly altered in cancer cells [76] and in primary cancer tissues [77,78]. Interestingly, the 

alterations in ROS-scavenging enzymes such as GSH also have a significant effect on the metabolism 

of alkylating agents [79,80]. Accordingly, there is an aberrant regulation of redox homeostasis and 

stress adaptation in cancer cells. In order to overcome the drug resistance associated with redox 

adaptation, it is important to design a strategy that exploits the redox difference between normal cells 

and cancer cells, and that disables the redox adaptation mechanism in cancer cells. Therefore, targeting 

the key redox regulatory mechanisms that control both the level of ROS and the function of redox 

sensitive survival proteins is considered as one of such strategies. The thiol-based antioxidants GSH, 

thioredoxin and peroxiredoxin can be considered potential candidates for such a redox intervention 

strategy. As recent studies proved, rapid depletion of GSH using the natural compound PEITC can not 

only kill Ras-transformed ovarian cells and primary leukemia cells from patients, but can also 

eliminate the drug-resistant cell population [81,81]. Although the redox status of CSCs is not yet clear, 

it is possible that cancer and normal stem cells could share some common features while exhibiting 

malignant cell characteristics in redox regulation [10]. It is very interesting to mention that recent 

studies proved that normal hemopoietic stem cells and normal mammary epithelial stem cells maintain 

ROS at lower levels than their mature progeny to prevent cellular differentiation and maintain  

long-term self-renewal [82–84]. In comparison to normal cells, cancer cells have higher levels of ROS, 

which seems to be essential for malignant initiation and progression [85]. Interestingly; there are 

subsets of CSCs in human and mouse breast tumors containing lower ROS levels than the 

corresponding non-tumorigenic cells [84]. This low level of ROS seems to be associated with high 

expression of ROS-scavenging molecules, which may contribute to tumor radio-resistance [84] 

Moreover, the unchecked ROS accumulation is thought to play a part in the conversion from normal 

hemopoietic stem cells to leukemic cells [96,99]. Collectively, in regard to the biological properties of 

CSCs, this unique cell subpopulation might have a high antioxidant capacity to keep cellular ROS at a 
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moderate level and maintain both stemness and cancer-forming capabilities. Moreover, the highly 

upregulated antioxidant mechanisms might contribute to CSCs survival and drug resistance. 

5. ROS and Apoptosis  

Cells respond to stress in various ways, ranging from activation of pathways that promote survival 

to eliciting programmed cell death that eliminates damaged cells. The initial response of cells to 

stressful stimuli is geared toward helping the cells to defend against and recover from the insults. Cells 

activate death signaling pathways if the noxious stimulus is unresolved. Cell death has many forms and 

shapes. The research of cell death includes not only the study of programmed forms of cell death (both 

apoptosis and autophagic cell death), necrosis and other modes of cellular demise, but also the 

essential roles of these phenomena in various physiological and pathological processes such as 

development, aging, and disease. In the last two decades, the cell death field has attracted much 

attention, mainly because of its role in development and cancer [88]. Apoptosis, or programmed cell 

death (PCD), is a naturally occurring cell death process, which is crucial for the normal development 

and homeostasis of all multicellular organisms [89]. Apoptotic cell death may be triggered through the 

extrinsic (receptor-mediated) or the intrinsic (mitochondria-mediated) pathway. The intrinsic pathway 

can be triggered by many stimuli including ROS. Mitochondria are the major site of ROS production 

and accumulation of ROS may lead to the initiation of apoptosis [90]. Many cytotoxic agents induce 

ROS, including peroxide and O2•
−, which are involved in the induction of apoptotic cell death [91]. 

