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Abstract: Pancreatic cancer is a disease with high resistance to most common therapies 

and therefore has a poor prognosis, which is partly due to a lack of reaction to apoptotic 

stimuli. Signal transduction of such stimuli includes a death receptor-mediated extrinsic 

pathway as well as an intrinsic pathway linked to the mitochondria. Defects in apoptotic 

pathways and the deregulation of apoptotic proteins, such as Survivin, Bcl-2, Bcl-xL and 

Mcl-1, play decisive roles in the development of pancreatic cancer. Investigation of the 

molecular mechanism allowing tumors to resist apoptotic cell death would lead to an 

improved understanding of the physiology and the development of new molecular 

strategies in pancreatic cancer. 
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1. Introduction 

Pancreatic cancer is one of the most malignant and aggressive types of cancer in humans and carries 

a very poor prognosis. With 40,000 new cases diagnosed in the United States each year, pancreatic 

cancer is the fourth and fifth leading cause of cancer-related death in the Western world for males and 

females, respectively [1]. Approximately 95% of exocrine pancreatic cancer cases are ductal 
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adenocarcinoma (PDAC) [2]. In 65% of these cases, the tumor is located in the head of the pancreas; 

in 30%, in the corpus; and in 5%, in the tail of the organ [3]. The delayed appearance of symptoms 

causes a late diagnosis; as a result, roughly 85% of patients show an organ overlapping growth of the 

tumor when the disease is first discovered, and only the remaining 15% of patients have an opportunity 

for curative surgical treatment. Despite improvements made in surgical techniques and pre- and 

postoperative care, less progress has been seen in improving the survival of patients with this type of 

cancer [3]. The five-year survival rate after surgical resection is about 20% and is about 5% for all 

patients [1]. Furthermore, uncontrolled proliferation, a high metastatic potential and resistance to most 

adjuvant therapies also contribute to the very poor prognosis of this disease. The response to oncology 

therapy options such as chemotherapy, radiotherapy and immunotherapy is not satisfying. Tumor 

development and progress of PDACs as well as resistance to most oncology therapies involve the 

absence of a reaction to apoptotic stimuli [4].  

Resistance to apoptosis and the ability to evade this process are two of the hallmarks of human 

cancer [5]. This review will discuss the facts about apoptotic pathways and the deregulation of 

apoptotic proteins in pancreatic cancer to demonstrate the correlation between disease occurrence and 

defects in apoptotic mechanisms. 

2. Apoptosis—A General Overview 

In 1842, Carl Vogt described the concept of natural cell death for the first time [6]. Since 1972, 

Kerr, Wyllie and Curry have been linked to the word apoptosis and the development, progression and 

treatment of cancer. They published a paper in which they characterized and defined this form of cell 

death and gave birth to the term apoptosis [7,8]. The word apoptosis is of Greek origin and refers to 

the fall of leaves in autumn.  

Apoptosis is an intrinsic cell suicide program. As a central regulation mechanism for tissue homeostasis, 

it is involved in the regulation of many physiological and pathophysiological processes such as the 

differentiation of the embryonic body figure, development of the nervous system, formation of the 

immune system and the homeostasis of the number of cells in proliferating tissue [9,10].  

In contrast to necrosis, apoptosis takes place without any inflammatory reaction and is marked by 

cellular shrinking, condensation of the chromatin and ruffling of the plasma membrane with loss of 

contact to other cells of the cell assembly [11,12]. It is described as a breaking-up of the cell into 

apoptotic bodies. These bodies, which consist of cell organelles and nuclear material, are surrounded 

by an intact plasma membrane. Macrophages recognize the apoptotic cell fragments and abolish them 

by phagocytosis [13]. 

