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Abstract: Similar to genetic alterations, epigenetic aberrations contribute significantly to 

tumor initiation and progression. In many cases, these changes are caused by activation or 

inactivation of the regulators that maintain epigenetic states. Here we review our current 

knowledge on the KDM5/JARID1 family of histone demethylases. This family of enzymes 

contains a JmjC domain and is capable of removing tri- and di- methyl marks from lysine 4 

on histone H3. Among these proteins, RBP2 mediates drug resistance while JARID1B is 

required for melanoma maintenance. Preclinical studies suggest inhibition of these 

enzymes can suppress tumorigenesis and provide strong rationale for development of their 

inhibitors for use in cancer therapy.  
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1. Introduction  

1.1. Epigenetics in Cancer 

Stable inheritance of epigenetic states is essential for the maintenance of tissue and cell type 

specific functions [1]. It is now apparent that epigenetic alterations contribute significantly to tumor 

initiation and progression [1,2]. Epigenetic changes are reversible, raising the possibility that inhibition 
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of specific enzymes that regulate epigenetic marks would have antitumor effects. In fact, two key 

families of epigenetic regulators, histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), 

have been successfully targeted for cancer treatment [2]. For example, an HDAC inhibitor, suberoylanilide 

hydroxamic acid (vorinostat), has been approved by FDA for the treatment of cutaneous T-cell 

lymphoma [3]. Two DNMT inhibitors, 5-azacytidine (azacytidine) and 5-aza-2’-deoxycytidine 

(decitabine), have been approved for the treatment of myelodysplastic syndrome [4,5]. The importance 

of epigenetic regulation in cancer is also underscored by the findings that a number of genes encoding 

critical epigenetic regulators, including MLL1, MEN1, EZH2, SETD2, JARID1C, BAF180 and UTX, 

have been identified as mutated in various human cancers [6-13]. 

1.2. Histone Methylation and Histone Methyltransferases 

In eukaryotes, DNA is packaged in the form of chromatin [14,15]. The basic building block of 

chromatin, the nucleosome, consists of 146 base pairs of DNA wrapped around an octamer of four 

core histones (H2A, H2B, H3 and H4) [16]. Histone tails are subject to a variety of posttranslational 

modifications that affect chromatin structure and therefore influence processes such as gene expression 

and DNA repair. These covalent modifications include acetylation, methylation, phosphorylation, 

ubiquitylation and sumoylation (reviewed in [17]).  

Recent studies have highlighted the importance of histone methylation on specific lysine residues 

with respect to transcription. These specific residues can be mono- (me1), di- (me2), or tri-methylated 

(me3). Whether methylation leads to transcriptional activation or repression depends on the site and 

the degree of methylation. Methylation on H3K9, H3K27, or H4K20 is usually linked to gene 

silencing, while methylation on H3K4, H3K36, and H3K79 is generally associated with active gene 

expression [18]. Among these modifications, methylation of the H3K4 residue is of particular interest 

due to its crucial role in gene activation [19]. Specifically, H3K4me3/2 residues mark the 

transcriptional start sites of actively transcribed genes [20-22], while a high level of H3K4me1 is 

associated with enhancer sequences [23]. The importance of the H3K4 methylation marks in 

development and disease has been discussed in several recent reviews [24-26].  

The effect of histone methylation on chromatin structure is normally mediated through the 

recruitment of methylation specific binding proteins. Four major protein subdomains that are capable 

of binding to methylated lysine have been identified: the chromodomain [27-31], Tudor domain [32-34], 

the WD40 repeat [35], and the PHD domain [36-39]. Many methyltransferases contain one or more of 

these domains and can thus serve as both “readers” and “writers” of the “histone code.” 

Three families of enzymes are capable of methylating histones: the PRMT family, which methylate 

arginine residues, and the SET-domain containing and the non-SET-domain families which both 

methylate lysine residues (reviewed in [18]). These enzymes add methyl marks to lysine and arginine 

residues predominantly on the N-terminal tails of histones although they can also modify some core 

histone residues, such as H3K79.  