H2O2 can cause the release of cytochrome c from mitochondria into the cytosol. Moreover, H2O2 may 

also activate nuclear transcription factors, such as NF-κB, AP-1, and p53 [92], which may lead to 

upregulation of death proteins or production of inhibitors of survival proteins. Several studies imply 

that inhibition of apoptosis by Bcl-2 is associated with protection against ROS [93]. High oxidative 

stress level kills cells either by necrosis or by apoptosis [94,95]. In various apoptosis models, changes 

in the redox status of the cells to a more oxidizing environment occurs prior to activation of the final 

phase of caspase activation [95,96]. This case is further supported by the ability of various antioxidants 

such as N-acetylcysteine (NAC) to block apoptosis in a similar way that caspase inhibitors do [97]. In 

addition, the antioxidant properties of Bcl-2, a potent inhibitor of apoptosis, further confirm this  

view [89,99]. Under normal conditions, aerobic cells are endowed with extensive antioxidant defense 

mechanisms to counteract the damaging effects of ROS [100,101]. When prooxidants overwhelm 

antioxidant defense mechanisms, oxidative stress occurs. Interestingly, apoptosis may serve as a  

fail-safe device to prevent cells from proliferating uncontrollably in the face of a persistent oxidative 

stress [102]. Interestingly, current chemotherapeutic agents such as anthracycline-derivatives, which 

are frequently used as chemotherapeutics in the treatment of various types of cancers, target some of 

these apoptotic pathways. For example, adriamycin is known to chelate iron and generate ROS that 

result in apoptosis of cancer cells [103]. Another example of a chemotherapeutic agent that generates 

ROS for cancer treatment is artesunate (ART), which induces apoptosis in leukemic T cells mainly 

through the mitochondrial pathway via ROS generation [104]. 

 

 



Cancers 2010, 2              

 

 

869

6. ROS and Autophagy 

Autophagy (self-eating), an evolutionarily conserved multistep process, is characterized by the 

vesicular sequestration and degradation of long-lived cytoplasmic proteins and organelles, for example, 

mitochondria [105]. It is classified as Type II programmed cell death [106]. It is characterized by 

double-membraned vacuoles, autophagosomes, and requires the two ubiquitin-like conjugation systems 

(Atg12 and Atg8 ligation systems) and activation of class III phosphatidylinositol-3-kinase [107,108]. 

Deregulation of the autophagy process may lead to cancer, neurodegenerative disorders, and 

cardiovascular diseases [109]. Of note, autophagy is up-regulated during stress or any physiological 

change. By breaking-down longer-lived proteins and organelles and recycling the products into 

protein-synthesis and energy-production pathways, the process allows cells to be temporarily self-

sustaining during periods when nutrients are restricted [110,111]. DNA damage-activation response is 

a hallmark of oxidative stress caused by ROS. Protein re-folding in the endoplasmic reticulum (ER) by 

protein disulfide isomerases can elevate oxidative stress through redox reactions involving free 

radicals [112], and mitochondrial stress and damage can also be a source of ROS in autophagy-

deficient cells [113]. Interestingly, ROS play a pivotal role in the induction of cadmium (Cd)-induced 

autophagy, as Cd is able to induce autophagic cell death through a calcium-extracellular  

signal-regulated kinase (ERK) pathway [114]. A recent study demonstrated that, in MES-13 mesangial 

cells, cadmium-induced autophagy was mediated through the ROS-glycogen synthase kinase-3β 

(GSK-3β) signaling pathway. In addition, both Cd-induced ROS bursts and autophagy were reduced 

by ROS scavenger, N-acetylcysteine (NAC) and vitamin E [115]. Mitochondria may play a central role 

in the mechanism of autophagy-induced cell death [116], and autophagy often occurs when the 

mitochondria fail to maintain ATP levels [117] or when the mitochondria are damaged [116]. ROS are 

often generated following inhibition of the mitochondrial electron transport chain (mETC) [118–120]. 

It is estimated that 2% of oxygen is converted to ROS by mETC [130]. Accordingly, it is very 

interesting to mention that selective prolonged activation of autophagy, such as treatment with mETC 

inhibitors of complex I (rotenone) and II (TTFA) in cancer cells, could be a viable strategy to treat 

cancers resistant to apoptosis. Emerging proof shows that the imbalance in the homeostasis of the 

oxidative condition of cells through the caspase inhibition or starvation leads to autophagy  

induction [121,122]. Moreover, induction of autophagy by starvation occurs through inactivation of 

HsAtg4A, an oxidant-sensitive cysteine protease, by ROS, resulting in accumulation of Atg8-PE [121]. 