Different entry points to apoptosis have been described, such as the death receptor-mediated or 

extrinsic pathway and the mitochondrial intrinsic pathway [12]. Another entry point for intrinsic 

apoptosis has been identified at the endoplasmic reticulum (ER) (Figure 1) [15,16]. Cell irritation, such 

as variation in calcium homeostasis or a collection of wrongly folded proteins, causes stress that 

initiates apoptosis by activation of the unfolded protein response or cleavage of the cargo receptor 

protein BAP31 [15,17,18]. This mechanism causes the transfer of calcium from the endoplasmic 

reticulum into the mitochondria and the initiation of cytochrome c release [15]. All pathways converge 
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in the activation of the executive cell death enzymes, the effector caspases 3, 6 and 7. These enzymes 

conclude terminal apoptosis by cleaving the nuclear lamina, DNase inhibitors and cytoskeletal proteins. 

These complex pathways are controlled and affected by an array of different pro- and anti-apoptotic 

factors, which are important in ensuring tissue balance [12]. Altered expression levels and mutations 

that influence the activation and function of these pro- and anti-apoptotic genes influence cancer cell 

sensitivity to chemotherapy, radiotherapy, tumor development and progression [9]. 

Figure 1. Different entry points to apoptosis. The extrinsic or death receptor pathway is 

triggered by the interaction of the receptors Fas, TNF and TRAIL and their natural ligands. 

The intrinsic or mitochondrial pathway is activated by factors such as DNA damage, 

cytotoxic stimuli or cell stress. Another special entry point to intrinsic apoptosis begins in 

the endoplasmic reticulum, where internal variability within the cell, e.g., variation  

in calcium homeostasis or wrongly folded proteins, leads to the initiation of 

apoptosis [14,15].  

 

3. The Extrinsic Pathway 

Apoptosis can be initiated by extrinsic but endogenous ―death signals‖. The receptors TNF (tumor 

necrosis factor), Fas (Apo-1, CD95) and TRAILR (TNF-related apoptosis-inducing ligand, Apo-2) are 

members of the TNF receptor superfamily and share a common internal death domain. Activation 

occurs by their natural ligands TNFα, FasL (Fas-ligand) and TRAIL [20]. The interaction between 

receptor and ligand causes trimerization of the receptor followed by the activation and recruitment of 
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FADD (Fas-associated death domain protein) and procaspases 8 and 10. This activation subsequently 

initiates the formation of the death-inducing signaling complex (DISC) (Figure 2) [21]. The death 

domain that forms the DISC attaches to procaspase 8, which has low proteolytic activity. Through this 

connection to DISC, the local concentration of procaspase 8 increases, leading to an autoproteolytic 

cleavage and the release of active caspase 8. By cleavage next to their aspartate residues, the caspases 

activate each other, leading to a caspase cascade. Finally, the effector caspases 3, 6 and 7 conclude 

terminal apoptosis by cleaving the nuclear lamina, DNase inhibitors or cytoskeletal proteins [9,22,23]. 

Figure 2. A map of the molecular mechanisms of apoptosis [19]. Apoptosis pathways can 

be initiated by different stimuli. The left side shows death receptor ligation at the plasma 

membrane (A), and the right side shows activation at the mitochondria (B). Stimulation of 

the death receptor results in receptor aggregation and recruitment of the adaptor molecule 

FADD and caspase 8. Upon recruitment, caspase 8 becomes activated and initiates 

apoptosis by the direct cleavage of downstream effector caspases. The intrinsic pathway 

can be initiated in mitochondria by stress stimuli and is regulated by the balance of the 

action of pro-apoptotic and anti-apoptotic Bcl-2 protein family members. (C) Inhibitor of 

apoptosis proteins (IAPs) and other signal transduction molecules are able to diminish the 

effect of caspase 8 activation.  

 

4. The Death Receptor 

The death receptor Fas is part of one of the main apoptotic cell death signaling pathways (Figure 2) [23]. 

Altered expression levels of Fas or FasL have been found in many human cancers. Reports concerning 

Fas receptor expression in pancreatic cancer are conflicting. It has been demonstrated that Fas mRNA 
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levels are elevated in pancreatic carcinomas [23]. However, native pancreatic tumor cells show very 

little Fas receptor expression, though they express high levels of FasL and its antagonistic decoy 

receptor DcR3. Decoy receptors can also bind these death ligands, but because of their missing death 

domain, they do not transduce the apoptotic signal, thereby preventing this ligand from associating with 

the conventional signal receptor. Altogether, these data indicate that tumor cells, especially those from 

pancreatic carcinoma, can evade Fas-mediated apoptosis by downregulation of the Fas receptor [23,24]. 