1.3. Histone Demethylases 

Histone lysine methylation, like many other histone modifications, is reversible. The first lysine 

demethylase to be discovered was lysine specific demethylase 1 (LSD1/KDM1), which demethylates 
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H3K4 or H3K9 [40,41]. LSD1 removes these marks in a reaction that utilizes flavin as a cofactor, but 

its activity is limited to mono- or di- methylated substrates. Trewick and coworkers predicted the 

existence of a second class of Jumonji C (JmjC) domain containing histone demethylases [42]. This 

domain is present in many proteins that also contain other domains involved in chromatin regulation 

and are known, or suspected, to play roles in gene regulation. Zhang and coworkers independently 

identified this group of histone demethylases. They successfully purified a histone H3K36 demethylase 

from cells using a formaldehyde release assay to track demethylase activity. This enzyme was the first 

identified JmjC domain containing histone demethylase, JHDM1/KDM2A [43].  

Thirty JmjC domain-containing proteins have been identified in mammals [44]. This class of 

proteins can be phylogenetically clustered into seven subfamilies (JHDM1, JHDM2, JHDM3/JMJD2, 

JARID, PHF2/PHF8, UTX/UTY, and JmjC domain only) [44]. Most JmjC domain-containing proteins 

have been shown to possess histone demethylase activity toward specific histone methylation marks 

[25,45-47]. Recently a common nomenclature for histone modifying enzymes was suggested and now 

lysine demethylases are abbreviated as KDMs [45,47,48]. Many studies have suggested that these 

demethylases could serve as oncoproteins or tumor suppressors due to their ability to sculpt the histone 

methylation landscape [49]. 

This review focuses on the KDM5/JARID1 family of demethylases, which contain five conserved 

domains: JmjN, ARID, JmjC, PHD and a C5HC2 zinc finger (Figure 1). The KDM5 family of 

demethylases is represented in many different organisms including yeast and worms. The C. elegans 

KDM5 gene is called rbr-2. Loss of rbr-2 leads to defects in vulva development [50] and decreased or 

increased life span [51,52]. The JmjC domain of these enzymes sets them apart from other 

demethylases in that it allows them to utilize a mechanism capable of removing tri- and di-methyl 

marks from H3K4. Their PHD domains can bind certain methylated residues allowing them to recruit 

other proteins, such as HDACs, to the site of methylated histones. For these reasons they can serve as 

both “readers” and “erasers” of the “histone code” [53].   

Figure 1. Domain structure of JARID1 proteins from Drosophila and humans. 

 



Cancers 2011, 3                    

 

 

1386 

1.4. Histone Methylation in Cancer 

It is increasingly clear that alterations in histone methylation play important roles in cancer [18,49,54]. 

The presence or absence of methyl marks on certain histone residues is very important to gene 

expression and has many implications in cancer progression. Aberrant methylation is thought to 

contribute to excessive proliferation of cells and therefore to tumorigenesis. Esteller and coworkers 

showed that a common hallmark of human cancer is loss of the trimethylation mark on lysine 20 and 

the acetylation mark on lysine 16 of histone H4 [55]. Additionally, the H3K4me0 state in combination 

with H3K27 acetylation has been associated with poor prognosis of breast cancer [56].  

Misregulation of histone lysine methylation can have negative effects on development and has been 

shown to contribute to many cancers [57-60]. Additionally, the role of histone methyltransferases and 

histone demethylases in development has been well noted and may contribute to the establishment of 

cancer stem cells [24,61,62]. Genome-wide analyses of chromatin states of embryonic stem cells and 

progenitor cells suggest that genes important for developmental control are marked by “bivalent 

marks”, which include both the active H3K4me3 and the repressive H3K27me3 marks [21,22,63]. 

