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Abstract: The modern management of the axilla in breast cancer relies on surgery for 

accurate staging of disease and identifying those patients at risk who would benefit from 

adjuvant chemotherapy. The introduction of sentinel lymph node biopsy has revolutionized 

axillary surgery, but still involves a surgical procedure with associated morbidity in many 

patients with no axillary involvement. Nanotechnology encompasses a broad spectrum of 

scientific specialities, of which nanomedicine is one. The potential use of dual-purpose 

nanoprobes could enable imaging the axilla simultaneous identification and treatment of 

metastatic disease. Whilst most applications of nanomedicine are still largely in the 

laboratory phase, some potential applications are currently undergoing clinical evaluation 

for translation from the bench to the bedside. This is an exciting new area of research 

where scientific research may become a reality. 
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1. Introduction 

The assessment and management of the axilla in breast cancer is a key factor in defining prognosis 

and determining the need for adjuvant chemotherapy. To date, there is no readily available, cheap, 
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non-invasive, reliable, and most of all safe method of imaging metastatic spread from a primary breast 

neoplasm to the ipsilateral axilla.  

Modern magnetic resonance imaging (MRI) is rapidly advancing and now synchronous, dynamic 

breast imaging can be undertaken rapidly with a high spatial resolution. However, advances in MRI 

and computed tomography (CT) are limited by the drawbacks of non-specific contrast agents. These 

agents are usually administered systemically causing changes that are more wide spread when 

localized identification is what is actually required. They cause rare but significant systemic toxicity 

with the risk of end organ damage particularly with the common iodine based substrates, a small risk a 

clinician has to assess on a patient-by-patient basis. Nanomedicine heralds a wave of new agents 

termed theranostic particles that can address these issues and may offer the hope of synchronous 

diagnosis and treatment, in the future. Most research in this area is still at the bench side and clinical 

translation is restricted by toxicity and particle instability. 

2. History of the Sentinel Lymph Node 

Sentinel lymph node biopsy (SLNB) is now the gold standard in staging the axilla in breast cancer. 

The sentinel lymph node (SLN) was first described by Cabanas whilst undertaking penile 

lymphangiography for cancer, one node was consistently identified to receive lymphatic flow. This 

was histologically confirmed to be the first, and in some cases the only site, of metastatic spread of 

penile cancer [1]. The technique of SLNB, however, was not popularized until 1992 when Morton 

reported SLN identification for the staging of cutaneous malignant melanoma using patent blue dye [2]. 

This was quickly translated to the staging of the axilla in breast cancer by Giuliano et al. injecting 

isosulphan blue dye peritumorally in the affected breast [3]. SLNB relies on the observation that the 

sentinel node(s) are the first and most likely place for lymph node metastasis and reliably reflect the 

likely presence of further metastases in the axillary basin. In breast cancer, identification and 

histological examination of the SLN should identify those patients with an involved SLN who require 

further surgery in the form of an axillary lymph node dissection (ALND), whilst sparing those with a 

normal SLN the morbidity of axillary node clearance. Giuliano’s first reported success rate in 

identifying the SLN was 66% and correct prediction of the status of the axillary node basin was 96%. 

In part, this initial study optimized the technique for SLNB and included many cases that are now 

considered inappropriate for SLNB, for example patients with overt metastatic nodal involvement. By 

1994, in the same experienced Institute, a subsequent publication demonstrated SLN identification in 

97% using blue dye alone [4]. Interest was growing in the SLNB and in parallel to other work on 

cutaneous melanoma [5], Veronesi and others highlighted the drawback of blind dissection for a blue 

lymph node and demonstrated SLN detection using a radioactive tracer (Technetium-99m labeled 

sulfur colloid) and a hand held gamma probe [6]. Pre-operative lymphoscintigraphy, in addition to 

intra-operative identification using a gamma probe, successfully identified the SLN in 85–96% of 

patients [6,7]. Subsequently, larger studies have shown that a combination of a blue dye with 

radioactive tracer improved detection rates for SLNB to greater than 90% with a false negative rate of 

less than 5% [8]. In view of this very high SLN detection rate, and the poor spatial resolution of 

lymphoscintigraphy, many centers no longer perform pre-operative lymphoscintigraphy.  
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SLNB causes significantly less morbidity than ALND (lower risk of nerve injury, lymphoedema, 

injury to axillary vein and shoulder stiffness) and requires a shorter hospital stay [9,10]. It is 

nevertheless an invasive procedure with complications and is usually performed under general 

anesthesia. It assesses only the SLN (not the entire axillary basin), has a false-negative rate of at least 