All the forementioned examples suggest that ROS may be one of the major mediators in the regulation 

of autophagy.  

7. Signaling Pathways, Transcription Factors, and Their Roles in Oxidative Stress 

ROS can stimulate cellular proliferation and activate survival pathways via several signaling 

mechanisms. ROS-induced DNA damage has been widely accepted as a major cause of cancer [123]. 

There are several signaling pathways and transcription factors controlling oxidative stress in cancer 

development, such as those shown in Figure 2 below. 
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Figure 2. ROS mediated activation of cell signaling pathways. 

 

7.1. Mitogen-Activated Protein Kinases (MAPKs) 

The Mitogen-activated Protein Kinases (MAPKs) are a family of serine/threonine kinases involved 

in various cellular processes such as, energy metabolism, regulation of gene expression, and 

programmed cell death [124,125]. The implication of MAPK pathways in both cell proliferation and 

death is emphasized by the observation that deregulation of these kinase cascades can result in cell 

transformation and cancer [126]. Oxidants have been shown to be able to trigger the activation of 

multiple signaling pathways, including the phosphorylation cascades of MAPKs. There are three 

structurally related, but functionally distinct MAPKs, which are extracellular signal-regulated Kinase 

(ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK [127]. ERKs can be stimulated by mitogens, 

while JNK and p38 MAPK can be activated by heat shock proteins and inflammatory cytokines [128].  

7.1.1. MAPKs and Cancer 

Relatively high level oxidative stress activates the stress signal cascades of JNK, NF-κB and other 

pathways. On the other hand, low levels of oxidative stress were shown to selectively activate the p38 

MAPK-related cascade leading to abnormal cell cycle progression [129]. ROS trigger signaling 

cascades, which lead to the activation and phosphorylation of MAPKs, including ERK. As a 

consequence, transcription factors including NF-κB and AP-1 are activated, which may lead to the 

induction of early response genes such as c-jun and c-fos, which are involved in inflammatory influx, 

inhibition of apoptosis, cell proliferation, transformation, differentiation, and other changes [130]. 

Activation of the ERK, JNK, and p38 MAPK subfamilies has been observed in response to changes in 

the cellular redox balance. The balance between ERK and JNK activation is a key determinant for cell 
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survival, as both a decrease in ERK and an increase in JNK are essential for the induction of  

apoptosis [131]. There is strong proof that suggests that many protein kinases and their corresponding 

transcriptional regulatory factors are activated under oxidative stress conditions [129]. The ERK 

pathway primarily controls the processes of proliferation and survival, while the JNK pathway can 

promote either proliferation or apoptosis [132]. Activation of both ERK and JNK pathways can lead to 

increased proliferation and survival, although loss of JNK in some instances may also promote 

tumorigenesis [86]. On the other hand, the p38 MAPK pathway is activated upon cellular stress and often 

engages pathways that can block proliferation or promote apoptosis [133]. Interestingly, p38 MAPK 

selectively functions as a sensor of oxidative stress during the initiation of tumorigenesis [134,135].  

7.1.2. MAPKs and Stem Cells 

Inhibition of p38 MAPK appears to maintain pluripotency by blocking the pro-differentiation 

effects of p38 MAPK [140], ROS activates the p38/MAPK pathway causing quiescent HSCs to cycle 

more frequently and eventually become exhausted [141]. The mutant HSCs show increased 

phosphorylation of p38 MAPK, a heightened sensitivity to cell cycle-specific myelotoxic injury, and 

lose self-renewal capacity during aging. Several cellular growth- and proliferation-related signal 

transduction pathways are activated by ROS signaling. Among of these are MAPK and the redox 

sensitive kinases [142].The oxidative stress microenvironment plays an important role in the clonal 

evolution of tumor progression by permitting/potentiating genetic instability, epigenetic modulation of 

gene expression, and the activation of growth and survival-related signal transduction pathways [143]. 