Although the existence of these “bivalent marks” is currently debated, they provide a logical model of 

a gene being poised for transcriptional activation or repression during development. Dysregulation of 

these chromatin marks could change the properties of the stem cells and progenitor cells and impair 

their differentiation potential, which could result in cancer initiation and progression. Thus, the 

enzymes that regulate these modifications likely play important roles in cancer.  

There are several examples in current literature that are consistent with the idea that enzymes 

capable of maintaining histone methylation are important in cancer. For example, MLL1, the catalytic 

subunit of an H3K4 methyltransferase complex, is frequently translocated in leukemia [58,59] and 

another H3K4 methyltransferase subunit MEN1, has been shown to be frequently mutated in endocrine 

tumors [9,60,64]. Additionally, EZH2, the catalytic subunit of an H3K27 methyltransferase polycomb 

repressive complex 2 (PRC2) [57], is overexpressed in advanced prostate cancer [65]. EZH2 activates 

oncogenes Ras and NF-κB and triggers metastasis by epigenetic silencing of the tumor suppressor 

DAB2IP/AIP1 [66-68]. Finally, genomic alterations (amplification or deletion) and/or point mutations 

of several histone methyltransferses and demethylases are increasingly being identified in cancers 

through the use of high-density SNP arrays and deep sequencing technologies [8,10-13,69,70]. For 

example, inactivating mutations of UTX, an H3K27 histone demethylase, were identified in multiple 

cancer types, including multiple myeloma, esophageal squamous cell carcinoma, renal cell carcinoma, 

myeloid leukemia, breast and colorectal cancers, and glioblastoma [8,12]. It has recently been shown 

that methyltransferases and demethylases act in concert to regulate both activating and repressive 

marks on histones in a dynamic process [71]. This review focuses on a class of enzymes capable of 

removing H3K4me3/2 marks and their potential as targets for cancer therapies.  

2. Drosophila KDM5/JARID1/Lid 

The only known JARID1 protein in Drosophila melanogaster is Lid, named for the phenotype seen 

in mutant larvae (Little Imaginal Discs) (Figure 2A) [72]. Lid has recently been classified as an 

H3K4me3/2 demethylase and it shares all the domains of the human JARID1 family (Figure 1) [73-75]. 
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Because Lid is the only JARID1 family protein in Drosophila, it has provided an excellent model for 

studying the role of this class of enzymes in gene expression and tumorigenesis. Studies on Lid have 

shown that its knockdown in fly cells results in an increase in global H3K4me3 levels [73,75]. Like 

RBP2 and JARID1B, Lid has three PHD fingers which conventionally bind methylated lysines (Figure 1). 

Recently Li et al. probed the binding capabilities of Lid PHD domains in detail and discovered that the 

PHD1 domain of Lid binds all methylated forms of H3K9 and unmethylated H3K4 [76]. They also 

discovered that the PHD3 domain binds di and tri-methylated H3K4 and suggested that Lid uses this 

binding to recruit dMyc to regions of active transcription (Figure 2B) [76].  

Figure 2. (A) The demethylase capabilities of Lid can contribute to gene repression by 

removing H3K4me3 marks, which are associated with active genes [73-75]. (B) Binding of 

dMyc to Lid inactivates its demethylase activity but retains H3K4me3 binding ability, 

allowing it to recruit dMyc to actively transcribed genes [76,77]. (C) Lid represses Notch 

target genes by associating with the LAF complex and demethylating H3K4me3 [78,79]. 

  

Myc is a transcription factor that is known to regulate the expression of roughly 15% of genes [77]. 