5% in experienced hands and does not take into account the presence of skip lesions [11]. The 

Achilles’ heel of SLNB is a macroscopically involved lymph node that would block the transition of 

the tracer or blue dye and result in technical failure of identification of the involved node, because of 

the presence of collateral lymphatic drainage. Furthermore, in excess of 50% of patients who undergo 

a SLNB will have a negative node following excision [12]. With improved imaging techniques, these 

patients could, in future, be spared an unnecessary operation. 

3. Alternatives to SLNB for Staging of the Axilla in Breast Cancer 

Lymph node assessment in breast cancer can be considered in one of two ways. Firstly, pre-

operative (non-invasive) evaluation of the lymphatic basin to identify or exclude metastases, and 

secondly, intraoperative identification of the nodes enabling histological examination to exclude or 

confirm metastatic disease. Various imaging modalities have been used to image the SLN successfully. 

Ultrasound (US) of the axilla is now used routinely in patients with breast cancer. It is cheap, non 

invasive, acceptable to patients and readily available. Sonographic criteria for selecting indeterminate, 

suspicious, or metastatic-appearing lymph nodes are a thickened cortex, lobulation of the cortex, 

reduction or loss of hilar fat when compared with other ipsilateral or contralateral lymph nodes [13]. 

Pre-operative ultrasound-guided fine needle aspiration cytology (FNAC) can identify patients who 

require axillary lymph node dissection (ALND) and who are thus not suitable for SLNB. Identification 

rates for axillary metastases vary and reflect operator variability between units, but in a recent report 

37% of patients with an involved axilla were identified pre-operatively with US and FNAC [14]. 

Axillary ultrasound was more sensitive in patients with symptomatic cancers than those who were 

screen detected. A smaller series mirrors these findings demonstrating 58% sensitivity and 100% 

specificity for pre-operative identification of an involved axilla using US and FNAC [15]. 

Positron emission tomography (PET) integrated with computed tomography (CT) scanning 

(PET/CT) could successfully identify preoperatively axillary involvement in patients with breast 

cancer. Almost 20% of patients following PET scanning can be spared SLNB and undergo ALND as 

the primary axillary surgery with 77.1% sensitivity and 100% specificity [16]. PET/CT is, however 

costly, exposes patients to radiation and is often not readily available in many cancer centers.  

Immunoscintigraphy using a technetium
99m

 labeled murine monoclonal antibody is known to 

identify a range of human adenocarcinomas (Thomsen-Friedenreich (TF) antigen) and can demonstrate 

the presence of axillary metastases in breast cancer following intravenous injection (sensitivity 71%, 

specificity 89%)[17]. This involves the use of a radioactive tracer associated with strict legislation and 

exposes the patient and the staff to small doses of ionizing radiation. It is in part due to these 

drawbacks that alternative techniques for lymph node imaging are being sought.  
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4. Nanoparticles 

Nanoparticles offer the hope of overcoming many of the challenges involved with breast cancer 

staging. These include the use of toxic, non-specific, systemically administered contrast agents, limited 

availability of specialized imaging modalities such as CT/PET, and the operator variability and inter-

observer error in identifying axillary metastases.  

Nanotechnology is a field of science first brought into the public domain by Feynman in his lectures 

in 1959 [18], and he was later awarded the Nobel Prize in Physics in 1965. It holds great promise in 

medicine, physics, chemistry and engineering alike. A nano particle ranges in size from 1 to 100 

nanometers. One nanometer is one billionth of a meter, or in real terms; 100,000 times smaller than a 

human hair. The potential clinical applications of nanoparticles are immense, in particular in their 

innovative approach to cancer diagnosis and therapy [19]. 