This resistance is also closely linked to the expression of FAP-1 (Fas associated phosphatase-1) and 

several other intracellular proteins such as Bcl-2, Bcl-xL and FLIP [25,26].  

The protein tyrosine phosphatase FAP-1 appears to be overexpressed in pancreatic cancer cells and 

protects these cells from Fas-mediated apoptosis by inhibiting the activation of caspase 8  

(Figure 2) [26,27]. FAP-1 can interfere with the translocation of Fas to the cell surface. This 

interference causes a low receptor density and an interruption of receptor trimerization, which would 

be essential for DISC formation. In addition, FAP-1 may inhibit caspase 8 in a direct manner [20,26].  

Another strong inhibitor of caspase 8 activation is FLIP (Figure 2). FADD-like ICE inhibitor 

proteins (FLIPs) are structural homologues of caspase 8 and compete with procaspase 8 for binding to 

FADD at the DISC. The proteins of this family are highly expressed in pancreatic carcinoma cells, 

resulting in a suppressed signal transduction [28-30]. In addition to high expression of FLIP, a low 

quantity of FADD was shown to be a factor important for resistance against FasL- and TRAIL-induced 

apoptosis in pancreatic carcinoma [20,24], which might cause the progression of malignant  

pancreatic carcinoma. 

A second death receptor system recognizes the tumor necrosis factor α (TNFα) (Figure 2), an 

inflammatory cytokine with a large variety of biological functions such as regulation of cell death and 

survival, differentiation and inflammation. There are two different kinds of TNF receptors: TNF 

receptor 1 (TNFR1) is responsible for signal transduction, while TNF receptor 2 (TNFR2) is a decoy 

receptor [31]. TNFR1 and TNFR2 are not overexpressed in pancreatic cancer; therefore, no 

participation in the mechanism of apoptosis resistance is anticipated [32,33].  

A third extrinsic stimulus is provided by TRAIL (Figure 2). Identified in 1995, TRAIL has two 

death receptors, TRAIL-R1/DR4 and TRAIL-R2/DR5, and three antagonistic decoy receptors, 

TRAIL-R3/DcR1, TRAIL-R4/DcR2 and Osteoprotegrin (OPG) [34]. TRAIL is normally expressed by 

natural killer cells in the immune system to combat tumorigenesis. In pancreatic cancer cells, TRAIL 

receptors as well as the decoy receptors TRAIL-R4 and OPG are highly expressed [35], and it appears 

that the TRAIL system is functional in pancreatic cancer but is blocked at apoptotic pathways 

downstream [36]. 

Table 1. Compendium of the death receptors with their adequate ligands and decoy 

receptors. The terms in parentheses are the genes’ aliases. 

Ligand Death receptor Decoy receptor 

FASLG (TNFSF6) FAS (TNFRSF6, Apo1) TNFRSF6b (DcR3) 

TNF (TNF-α) TNFRSF1A (TNFR1) TNFRSF1B (TNFR2) 

TNFSF10  

(TRAIL, Apo-2L) 

TNFRSF10A (TRAILR1, DR4, Apo2) TNFRSF10C (TRAILR3, DcR1) 

TNFRSF10B (TRAILR2, DR5) TNFRSF10D (TRAILR4, DcR2) 

TNFRSF11B (OPG) 
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Two different cell types have been identified for the death receptor signaling pathway (Figure 3).  

In type I cells, the death receptor complex, together with the adaptor molecule FADD, recruits 

procaspase 8, which is then cleaved to the active caspase 8, thereby activating the effector 

caspases [37]. This action implies that, in type I cells, the activated initiator caspases are sufficient to 

induce executioner caspases directly. 

