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Abstract: 5-Fluorouracil (5-FU) is a key anticancer drug that for its broad antitumor 

activity, as well as for its synergism with other anticancer drugs, has been used to treat 

various types of malignancies. In chemotherapeutic regimens, 5-FU has been combined with 

oxaliplatin, irinotecan and other drugs as a continuous intravenous infusion. Recent clinical 

chemotherapy studies have shown that several of the regimens with oral 5-FU drugs are  

not inferior compared to those involving continuous 5-FU infusion chemotherapy, and it is 

probable that in some regimens continuous 5-FU infusion can be replaced by oral 5-FU 

drugs. Historically, both the pharmaceutical industry and academia in Japan have been 

involved in the development of oral 5-FU drugs, and this review will focus on the current 

knowledge of 5-FU anabolism and catabolism, and the available information about the 

various orally-administrable 5-FU drugs, including UFT, S-1 and capecitabine. Clinical 

studies comparing the efficacy and adverse events of S-1 and capecitabine have been 
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reported, and the accumulated results should be utilized to optimize the treatment of cancer 

patients. On the other hand, it is essential to elucidate the pharmacokinetic mechanism of 

each of the newly-developed drugs, to correctly select the drugs for each patient in the 

clinical setting, and to further develop optimized drug derivatives. 

Keywords: 5-FU metabolism; cell death; colon cancer; oral 5-FU drugs 

 

1. Introduction  

Since its introduction more than 50 years ago, 5-fluorouracil (5-FU) has become a key anticancer 

drug that has been used to treat various types of malignancies for its broad antitumor activity, as well 

as its synergism with other anticancer drugs. In 1957, Heidelberger et al. [1] reported the development 

of 5-FU, but several important findings had preceded their work. For example, in 1954 Rutman et al. [2] 

showed that uracil was incorporated into rat hepatomas more rapidly than normal tissues; and in 1956 

Handschumacher et al. reported the tumor-inhibitory activity by 6-azauracil [3]. In recent 

chemotherapeutic regimens, the continuous intravenous infusion of 5-FU has been combined with 

oxaliplatin, irinotecan and other drugs. The continuous 5-FU infusion is based on an official report 

published in the US in 1964 [4], showing that 5-FU is a time-dependent antimetabolite. The meta-

analysis of more than 1,200 colorectal cancer patients in six randomized clinical trials, which showed 

the efficacy of continuous 5-FU infusion compared with bolus 5-FU administration [5], also supported 

the importance of continuous 5-FU infusion. Based on these results, continuous 5-FU infusion 

regimens, such as FOLFOX or FOLFIRI, have been established and are widely utilized. On the other 

hand, recent clinical studies have shown that several of the chemotherapeutic regimens with oral 5-FU 

drugs are not inferior to those with continuous 5-FU infusion chemotherapy, and in some regimens it 

may be possible to replace continuous 5-FU infusion chemotherapies with oral 5-FU drugs. 

Historically, both the pharmaceutical industry and academia in Japan have contributed to the 

development of oral 5-FU drugs. This review will summarize the current knowledge about 5-FU 

metabolism, and the information about orally-administrable 5-FU drugs. 

2. 5-FU Metabolism  

It has been demonstrated that 80% to 85% of 5-FU is catabolized to inactive metabolites by 

dihydropyrimidine dehydrogenase (DPD), and only 1 to 3% of the original dose of 5-FU mediates the 

cytotoxic effects on tumor cells and normal tissues through anabolic actions [6], thereby inhibiting 

DNA synthesis and RNA processing and function (Figure 1). The 5-FU metabolite, fluorodeoxyuridine 

monophosphate (FdUMP), forms a ternary complex with thymidylate synthase (TS) and  

5,10-methylene tetrahydrofolate (CH2THF), thereby inhibiting the synthesis of DNA. 
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2.1. 5-FU Anabolism 

The chemotherapeutic compound 5-FU is a uracil analogue with a fluorine atom at the C-5 position. 