The behavior of nanoparticles depends upon their size and charge. Smaller particles, whilst 

undergoing renal filtration and clearance, will also undergo extravasation into the surrounding tissue 

when flowing through 'leaky' vessels. This property is ideal for the accumulation of particles that 

extravasate through leaky neoangiogenic blood vessels, typically found in cancer. This effect is known 

as enhanced permeability and retention effect (EPR) [20]. Larger lymphotropic nanoparticles are 

identified by the host immunological system and undergo phagocytosis with uptake into lymphoid 

cells. Here the nanoparticles with the appropriate surface coating are 'trapped' within the lymph node 

where they can be identified by numerous methods and differentiate normal from abnormal lymph 

node architecture [7]. A nanoparticle platform combined with various different modalities attached to 

its surface including chemotherapeutic drugs and imaging contrast agents have the capability to 

integrate cancer biology, diagnostic imaging and treatment in one. The addition of a specific modality 

attached to a theranostic particle with an appropriate size and charge would allow directed migration of 

the particle through the body with concentration at the site of action with maximum result and minimal 

systemic effect [21]. A great amount of work is being undertaken in this field, although at present 

much remains at the bench side, with translation to the clinic limited by FDA approval, toxicity and 

availability of resources [19,22]. There are a number of current clinical trials to evaluate assessment of 

the axilla in breast cancer and other exciting laboratory work with specific challenges that prevent 

translation from the bench to the bedside. 

4.1. Pre-Operative (Non-Invasive) Staging of the Axillary Sentinel Lymph Node Using Nanoparticles 

Super-paramagnetic nanoparticles (SPIOs) have been the focus of much attention for imaging 

lymph nodes. SPIOs have intrinsic paramagnetic properties only when influenced by an external 

magnetic field, avoiding undesirable magnetic agglomeration. Following intravenous administration, 

SPIOs are transported to lymphatic tissue where they have a negative (darkening) effect on MRI with 

T2 and T2*-weighted imaging protocols. Non-homogenous uptake of contrast in the SLN may help 

identify a metastatic node [23,24] 

Ultra small superparamagnetic iron oxide nanoparticles (USPIOs, <50 nm) have been used in 

humans as an MRI contrast agent, injected intravenously (IV), to assess the axilla. Using a 1.5 T MRI 

scanner, involved axillary lymph nodes can be identified 24 hours post-injection, in breast cancer 

patients with a sensitivity of 82% and 100% specificity [25]. Koh characterized three patterns of 
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lymph nodes on MRI following administration of USPIOs [26]. These are demonstrated in Table 1. 

One group performed axillary staging with MRI after IV USPIO injection in addition to gadolinium 

and demonstrated superior results to USPIO injection alone, especially on a T1 gradient echo with fat 

saturation [27]. When USPIO/ gadolinium enhanced MRI was combined with 18F-fluorodeoxyglucose 

positron emission tomography (FDG-PET) there was 100% sensitivity and specificity (n = 10) for 

identifying a metastatic axillary lymph node. These results are very promising but the number of cases 

is far too small to change current practice. 

Table 1. Grading of node appearance on MRI following USPIO administration [26]. 

Group Description 

1 Normal morphology with uniform or central signal drop 

(categorized as normal) 

2 Normal morphology without or with partial signal drop 

(categorized as partial or total invasion) 

3 Focal or global volume increase without or with partial 

signal drop (characterized as partial or total invasion 

4.2. Intraoperative Identification of the Axillary SLN 

Using an SPIO (Endorem, Guerbet, Paris) injected directly into the breast of women with breast 

cancer before surgery we have demonstrated the position and morphological appearance of the SLN 

using MRI scanning (Figure 1) in addition to subsequent intraoperative SLN identification using a 

hand-held magnetometer (SentiMag, Endomagnetics, UK). Successful identification of the SLN using 

this technique compared to blue dye and technetium
99

 was successful in 100% of patients in an initial 

pilot study [28]. Using SPIO, the SLN is identified with visual inspection of the node (black staining) 

in addition to localization with a hand-held magnetometer. This technique is a viable, reproducible, 

non-invasive and non-radioactive method of SLN assessment with successful intraoperative identification.  

Figure 1. Left panel: right axilla pre-Endorem injection on MRI scans; right panel: SLN 

easily identified 120 minutes post-Endorem injection intradermally. 
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Gold (Au) nanocages (150 nm) have successfully been demonstrated in a rat model, for localization 

of the SLN following intradermal injection. Identification of the SLN was successful using a photo-

acoustic ultrasonic transducer and a 10 Hz pulse-repetition-rate laser system over increasing tissue 

depths up 33 mm below the skin surface, depths akin to the average depth of the axilla SLN in humans 

(12 mm ± 5 mm) [29]. There was also dark staining of the SLN, from substrate accumulation in the 

subcapsular sinus aiding visual identification. At 140 minutes post-contrast injection, peak 

accumulation of Au-nanocages were seen in the lymph node at concentrations in excess of triple that 

injected. No comment was made as to the distribution of the nanocages throughout the body and/or its 

toxicity. The study is limited to animal models until FDA approval for Au nanocages is granted. 