Pancreatic cancer cells are type II cells [27,37]. These cells have reduced receptor complex 

formation; thus, less procaspase 8 can be activated (Figure 3). Signal amplification is required for 

apoptosis induction. In these cells, caspase 8 cleaves BID (a Bcl-2 family member), which translocates 

to the mitochondrial membrane and induces the release of apoptotic factors [27,37]. The signal 

requires the enhancing effect of the mitochondria to induce apoptosis, a mechanism that is called the 

mitochondrial amplification loop [20,22].  

Figure 3. Apoptosis mediated by death receptors in type I and type II cells. In type I cells, 

the quantity of initiator caspases is adequate to induce apoptosis directly, whereas in  

type II cells, the enhancing effect of mitochondria is necessary.  

 

5. The Intrinsic Pathway 

In the intrinsic or mitochondrial pathway of apoptosis, caspase activation is closely connected to the 

permeabilization of the outer mitochondrial membrane. This is mediated by pro-apoptotic members of 

the Bcl-2 family, mitochondrial lipids, proteins that control bioenergetic flux and components of the 

permeability transition pore [38]. Numerous cytotoxic stimuli and pro-apoptotic signal-transducing 

molecules affect the permeability of the outer mitochondrial membrane (Figure 1). Trigger points or 

intracellular signals for the activation of the mitochondrial pathway include DNA damage, oxidative 

and cytotoxic stresses and ER stress [39]. By disrupting the outer membrane, a collection of proteins 
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normally found in the space between the inner and outer mitochondrial membranes are released; these 

proteins include cytochrome c, apoptosis inducing factor (AIF), SMAC/DIABLO, Omi/HtrA2 and 

endonuclease G [40]. In the cytosol, these apoptotic proteins initiate cell death by promoting caspase 

activation [11]. The release of cytochrome c triggers caspase 3 activation by formation of the 

apoptosome complex, which contains cytochrome c/Apaf-1/caspase 9 (Figure 2) [41,42]. The 

construction of the apoptosome and the release of cytochrome c seem to be unperturbed in pancreatic 

cancer cell lines [43]. SMAC/DIABLO and Omi/HtrA2, which show normal expression levels in 

pancreatic carcinoma cells [44], enable caspase activation by neutralizing important endogenous 

inhibitor of apoptosis proteins (IAPs) [45-47].  

Most of the cell death in human cells is initiated by the intrinsic pathway and results from an 

unregulated increase in mitochondrial membrane permeability [48]. Pathologic alterations of the 

intrinsic pathway in pancreatic cancer include intramitochondrial signal transduction, which is 

regulated by the Bcl-2 protein family [49,50]. It is the comparative balance of these pro- or anti-

apoptotic members of this family that determines if activation of the intrinsic pathway occurs.  

Links between the receptor (extrinsic) and the mitochondrial (intrinsic) pathway exist at different 

levels of the machinery. BID (BH3-interacting domain death agonist) is a pro-apoptotic member of the 

Bcl-2 protein family with a BH3 domain. Once cleaved by caspase 8, it translocates as ―truncated 

BID‖ (tBID) to the mitochondrion where, along with other pro-apoptotic Bcl-2 proteins, it initiates the 

intrinsic pathway (Figure 2) [51,52]. Type II cells, which have low caspase 8 activation as seen in 

pancreatic carcinoma cells [37], can achieve this mitochondrial amplification loop for an efficient 

transduction of the apoptotic signal [21]. 

In summary, the death program can be initiated by different intracellular or extracellular stimuli that 

activate the common cell death machinery downstream. Both pathways result in activation of the 

effector caspases, which cleave proteins that are very important for the rigidity and function of the cells. 

6. Regulation of Apoptosis 

The Bcl-2 gene was discovered in 1986 by Yoshide Tsujimoto at the junction of the hallmark 

t(14;18) chromosome translocation characteristic of human follicular lymphoma [53]. It was named 

Bcl-2 for B-cell lymphoma 2 [54].The expanding number of proteins related to Bcl-2 by sequence 

homology and participation in the control of the apoptotic machinery has led to the definition of a  

Bcl-2 family of proteins [55]. 