7.1.3. MAPKs and CSCs 

A recent study demonstrated that CSCs can be derived from human mammary epithelial cells 

following the activation of the Ras-MAPK pathway [136]. The acquisition of these stem and tumorigenic 

characters is driven by Epithelial-Mesenchymal Transition (EMT) induction. MAPK/ERK1, 2 and 

vascular endothelial growth factor 1 (VEGF/Flt1) autocrine pathways may play significant roles in 

drug-induced expansion of bone marrow side-population (SP) cells (G0 phase) [137,138]. siRNA 

inhibition of Flt1 reduced nanog [139] and Oct-4 expression [138], suggesting that stress-induced 

activation of the VEGF/Flt1 and MAPK/ERK1,2 autocrine loop may play an important role in the 

expansion of the CSCs fraction. 

7.2. NF-κB 

The nuclear factor kappa B (NF-κB) represents a typical example of a transcription factor whose 

activity can be significantly changed via redox modulation. NF-κB plays an important role in the 

regulation of many genes involved in immune, inflammatory, and antiapoptotic responses. Therefore, 

this molecule has a crucial role in controlling cell survival in response to oxidative insults. 

7.2.1. NF-κB and Cancer 

NF-κB activation has been associated with the carcinogenesis process, because of its roles in cell 

growth and differentiation and its role in inflammation. Moreover, NF-κB regulates several genes 
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implicated in cell transformation, proliferation, and angiogenesis [9]. Inside the cells, NF-κB is 

normally bound to the inhibitory protein Iκ-Bα in the cytoplasm. ROS activate NF-κB by rapid 

phosphorylation, ubiquitination, and subsequent proteasomal degradation of the inhibitory protein  

Iκ-Bα. This is followed by the translocation of NF-κB to the nucleus, where it activates gene 

transcription (Figure 2) [144]. Continuous production and high levels of ROS lead to activation of  

NF-κB, which through the activation of various pro-inflammatory cytokines produces chronic 

inflammation that subsequently ends in tumor development [144]. Interestingly, carcinogenic 

promoters such as UV radiation, asbestos, alcohol, and phorbol esters are among the exogenous 

sources of ROS that activate NF-κB [9]. Consequently, this leads to activation of the expression of 

several genes regulated by NF-κB such as, bcl-2, bcl-xL, TRAF1, TRAF2, SOD, and A20, which 

promote cell survival through inhibition of apoptotic pathways (Figure 1). NF-κB is a transcription 

factor, which has an essential role in the expression of many genes whose products can suppress tumor 

cell death; stimulate tumor cell cycle progression; enhance epithelial-to-mesenchymal transition, which 

has an important role in tumor invasiveness; and provide newly emerging tumors with an 

inflammatory microenvironment that supports their progression, invasion of surrounding tissues, 

angiogenesis, and metastasis [145,146]. NF-κB is a transcription factor that can induce the expression 

of IL-6, a cytokine that plays an essential role in the immune response and inflammation [147]. Of 

note, tumor cells from breast, colon, blood neoplasms, pancreas, and squamous cell carcinoma cell 

lines have all been reported to constitutively express activated NF-κB [148]. 

7.2.2. NF-κB and Stem Cells 

NF-κB is a transcriptional regulator involved in many biological processes including proliferation, 

survival, and differentiation. Recently, it has been shown that members of the NF-κB family are 

widely expressed by neurons, glia, and neural stem cells [149]. NF-κB, an inducible dimeric 

transcription factor that belongs to the Rel family of transcription factors, is a major mediator of the 

cellular response to a variety of extracellular stimuli and is involved in diverse biological processes 

including embryo development, hematopoiesis, and immune regulation, as well as neuronal functions 

via the induction of certain growth and transcription factors [150,151]. There are five different  

Rel/NF-κB proteins expressed in mammals: p65 (RelA), p50 (NF-κB1), p52 (NF-κB2), c-Rel (Rel), 

and RelB [152]. In mouse ES cells, there is a lower expression of NF-κB p65 protein in comparison to 

mouse embryonic fibroblast cells. These NF-κB proteins form homo- or heterodimers and are bound in 

the cytoplasm by the inhibitor of κB proteins (IκB) [153]. A recent study reported that expression and 

activity of the transcription factor NF-κB was enhanced during differentiation of human ES cells [154]. 