After intravenous administration of 5-FU, it rapidly enters cells using the same transport mechanism as 

uracil [7]. The processing mechanism of 5-FU in cells is as diverse as that of normal pyrimidines, and 

the current understanding of the metabolism is summarized in Figure 1. First, 5-FU is converted to the 

following active metabolites: 1) fluorouridine triphosphate (FUTP), which is incorporated into RNA 

instead of uridine triphosphate (UTP); 2) fluorodeoxyuridine triphosphate (FdUTP), which is 

incorporated into DNA instead of deoxythymidine triphosphate (dTTP); and 3) FdUMP, which inhibits 

the activity of TS in the ternary complex, as described in the previous section. FUTP causes alterations 

in RNA processing and function, and FdUTP and FdUMP cause DNA damage; both of these processes 

affect RNA and DNA and cause cell death. 

Figure 1. 5-FU anabolism and catabolism. 

 

As mentioned, a US report published in 1964 demonstrated 5-FU to be a time-dependent 

antimetabolite [4]. The main mechanism of 5-FU activation is conversion to fluorouridine 

monophosphate (FUMP), either directly by orotate phosphoribosyltransferase (OPRT) with 

phosphoribosyl pyrophosphate as a cofactor, or indirectly via fluorouridine (FUR) through the 
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sequential action of uridine phosphorylase (UrdPase) and uridine kinase (UK) [8]. The other 5-FU 

activation pathway involves thymidine phosphorylase (dThdPase), which catalyzes the conversion of 

5-FU to fluorodeoxyuridine (FUDR), and FUDR is then phosphorylated by thymidine kinase (TK) to 

FdUMP. In this series of reactions, the phosphorylation reaction by the UrdPase requires  

ribose-1-phosphate as a cofactor, eventually synthesizing FUMP. In contrast, the phosphorylation 

reaction by dThdPase requires deoxyribose-1-phosphate as a cofactor, eventually leading to the synthesis 

of FdUMP. FUMP is further phosphorylated to fluorouridine diphosphate (FUDP), which is either 

further phosphorylated to the active metabolite FUTP, or converted to fluorodeoxyuridine diphosphate 

(FdUDP) by ribonucleotide reductase [8]. FdUDP is then either further phosphorylated to FdUTP, or 

dephosphorylated to FdUMP. Both FdUTP and FdUMP cause DNA damage.  

The conversion of 5-FU to FdUMP in the gastrointestinal (GI) tract and bone marrow elicits GI 

toxicity and myelotoxicity, respectively. In 1979, an in vivo mouse study by Houghton et al. indicated 

that GI toxicity was caused by the incorporation of fluorinated pyrimidines, mainly FdUMP [9]. In 

1984, Schuetz et al. analyzed the myelotoxicity of 5-FU using CF-1 mouse bone marrow cells under  

5-FU exposure in vitro [10], and demonstrated that 5-FU incorporation into DNA was closely 

associated with toxicity and inhibition of DNA synthesis with FdUMP [10]. Interestingly, the  

meta-analysis of six randomized clinical trials performed in 1998 showed that the grade 3 or 4 

hematologic toxicity was more frequent in patients assigned to bolus 5-FU infusion rather than in those 

assigned to continuous 5-FU infusion [11]. 

2.2. 5-FU Catabolism 

DPD is an enzyme present in the liver, intestinal mucosa and various other tissues. DPD catabolizes 

5-FU to 5,6-dihydro-5-fluorouracil (DHFU) [12], finally leading to the formation of α-fluoro-β-ureido-

propionic acid and α-fluoro-β-alanine (FBAL) (Figure 1). In 1987, Heggie et al. investigated the 

kinetics of 5-FU and 5-FU metabolites in cancer patients following intravenous bolus administration of 

radio-labeled 5-FU [13], and revealed that approximately 60–90% of the administered 5-FU was 

excreted in urine as FBAL within 24 hours. While most patients tolerate 5-FU reasonably well, a 

number of cancer patients with DPD deficiency were shown to be at increased risk for severe toxicities, 

including diarrhea, mucositis, and neurotoxicity, as well as death, after administration of standard 

doses of 5-FU [6]. 