Although gold is currently licensed for use in human therapy [30], however, toxicity of injection site 

and lymph node accumulations of nanocages, may limit clinical application.  

Surguladze et al. presented ‘UNIMAG’, an iron-oxide nanoparticle, which when injected 

peritumorally was transported to the SLN and taken up by macrophages resulting in black staining of 

lymph nodes [31]. They hypothesized future applications of imaging pre-and intraoperatively to more 

accurately identify the SLN. No comment was made as to the primary tumor in question or the number 

of cases studied, however, this principle would easily translate to SLN identification in breast cancer. 

Micro bubbles—not strictly a nanoparticle being >100 nm in size (200–500 nm)—but still 

measurable using nanometers, have been successfully demonstrated to identify the SLN in women 

with breast cancer. The method of microbubble injection subcutaneously into the breast enhances the 

SLN on US imaging. This does not aim to differentiate involved from uninvolved SLNs based on 

morphology but aims to localize the SLN. The drawback is a very short contrast enhancement lasting 

several minutes. Sever et al. placed a guide wire in the SLN pre-operatively and the node excised 

intraoperatively. The microbubble enhancement technique was successful in identifying the sentinel 

node(s) in 89% of patients, and five patients who had an involved sentinel node, ultrasound 

successfully detected all cases (100%) [32]. Another clinical application could be pre-operative needle 

core-biopsy (NCB) of the SLN in clinic under local anesthetic. Clearly this would be limited by the 

drawback of NCB, since a biopsy may not be representative of the entire node. 

In a mouse model, fluorescent silica nanoparticles demonstrated axillary lymph nodes with some 

success. Fluorescence particles themselves pass too readily through the SLN, but embedding them in a 

silica nanoparticle matrix results in entrapment within the node. Detection in vivo using a fluorescence 

imaging system five minutes post intradermal injection was only possible following skin excision 

overlying the axilla. The biodistribution of these nanoparticles showed preferential uptake into the 

SLN over other organs and previous work has showed the nanoparticle in mice appears to be non 

toxic, however, a lack of transcutaneous visualization at this time limits potential clinical use [33,34] 

Quantum dots (QDs) are fluorescent inorganic nanometer sized crystals. A semi-conductor core of a 

heavy metal is encapsulated by an organic ‘shell’ and this is coated with polymeric or lipid based 

layers. The later is to minimize toxic effects following oxidization of the core metals. In mouse 

models, intradermal injection with QDs identifies the axillary SLN in under three minutes [35] and 

remains within the SLN for a period of over 24 hours before migrating further to higher echelon nodes 

in the lymphatic basis. Toxicity and biodistribution studies confirm QDs are not renally cleared and 

concentrate predominantly at the injection site and within the SLN. It was initially thought that 

following dorsal flank injection, QDs, in time, may accumulate in the liver and spleen among other 
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organs [36]. However, when injected into the mouse paw, more closely mimicking the anatomy for 

breast sentinel node biopsy, they do not appear to distribute to other organs within the body [37]. Akin 

to silica nanoparticles, fluorescence, however, is only appreciated in the SLN following removal of 

axillary skin. Using near infra red (NIR) emitting QDs that more deeply penetrate tissue may 

overcome this hurdle, but the greatest limiting factor to the otherwise ideal nanoparticle translating 

into the clinical setting, is eliminating the toxicity from the heavy metal whilst maintaining particle 

stability.  

Immunoglobulin (Ig)-conjugated NIR optical probes behave in a very similar way to QDs in their 

pharmacokinetics and ability to identify the axillary SLN. In a mouse model following intra-dermal 

injection into the breast pad, fluorescence was seen on the node surface in just one minute and is 

retained in the axilla for 30 minutes allowing sufficient time for SLN excision. Since these probes are 

derived from immunoglobulins, they are recognized by the host immune system and concentrate 

preferentially in the medulla of the node and are more likely to be retained for a longer period, whereas 

QDs enhance both the cortex and the medulla of the node equally [38]. Toxicity studies are yet to be 

undertaken before clinical studies can begin.  