Activation of the Myc gene by amplification or translocation causes cancer [77]. The Eisenman lab 

performed a genetic screen to identify mutations that compensated for overexpression of dMyc, the 

Drosophila homolog of human Myc. In this screen, they discovered two independent mutations of Lid 

that suppress the rough eye phenotype caused by dMyc overexpression, suggesting that Lid and dMyc 
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interact genetically [74]. In contrast to the notion that an H3K4me3 demethylase represses gene 

expression, Lid was shown to antagonize gene silencing by allowing the expression of the homeotic 

gene Ubx [80]. Lid is also required to maintain H3 acetylation, which is associated with open 

chromatin, through a mechanism that negates the deacetylase activity of Rpd3 [80,81]. Secombe et al. 

found that Lid physically interacts with dMyc, and this interaction abolishes the ability of Lid to 

demethylate H3K4me3 marks but allows Lid to maintain its ability to bind these marks using its PHD3 

domain (Figure 2B) [74]. They also discovered that Lid facilitates dMyc binding to E-boxes, regions 

on DNA commonly bound by transcription factors. These findings suggest that in the presence of 

dMyc, Lid likely acts as a “reader” of H3K4me3 to recruit dMyc to activate gene expression, but not 

as an “eraser” as its demethylation activity is inhibited by dMyc (Figure 2B). 

Recently, several labs have linked Lid with Notch signaling. Notch is a transmembrane protein that, 

upon binding its ligands, is cleaved. Upon cleavage, Notch intracellular domain (ICD) acts as a 

transcription factor activating many different genes (Figure 3A). When overexpressed Notch serves as 

an oncogene; however, it can act as a tumor suppressor in other contexts [82]. Many cancers have 

aberrant Notch signaling cascades and Notch has been linked to some specific cancers such as T-cell 

acute lymphoblastic leukemia (T-ALL) [79]. The Notch system is highly conserved between humans 

and flies [82]. 

NAP1 and ASF1 are Drosophila histone chaperones and are components of the complexes RLAF-N 

and LAF-A respectively. These complexes regulate H3K4me3 and H3 acetylation levels at Notch 

target genes and are required for silencing of Notch genes that are crucial to development in all 

metazoan systems. Moshkin et al. discovered that ASF1 co-purifies with Lid and that Lid can interact 

physically with both ASF1 and NAP1 [78]. They suggest that ASF1 aids in the silencing of Notch 

genes by providing a link between the LAF complex and the Su(H)/H co-repressor complex. In this 

complex, Lid aids in gene repression by demethylating H3K4me3 at Notch genes (Figure 2C). They 

propose a similar mechanism for the involvement of Lid in the RLAF-N complex. A report by Liefke 

et al. has probed the interaction between Lid and Notch even further by establishing that Lid physically 

interacts with Su(H), and with recombinant RBP-J, the mammalian homolog of Su(H) [83]. They show 

that mutation or reduced expression of Lid enhances tumorigenesis and growth related to Notch signaling 

in flies [83]. Due to the high degree of conservation between human and fly signaling pathways, Lid 

provides an excellent model system for elucidation of the role of KDM5 enzymes in cancer. 

3. KDM5A/JARID1A/RBP2 

RBP2, also called KDM5A or JARID1A, was initially isolated as a binding partner of retinoblastoma 

protein (pRB) [84]. The gene coding for pRB, Rb1, is a well documented tumor suppressor gene that is 

frequently inactivated, directly or indirectly, in a wide variety of cancers [85]. pRB not only inhibits 

cell cycle progression by blocking S-phase entry, but also promotes differentiation and senescence. 

The ability of pRB to promote differentiation and senescence tightly correlates with its ability to bind 

to RBP2 and, in many models, this phenomenon can be recapitulated by inhibiting RBP2 with siRNA [86]. 

Consistent with these observations, RBP2 can repress certain genes that are activated by pRB [86]. 

Interestingly, genome-wide location analyses indicated that RBP2 binding sites are also enriched for 
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E2F binding sites, suggesting that the functions of pRB in cell cycle control and differentiation are 

inter-connected [87].  