Since the 1970s, the neurotoxicity of FBAL as a 5-FU catabolite has been discussed quite 

extensively [14,15]. Okeda et al. investigated the mechanism of 5-FU neurotoxicity with in vivo 

experiments using cats [15]. The two 5-FU metabolites, monofluoroacetic acid and FBAL, were 

continuously administered into the left ventricle of the brain in cats. In their experiments, two types of 

neuropathological changes, vacuoles and necrosis/softening-like changes, were detected, and FBAL 

was more toxic than monofluoroacetic acid. Both of the neuropathological changes in the FBAL group 

were similar to those found in patients following orally-administered 5-FU [15].  

The cardiotoxicity of 5-FU has also been attributed to FBAL. Matsubara et al. investigated the 

mechanism of cardiotoxicity for 5-FU and its derivatives using in vivo experiments with anesthetized 

open-chest guinea pigs [16], and proposed that the formation of fluoroacetate, an inhibitor of aconitase, 

from 5-FU via FBAL, caused cardiotoxicity during chemotherapy [16]. As described in later 
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publications, FBAL is also the main cause of hand-foot syndrome (HFS) acquired in cancer patients 

during 5-FU-based chemotherapy. In the 1998 meta-analysis HFS was more frequent in the continuous 

5-FU infusion group than in the bolus 5-FU infusion group [5].   

2.3. Ternary Complex 

FdUMP forms a stable ternary complex with TS and CH2THF [17]. TS catalyzes the reductive 

methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) with 

the reduced folate CH2THF. The ternary complex blocks the access of dUMP to the nucleotide-binding 

site of TS by competition with FdUMP, which results in pool imbalances of deoxynucleotides, 

especially an increased level of deoxyuridine triphosphate (dUTP); leading to DNA damage. Depletion 

of dTMP results in the subsequent depletion of dTTP, which perturbs the levels of the other 

deoxynucleotides [18]. The pool imbalances of deoxynucleotides severely disrupt DNA synthesis and 

repair, again resulting in DNA damage [19]. As a result, the inhibition of TS results in the 

accumulation of dUMP, which leads to the increased levels of dUTP [20]. Thymidylate can be 

salvaged from thymidine through the action of TK, and this salvage pathway can also represent a 

mechanism of resistance to 5-FU [21]. Despite this information about the activity of 5-FU, the 

molecular mechanisms downstream of TS inhibition still have to be confirmed [8]. In addition, the 

clinical significance of TS needs to be demonstrated. In 2008, Showalter et al. investigated the 

connection between TS expression and 5-FU with a thorough literature survey, and in contrast to 

previous predictions, they found no connection between TS and the patient response to 5-FU [22]. To 

discuss this matter, we must remember that the influence of TS activity on 5-FU metabolism may 

change depending on the administration routes of 5-FU drugs, types of 5-FU drugs, the effects of LV, 

and other factors. 

3. Oral 5-FU Drugs  

As described in the “Introduction” section, 5-FU is a key anticancer drug for the treatment of 

various malignancies, and continuous 5-FU infusion regimens have been frequently used because of 

the apparent time-dependent effects of the drug. However, recent studies have shown that the 

continuous 5-FU infusion chemotherapies can be replaced with orally-administrable 5-FU drugs in 

some regimens, without any significant changes in either efficacy or adverse events [23,24]. In addition, 

oral administration of drugs allows several types of iatrogenic issues to be avoided. For the continuous 

infusion regimens such as FOLFOX or FOLFIRI, the implantation of a central venous port is required, 

but complications such as pneumothorax, hemothorax, or disconnection of the devices can occur. 

Furthermore, catheter-related infection or thrombosis is a serious problem for cancer  

patients [25,26]. The cost and benefit balance with the use of the central venous port system has been 

discussed [27], and recent clinical studies revealed that patients prefer oral administration rather than 

continuous infusion procedures. As such, orally-administered 5-FU regimens are likely to become 

more common in the clinical setting. Some fluoropyrimidines such as BOF-A2 (Emitefur) and 

Galocitabine (Ro 09-1390) are under development but not clinically available. In this section, we 

summarize the information currently available about orally-administrable 5-FU drugs (Table 1 and 

Figure 2).  
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Table 1. Orally-administrable 5-FU drugs. 

Drug name 
Structure 

(Composition) 
Concept Developer Refs. 