The Bcl-2 family has two pro-apoptotic subgroups, the BAX-like subgroup (BAX, BAK and BOK) 

and the BH3-only subgroup (BAD, BIK, BID, BIM, BMF, HRK, NOXA and PUMA). The only  

anti-apoptotic group consists of Bcl-2, Bcl-xL and Mcl-1 (Figure 2) [22,38]. Bcl-2 family proteins 

interact with other molecules through an α-helical domain termed the BH-3 domain [48]. The  

BH3-only proteins act as sensors of cellular stress, directly antagonizing anti-apoptotic Bcl-2 members 

and activating BAX-like proteins, ultimately leading to permeabilization of the outer mitochondrial 

membrane [56,57].  

Bcl-2, an anti-apoptotic family member is located on the cytoplasmic side of the mitochondrial 

outer membrane, at the ER-membrane or on the nuclear cover. It registers damage to these 

compartments and prevents the release of cytochrome c from mitochondria in a number of different 
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tissues [58]. In a few human tumors, high expression of Bcl-2 has been found, but the expression in 

pancreatic cancer cells is normal or even decreased [57,59].  

Bcl-x in human cells is present in two distinct isoforms. Bcl-xL is the longer form, acting in an anti-

apoptotic manner. Bcl-xS, the shorter form, performs as an apoptosis promoter, in contrast to Bcl-xL. It 

has been shown that Bcl-xL prevents the release of cytochrome c from the mitochondria [48]. In type II 

cells such as pancreatic cancer cells, the overexpressed Bcl-xL plays the most important role in 

protecting the cell from Fas- and TRAIL-mediated apoptosis [35]. 

Another anti-apoptotic Bcl-2 family member that is highly overexpressed in pancreatic cancer cells 

is Mcl-1. High concentrations of this protein protect the cancer cells from hypoxia and oxidative stress 

during tumorigenesis [20]. Fritsch et al. showed rapid and selective downregulation of Mcl-1 that 

preceded the activation of BAX, BAK and caspases [60]. 

Of the pro-apoptotic members of the Bcl-2 family, Bax (Bcl-2 associated X protein) resides in the 

cytosol and translocates to mitochondria upon induction of apoptosis [61]. Overexpression of Bax does 

not influence the apoptosis rate or expression of Bcl-2 and Bcl-xL in human pancreatic cancer cells 

transduced with a retroviral expression vector [62]. In pancreatic cancer, Bak (Bcl-2 antagonist/killer 

protein) expression and apoptosis occur in regions of chronic inflammation surrounding the cancer 

cells but not in the tumor cells themselves, which may simplify accelerated growth and spread [63]. 

Bad, a typical pro-apoptotic member of the Bcl-2 family, binds with its BH3 domain to both Bcl-2 and 

Bcl-xL and mediates the pro-apoptotic function of Bcl-xL [64]. 

In summary, intramitochondrial signal transduction in pancreatic cancer cells is unbalanced towards 

the anti-apoptotic side [50,65,66]. The deregulation of both the pro- and anti-apoptotic Bcl-2 proteins 

plays a crucial role both in the development, growth and expansion of pancreatic cancer and in the 

resistance to current therapy options [37,55]. 

7. Main Mediators of Apoptosis 

Caspases (Cysteine-dependent aspartate specific proteases) are proteases that contain a cysteine in 

their active center and are able to cleave proteins, particularly behind an aspartate residue [46]. Based 

on their pro-apoptotic functions, the caspases have been divided into two groups. The initiator  

caspases 2, 8, 9 and 10 are at the beginning of the signal cascade and are involved in the initiation of 

apoptosis. The effector or downstream caspases 3, 6 and 7 cleave their substrates; this action leads to 

cell death because the caspases are able to degrade multiple substrates directly, including structural and 

regulatory proteins in the cell nucleus, the cytoplasm and the cytoskeleton (Figure 2) [67]. 

In healthy cells, all of the caspases are constantly expressed in their inactive form as proenzymes in 

the cytoplasmic milieu. They are synthesized as a single chain of inactive zymogens composed of four 

domains: an N-terminal prodomain of variable length, a large subunit with a molecular weight of about 

20 kDa, a small subunit and a linker region connecting these catalytic subunits [67,68]. Activation 

during progression of apoptosis happens by a proteolytic processing. Caspases initiate and execute cell 

death by inactivating anti-apoptotic proteins, shutting down DNA replication and repair and disrupting 

the cytoskeleton and nuclear lamina [37].  