7.2.3. NF-κB and CSCs 

In the case of CSCs, oxidative stress activates NF-κB signaling. Such activation allows NF-κB 

dimers to translocate to the nucleus and to activate transcription of target genes. Basically, the NF-κB 

pathway regulates genes involved in key cellular processes such as proliferation, stress response, 

innate immunity, and inflammation [63]. NF-κB signaling is necessary to maintain pluripotency in 

human ESCs. These findings might support the hypothesis that stem cells might undergo 

transformation into CSCs under prolonged oxidative stress, probably due to molecular modifications 
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such as hyperoxia-induced NF-κB [123]. Therefore, the ROS status related to CSCs and their ability to 

self-renew and escape death signals need to be fully elucidated. 

8. Conclusions 

Several recent scientific reviews and studies have enthusiastically described the relationship 

between the increase in cellular reactive oxygen radicals and the pathogenesis of several chronic 

diseases, including cancer. There are two sources of cellular oxidants (reactive oxygen and nitrogen 

species) that can be generated from endogenous (normal physiological processes) as well as exogenous 

sources (xenobiotic interaction). When the antioxidant control mechanisms are overrun, the cellular 

redox potential shifts toward oxidative stress. As a consequence, the potential for damage to cellular 

nucleic acids, lipids, or proteins increases. Importantly, oxidative nuclear DNA damage has an 

important role in neoplasia. Cancer cells exhibit increased ROS generation that may promote cell 

proliferation. This might be coupled to redox adaptation to promote cell survival and drug resistance. 

These highlight the crucial role of ROS stress in tumor development and drug resistance. Accordingly, 

there is a growing scientific need for the identification of the key molecular mechanisms that 

determine the redox balance in cancer stem cells, which might provide a possibility to terminate the 

survival mechanisms in these cells and enable the elimination of cancer from its root. Moreover, 

formation of mitochondrial DNA damage, mutation, and alteration of the mitochondrial genomic 

function also seem to be implicated in the process of carcinogenesis. It is worth noting that ROS and 

cellular redox status mediate cell signaling pathways that are implicated in cell growth regulatory 

pathways and, in consequence, carcinogenesis. Importantly, the role of ROS in the regulation of cell 

growth is very complicated, as it is cell specific and depends upon the form of the oxidant as well as 

the concentration of the particular ROS. Interestingly, gene expression modification by ROS has direct 

effects on cell proliferation and apoptosis through the activation of transcription factors including 

MAPK/AP-1 and NF-κB pathways. In this review, we summarize the current knowledge on the link 

between oxidative stress, different signaling pathways, and carcinogenesis, by focusing in particular on 

the relations of both the MAPK family of signaling pathways and the transcription factor NF-κB to 

oxidative stress and the carcinogenesis process. Both the MAPK pathways and the transcription factor 

NF-κB may have essential roles in the redox status and the development of cancer stem cells. Most 

importantly, we describe the relation between ROS and both apoptosis and autophagy, and in turn, to 

tumorigenesis. There is increasing evidence supporting that oxidative stress and both apoptosis and 

autophagy are closely linked physiological phenomena. Autophagy, a cellular self-catabolic process, 

can be cytotoxic and under certain settings substitute for apoptosis in induction of cell death. In 

addition, loss of autophagy is related to tumorigenesis. The relation of autophagy to tumorigenesis is 

complex and depends on the genetic composition of cells as well as on the extra-cellular stresses which 

a cell is exposed to. The relationship between oxidative stress and both apoptosis and autophagy may 

have a crucial role in cancer stem cell development as well as therapy. In order to validate and confirm 

all of these aforementioned notions, more in-depth further studies and investigations are needed. This 

perhaps will provide insights for the development of novel therapeutic strategies. 
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