Dendrimers are small nanoparticles (less than 15 nm in size) composed of highly branched 

synthetic polymers, which are gaining increasing popularity. Dendrimers have ‘space’ within the core 

which can harbor smaller particles (e.g., contrast agent particles), are non-immunogenic, and have a 

prolonged circulation half-life [39]. Dendrimers have been utilized to bind MRI contrast agents 

(Gadolinium) in addition to an NIR fluorophore, enabling pre-operative 3D identification of the 

axillary lymph nodes in mice using MRI and intra-operative visualization of the SLN with an optical 

imaging unit. Intraoperative visualization of the fluorophore can penetrate skin up to a depth of 2 cm, 

making it suitable for clinical use. This single injection-dual purpose nanoparticle remains identifiable 

for both imaging modalities in the SLN for at least two hours post injection [40]. This does not 

characterize the lymph node, but more reliably identifies its location pre and intraoperatively for 

subsequent excision and histological assessment. Prior to clinical translation, toxicity testing is 

necessary, but this is not thought to pose a big problem due to minimal systemic absorption. 

4.3. In vivo Treatment of the Axillary SLN 

One novel approach to the SLN in breast cancer is to treat the SLN rather than excise it. In a mouse 

model, a metastatic SLN has been replicated by injecting breast cancer cells labeled with gold carbon 

nanotubules (GNT) and fluorescence into in a SLN to replicate a metastatic SLN. This was targeted 

with a low laser pulse energy, and the GNT-containing breast cancer cells within the SLN deteriorated 

as demonstrated by loss of fluorescence and transmission images [41]. This would perhaps have 

clinical application to augment a process of pre-operative assessment of the axillary lymphatics by 

imaging whereby the SLN deemed ‘normal’ could be ‘treated’, thus eliminating the presence of any 

micrometastases or isolated tumor cells that may otherwise remain. 

5. Challenges in the Clinical Translation of Novel Nanoparticles 

A large amount of time, effort and resources goes into any research project, but success at the bench 

may not be so readily seen in clinical practice as the process of translation is challenging. Developing 
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the research protocol is limited by many factors—all which must be overcome before work can begin. 

These include availability of funding, personnel, health and safety, ethics approval and most important 

of all, regulatory approval. Since each aspect requires clearance, often independent to the others, there 

are many barriers that can delay the process. In addition, changes to one aspect to overcome a problem 

may often have an impact on another, and the whole process must begin again. 

Once the research element is complete and the evidence is available to suggest a change in practice 

or a new technique, further hurdles remain. Changes to practice are slow and often only partially 

adopted, if adopted at all into routine clinical care [42], and a specific framework should be in place to 

ease implementation [43]. There is also the consideration for cost analysis and benefit ratio. On initial 

impression, it may seem that a single MRI scan with contrast agent may be cheaper than the cost of an 

operation and subsequent hospital stay. However, with potential increasing availability, popularity and 

success of imaging modalities their utilization may be more widespread, in turn increasing 

expenditure. A clear benefit both from a cost and a patient perspective must be identified and 

advertised as part of the implementation process. For novel device and nanoparticle research, there is a 

need to ensure clinical involvement at an early stage in order to expedite the translation of promising 

new clinical tools from the bench to the bedside. 

6. Conclusions 

Nanotechnology has been described as the ‘small technology with a big impact’. As our 

understanding of cellular processes and individual cancer cell fingerprints increases, the scope for 

more targeted tissue specific nanoparticles is endless. Most nanoparticles applied to medicine are 

biocompatible, with the exception of QDs, and are metabolized via the normal biochemical pathways. 

In most cases, the products of their metabolism are integrated into normal mineral pools within the 

body for reuse, storage or excretion. 

Surgery remains at present the most important modality for axillary node staging in breast cancer to 

accurately identify those patents that will benefit from adjuvant chemotherapy for the treatment of 

metastatic disease. In the future, nanotechnology may help to improve patient selection for surgery and 

in time may indeed identify patients pre-operatively whom do not have axillary disease and spare them 

surgery to the axilla altogether. 

Nanotechnology has started to create multifunctional particles blending diagnosis and treatment 

together, with the promise of nanomedicine paving the way for better cancer detection, management 

and treatment. Further research is needed to select the most promising clinical application and expedite 

translation from the bench to the bedside. 
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