Caspase 8 is essential for the extrinsic cell death pathway, which is initiated by TNF family 

members. Death receptors recruit the DISC upon binding specific TNF family ligands and 
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trimerization. Several reports show that caspase 8 is mutated in diverse types of cancer, especially 

gastric cancer [69-71]. 

Caspase 9, the apical initiator caspase within the apoptosome-dependent cascade, is an almost 

ubiquitous protease. The activated apoptosome binds caspase 9 and activates the enzyme and caspase 3 

downstream. It is expressed constitutively in a variety of fetal and adult normal or cancerous  

tissues [41,72,73]. 

Caspase 3 is an effector caspase and can be activated by either the extrinsic or the intrinsic cell 

death pathway. It plays a central role in the execution phase of cell apoptosis. Several reports have 

focused on mutations of caspase 3 in a large group of different cancer types [74,75]. 

When the literature is analyzed for a correlation between these three main caspases in cancer 

development in general and pancreatic cancer in particular, it is clear that caspase expression is 

relatively normal in pancreatic cancer tissue. There is no evidence that a specific mutation of  

caspase 3, 8 or 9 leads to a higher incidence of pancreatic carcinoma [37,68]. 

Many different inhibitors and activators regulate caspase activation in a very strict manner. The 

oligomerization model explains that caspases exist as inactive monomers. The effector caspases bring 

them together, allowing for their intermolecular autoproteolytic activation. For example, to become 

functional, procaspase 8 requires association with its cofactor FADD, and procaspase 9 must interact 

with APAF-1 (Figure 2) [37,76]. 

In contrast to the normal expression of caspases in pancreatic cancer, effectors blocking caspase 

activation or function, such as FLIPs, show elevated expression in pancreatic cancer, leading to 

resistance to death receptor-mediated apoptosis [21,37]. 

8. IAP Family Inhibitors of Apoptosis Proteins 

The family of inhibitor of apoptosis proteins (IAPs) was discovered in 1993 in the baculovirus 

genome [10]. There are eight human IAPs, including XIAP (X-linked inhibitor of apoptosis) and 

Survivin, which are direct inhibitors of caspases 3 and 7 and procaspase 9. Other members of this 

collective are cIAP 1 and 2 (cellular IAP1 and 2), ILP 2, ML-IAP, NAIP and BRUCE [45,77], which 

are involved in the signal transduction of human receptor complexes, for example TNFR2 (TNF 

receptor 2). Their expression is stimulated by growth factors and they are inhibited by mitochondrial 

proteins such as SMAC/DIABLO (second mitochondria-derived activator of caspase/direct IAP 

binding protein with low pI) (Figure 2). These proteins block caspases 3, 7 and 9 and lead to the 

ubiquitylation of caspases 3 and 7, which results in their degradation by the proteasome. IAPs are 

characterized by a 70–80 amino acid BIR domain (baculoviral IAP repeat), a carboxy-terminal zinc 

finger domain and one or more additional functional domains that are necessary for caspase  

interaction [78]. 

Overexpression of XIAP, cIAP1, cIAP2 and Survivin has been demonstrated to suppress apoptosis, 

but the cellular function of the IAP family members is unclear [78]. However, given their role in 

cellular homeostasis, it is not surprising that deregulation of IAP expression or function seems to be 

involved in a large number of cancer species [77]. Indeed, there are data suggesting that altered 

expression of cIAP1, cIAP2, XIAP and Survivin play a role in the pathogenesis of pancreatic  

cancer [37]. 
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XIAP exerts an anti-apoptotic function by binding and inhibiting effector caspases such as  

caspases 3 and 7 and procaspase 9 [79,80]. It has been demonstrated that of all mammalian IAPs, 

XIAP is the only one that is truly a physiological inhibitor of caspases in vivo [81]. XIAP targeting has 

been shown to be required not only for effective induction of apoptosis but also for potent suppression 

of long term survival; this finding has important implications for the development of experimental 

strategies directed toward IAP proteins in human cancer, especially pancreatic cancer [45,57,79]. 