Tegafur 1-(2-Tetrahydrofuryl)-5-

fluorouracil 

Prodrug National Institute for Organic 

Syntheses (Latvia) 

[28] 

UFT FT:Uracil = 1:4 Prodrug, DPD 

inhibitor 

Osaka University (Japan) [30] 

5’-DFUR 5’-Deoxy-5-fluorouridine Prodrug Hoffmann-La Roche 

(Switzerland); Nippon Roche 

Research Center (Japan) 

[38,39] 

S-1 FT:CDHP:OXO = 1:0.4:1 DPD inhibitor, 

OPRT inhibitor 

Taiho Pharmaceuticals (Japan) [40] 

Capecitabine N4-Pentyloxycarbonyl-5′-

deoxy-5-fluorocytidine 

Prodrug Nippon Roche Research Center 

(Japan) 

[44] 

Figure 2. Structures of oral 5-FU drugs. (A) Tegafur; (B) UFT; (C) 5’-DFUR; (D) S-1;  

(E) Capecitabine. 

 

3.1. Tegafur 

1-(2-Tetrahydrofuryl)-5-fluorouracil (tegafur, FT, FT-207, Futrafur, Ftorafur, etc.) was developed as 

a 5-FU prodrug in the Soviet Union during the Cold War (as reported in 1967 by Giller et al. in a 

Russian record [28]). In 1970, the drug was introduced to Taiho Pharmaceuticals (Japan). Utilizing the 

benefits of FT, including: 1) its excellent absorbability from the GI tract and 2) its slight conversion to 

5-FU in the GI tract, the development of orally-administrable FT was attempted, accomplished and 

reported in 1977 [29,30]. FT was shown to be gradually converted to 5-FU via cytochrome p450 

enzymes in hepatic microsomes [31].  
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3.2. UFT  

UFT consists of uracil and FT. Uracil competes with 5-FU for DPD activity [32,33], resulting in a 

prolonged 5-FU half-life. To optimize the molecular ratio of FT and uracil, Fujii et al., at the Institute 

for Protein Research (Osaka University, Japan), analyzed in vivo rat models administered with the 

combination of drugs, and revealed the optimal molar ratio to be 1:4 [34], which led to the introduction 

of UFT in 1985. In 1978, Fujii et al. also reported that the antitumor activity of FT on sarcoma-180 and 

AH-130 tumors was enhanced by oral administration of uracil, deoxyuridine or uridine [30], and this 

enhancement of the antitumor activity of FT increased with uracil, which caused a more extensive 

enhancement than did deoxyuridine or uridine. Furthermore, biochemical modulation of 5-FU had been 

investigated [35] using methotrexate, trimetrexate, interferon-α, leucovorin (LV) [36], and N-(phosphon-

acetyl)-L-aspartic acid. The addition of LV to UFT regimens increases the available reduced folates, 

and thereby stabilizes the binding of FdUMP to TS, eventually inhibiting DNA synthesis. In 1997, 

Rustum et al. showed that LV increased the antitumor activity of UFT in the rat [32]; and Ichikura et al. 

showed that UFT with LV enhanced the inhibition of TS activity in gastric cancer patients [37]. In fact, 

the combination of 5-FU-based drugs with LV has been regarded as one of the standard treatments for 

colorectal cancer. These results eventually led to the development of S-1. 

3.3. 5’-DFUR  

In 1979, Cook et al. at Hoffmann-La Roche (Switzerland) [38] and Ishitsuka et al. in 1980 at the 

Nippon Roche Research Center (Japan) [39] reported the development of 5’-deoxy-5-fluorouridine  

(5’-DFUR, doxyfluridine, 5’-fluoro-5’-deoxyuridine, Ro 21-9738, Furtulon, etc.). The compound  

5’-DFUR is parenterally and orally effective, and its activity was better than that of other fluorinated 

pyrimidines available at that time. A subline of L1210 leukemia cells was resistant to 5’-DFUR, and 

Ishitsuka et al. revealed that its resistance to 5’-DFUR was due to the lack of the UrdPase [39]. This is 

because 5’-DFUR is considered to be a depot form of 5-FU, which can be promptly activated by 

UrdPase [39]. Capecitabine (see below) was developed as the next generation of 5’-DFUR. 