Survivin does not directly bind caspases but inhibits apoptosis by cooperative interactions with 

other partners in vivo. For example, such a partner for an IAP-IAP complex is XIAP [82]. Survivin 

expression is turned off during fetal development and is absent from non-neoplastic adult human 

tissues. With 142 amino acids, Survivin is the smallest mammalian IAP, and its structure contains only 

a single BIR domain and lacks a carboxy-terminal RING finger domain [37,83]. Survivin is expressed 

in the G2/M phase of the cell cycle. Survivin is a conspicuous cancer gene that is overexpressed in 

almost every human tumor, including neuroblastoma and cancers of the lung, colon, breast and 

prostate, whereas it is largely undetectable or expressed at very low levels in normal human  

tissues [82]. It has also been demonstrated that Survivin is frequently expressed in malignant 

pancreatic tumors [37]. Survivin is a potent caspase inhibitor whose overexpression in cancer cells is 

implicated in the resistance to different apoptotic stimuli, including resistance to therapy—especially 

chemotherapy—as well as disseminated disease and an overall inappropriate disease outcome [37,84]. 

Survivin appears to be situated at the junction of cell death and cell division, leading to a checkpoint 

involved in cytokinesis while also suppressing apoptosis [57,85]. 

IAPs are regulated by a protein complex named SMAC/DIABLO [37]. SMAC/DIABLO is 

synthesized as a precursor protein and is imported into the mitochondria by an N-terminal signal 

sequence. The aged form of SMAC/DIABLO is created via the cleavage of this signal [86]. In case of 

cellular stress, SMAC/DIABLO is released into the cytosol from the intermembrane space. The pro-

apoptotic effect is mediated by its interaction with the inhibitors of caspases [87]. Release of 

SMAC/DIABLO from the mitochondria can be avoided by Bcl-2 [88]. Several studies have illustrated 

that overexpression of SMAC/DIABLO sensitizes neoplastic cells to apoptotic death. These findings 

have resulted in the development of small molecules fused to an N-terminal signal sequence; these 

molecules imitate the function of SMAC/DIABLO as therapeutic agents to induce death or to increase 

the apoptotic effects of chemotherapeutic agents [89-91]. For pancreatic carcinoma in particular, 

however, there is no evidence that SMAC/DIABLO plays a decisive role in avoiding apoptosis.  

9. Conclusions 

Apoptosis avoidance is one of the hallmarks of pancreatic cancer that promotes formation, 

progression and resistance to treatment. In this review, we have demonstrated that there are numerous 

molecular defects at multiple levels of the apoptotic pathway that lead to apoptosis resistance; these 

defects include the deregulation of death receptors, negative regulation of post-receptor signaling, the 

anti-apoptotic imbalance of the intramitochondrial Bcl-2 proteins and the upregulation of IAPs such as 

XIAP and Survivin. All of these expression changes, as well as mutations in apoptotic proteins, are 

commonly found in pancreatic cancer cells and lead to tumor development, tumor growth and 
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metastasis. This deregulation of the apoptotic machinery may explain why pancreatic cancers are 

resistant to most adjuvant therapies, including immuno-, chemo- and radiotherapy. 

A few innovative cancer therapy approaches, such as small molecule inhibitors (SMI) of Bcl-2 

family proteins, have been described [92]. Another promising field of research is the design of  

TRAIL-based protocols that exploit the cytotoxicity of specific monoclonal antibodies to 

TRAILR1/R2 [93]. 

Nevertheless, these therapies represent only a fraction of the potential for future treatments. 

Therapies in the future should take advantage of all that is known about apoptosis and its role in cancer 

genesis. There is a need to combine numerous strategies to adapt the sensitivity of pancreatic cancer 

cells to apoptosis without affecting normal cells to enhance the prognosis or even cure patients of this 

aggressive form of cancer. 
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