3.4. S-1  

After the development of UFT, Shirasaka et al. focused on the development of a novel oral  

FT-based fluoropyrimidine agent. They developed the next-generation drug, S-1, which both enhances 

the anticancer activity of 5-FU and reduces its GI toxicity [40]. The development of S-1 was based on 

two important findings: 1) 5-chloro-2,4-dihydroxypyridine (CDHP, Gimeracil, gimestat, etc.) is a DPD 

inhibitor, and 2) potassium oxonate (OXO) is an OPRT inhibitor (Figure 3). 

Tatsumi et al. at Otsuka and Taiho Pharmaceuticals (Japan) investigated about 30 compounds for 

their inhibitory effects of DPD, mainly focusing on pyrimidines, barbituric acid and pyridine 

derivatives [41]; and in 1987 they reported that 3-cyano-2,6-dihydroxypyrimidine (CNDP) and CDHP 

were the strongest inhibitors of DPD [41]. Next, Shirasaka et al. [42] investigated the possibility of 

decreasing the GI toxicity of 5-FU without reducing its antitumor activity in rats. OXO localizes in the 

GI mucosa and selectively inhibits the OPRT, which inhibits 5-FU phosphorylation to FUMP, limiting 

GI toxicity effects (diarrhea, nausea and vomiting) [42]. In 1993, they reported that OXO inhibited the 
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phosphorylation of 5-FU to FUMP catalyzed by pyrimidine phosphoribosyl-transferase, in a different 

manner from allopurinol. With experiments using Yoshida sarcoma-bearing rats, OXO was found to 

inhibit the formation of FUMP from 5-FU, with its subsequent incorporation into the RNA fractions of 

the small and large intestine, but not of the tumor and bone marrow tissues. This selective inhibition of 

5-FU phosphorylation in the GI tract was due to the much higher concentrations of OXO in GI tissues 

than in other tissues and in the blood [42]. 

Based on these findings, CDHP and FT were simultaneously given orally to Yoshida sarcoma-

bearing rats in various molar ratios, and then OXO was given orally during consecutive administration 

of the FT-CDHP mixture to find out the best condition to protect the animals from body weight loss 

without affecting the high antitumor efficacy of the FT-CDHP mixture [40]. Shirasaka et al. finally 

proposed a suitable formulation of the FT-based anticancer drug, called S-1, consisting of FT, CDHP 

and OXO at a 1:0.4:1 molar ratio and showed that it had tumor-selective cytotoxicity. S-1 is designed 

to reduce the GI toxicity of 5-FU; and in 2005 Muneoka et al. also reported that S-1 may be 

administered safely to patients with 5-FU-induced cardiotoxicity in whom FBAL is related to adverse 

events [43]. Recently, a combination granule version of S-1 has become commercially available. 

Figure 3. The metabolism of S-1. 

 

3.5. Capecitabine  

Capecitabine (N4-pentyloxycarbonyl-5′-deoxy-5-fluorocytidine, Xeloda™, Ro 09-1978, etc.) is an 

oral fluoropyrimidine carbamate [44], which is selectively converted to 5-FU in tumors through a 

cascade of three enzymes: (1) carboxylesterase, which is almost exclusively located in the liver and 

hepatoma, but not in other tumors and normal tissues; (2) cytidine deaminase, which is located in the 

liver and various types of solid tumors, and 3) dThdPase, which is more concentrated in various types 

of tumor tissues than in normal tissues (Figure 4).  

Miwa et al. investigated the tissue localization of the three enzymes in humans [44], and these 

unique tissue localization patterns enabled the design of capecitabine. Oral capecitabine passes intact 

through the intestinal tract, but is converted first by carboxylesterase to 5’-deoxy-5-fluorocytidine  

(5'-DFCR) in the liver, then by cytidine deaminase to 5’-DFUR in the liver and tumor tissues, and 

finally by dThdPase to 5-FU in tumors. To design the optimized fluoropyrimidine carbamate, a series 

of N4-alkoxylcarbonyl derivatives were screened for hydrolysis to 5'-DFCR, specifically by 

carboxylesterase [45]. During the screening process, derivatives having an N4-alkoxylcarbonyl moiety 
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with a C4-C6 alkyl chain were the most susceptible to human carboxylesterase, which led to the 

development of capecitabine. In 1998, Ishikawa et al. at the Nippon Roche Research Center 

investigated the efficacy of capecitabine and 5-FU in xenograft models implanted with human colon 

cancer cells [46]. Their results supported the notion that the inefficient conversion of 5’-DFUR to  

5-FU by dThdPase in tumors would represent a mechanism of resistance. In contrast, even in tumors 

with sufficient levels of dThdPase, capecitabine was not effective if DPD levels were very high, and its 

efficacy was consequently found to be well-correlated with and dependent on the ratio of these two 

enzymes – dThdPase and DPD – in tumors [46]. The efficacy of capecitabine can be optimized by 

selecting patients who have tumors with a high ratio of dThdPase to DPD activities. 

Figure 4. The metabolism of capecitabine. 

 

HFS is a cutaneous adverse event that occurs in some patients treated with fluoropyrimidines, which 

can severely disrupt the daily lives of patients. It is also a leading cause of interruption of capecitabine 

regimens as well [47]. In order to test the hypothesis that the occurrence of HFS could be related to 

tissue-specific expression of drug-metabolizing enzymes in the skin of the palms and soles, Milano et 

al. measured the expression of dThdPase (activation pathway), DPD (catabolic pathway) and cell 

proliferation (Ki67) in the skin of the palm (target tissue for HFS) and of the lower back (control area) 

with punch biopsy specimens [48]. Their study revealed that dThdPase and DPD expression levels 

were significantly greater in the palm relative to the back, and that dThdPase-facilitated local 

production of 5-FU in the palm during capecitabine treatment could explain the occurrence of HFS. In 

addition, the accumulated findings from clinical trials show the benefits of DPD inhibition on 

decreasing the risk of HFS [47]. 

The efficacy of co-administration of a series of DPD inhibitors with capecitabine has been 

investigated. A DPD inhibitor, RO0094889, which is a prodrug of 5-vinyluracil, was designed to 

generate 5-vinyluracil selectively in tumor tissues by sequential conversion by three enzymes 

responsible for the metabolism of capecitabine [49]. RO0094889 and various DPD inhibitors have 

been analyzed for co-administration with capecitabine. Nevertheless, HFS occurs more frequently with 

5-FU delivered by continuous infusion [5] or with the 5-FU oral derivative capecitabine, rather than 

with bolus 5-FU therapy.  
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4. Conclusions  

Recently clinical studies on S-1 and capecitabine, comparing their efficacy and adverse events, have 

been reported, mainly from Korea [50,51]. The accumulated results will provide benefits that can 

optimize the treatment of cancer patients. The information obtained from the studies described in this 

review may give us better direction for the appropriate use of the oral 5-FU drugs. For example, the 

assessment of the dThdPase and DPD levels may provide evidence of patients who would be 

good/poor responders to therapy. Patients with low dThdPase activity and inefficient conversion of  

5’-DFUR to 5-FU, may present resistance to capecitabine. The activities of carboxylesterase and 

cytidine deaminase may also affect the efficacy of capecitabine. Among patients with high DPD 

activity, S-1 may exhibit better efficacy; on the other hand, capecitabine may show more powerful 

effects along with DPD inhibitors in tumor cells. Although recent studies support the notion that the 

continuous 5-FU infusion chemotherapies can be replaced with orally-administrable 5-FU drugs in 

some regimens, it will be necessary for us to remember that the metabolism of orally-administered  

5-FU differs from that of infusional 5-FU, because orally-administered 5-FU undergoes more diverse 

metabolism in the gastrointestinal tract and in the liver, with various enzymes. On the other hand, it is 

essential to elucidate the pharmacokinetic mechanism of each of the newly-developed drugs, to ensure 

the selection of the proper drug(s) for each patient in the clinical setting, and to further develop the 

optimized drug derivatives. This will require the collaboration of clinicians, molecular biologists and 

preclinical drug researchers. 
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