In 2007, RBP2 was discovered to function as an H3K4me3/2 histone demethylase [50,88]. Our 

report outlining the catalytic activity of RBP2 also noted that deletion of RBP2 causes increased 

H3K4me3 at the SDF1 promoter [88]. Restoration of the methylation state requires that RBP2 have an 

intact JmjC catalytic domain [88]. It has also been determined that, mechanistically, RBP2 promotes 

cell growth and inhibits senescence and differentiation. In a mixed genetic background, RBP2 

knockout mice are viable and grossly normal [88]. Using this knockout mouse model, we showed that 

loss of the RBP2 gene causes decreased apoptosis and increased G1 entry of the cell cycle in 

hematopoietic stem cell and myeloid progenitor cell compartments [88]. Additionally, knockdown of 

RBP2 in SAOS-2 osteosarcoma cells leads to upregulation of cell cycle regulators p21, p27 and p130 [86]. 

Consistent with these results, complete loss of RBP2 leads to increased expression of p27 [88].  

Figure 3. (A) NotchICD activates genes by recruiting RBP-J and a histone 

acetyltransferase (HAT) complex that adds activating marks to histones, therefore allowing 

transcription on Notch target genes. In the absence of NotchICD, RBP2 can bind RBP-J 

and demethylate existing activating marks, leading to repression of Notch target  

genes [83]. (B) RBP2 has been shown to interact with the Sin3/HDAC complexes which 

are crucial targets for anti-cancer therapies [88-90]. 
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Other studies have shown that RBP2 is overexpressed in gastric cancer [91]. RBP2 triggers cellular 

senescence of gastric and cervical cancer cells through binding to the promoters of cyclin-dependent 

kinase inhibitors p16, p21, and p27 and removing tri-methylated H3K4 at these sites [91]. Complete 

abrogation of RBP2 from mouse cells inhibits cell growth, induces senescence and differentiation, and 

causes loss of the “stemness” property of embryonic stem cells in vitro. Moreover, loss of RBP2 

dramatically inhibits tumorigenesis in a mouse cancer model [92]. These findings suggest that RBP2 is 

an ideal target for cancer therapy in multiple cancer types.  

In addition to pRB, RBP2 interacts with many proteins involved in oncogenesis, including p107, 

TBP [93], LMO2 [94], nuclear receptors [95], Myc [74], Sin3/HDACs [88-90], Mad1[96], and RBP-J 

[83]. The fact that RBP2 interacts with nuclear receptors and enhances expression of their target genes 

[86,95] suggests that RBP2 could recruit additional factors important for nuclear receptor-mediated 

transcription, which plays important roles in breast and prostate cancer progression. Of special interest 

is the interaction of RBP2 with Myc, which is often activated in cancers as mentioned above [74]. A 

recent report, however, indicated that RBP2 is recruited by Mad1 to a Myc target gene hTERT. By 

removing the activating histone marks at the hTERT promoter, RBP2 represses hTERT expression 

when associated with Mad1 [96]. The Lid/Notch relationship mentioned above is conserved in humans 

with relation to RBP2. Liefke et al. report that RBP2 is an essential component of the Notch/RBP-J 

repressor complex and that it is necessary for removal of H3K4me3 at RBP-J sites [83]. This group 

also showed that RBP2 binds RBP-J in place of NotchICD when Notch cleavage is inhibited (Figure 

3A) [83]. This leads to a decrease in H3K4me3 and a subsequent suppression of Notch target genes 

(Figure 3A). Taken together, RBP2 can suppress Notch signaling through histone demethylation and 

could be crucial to the suppression of Notch-induced tumorigenesis.  

In acute myeloid leukemia patients RBP2 has been shown to form a fusion protein with a nuclear 

pore complex protein, NUP98 [97]. This fusion retains the third PHD finger of RBP2, which binds 

H3K4me3 marks on histones. Overexpression of this fusion protein alone is sufficient to arrest 

hematopoietic differentiation and induce acute myeloid leukemia in murine models [98].  

RBP2-NUP98 can bind to and prevent the removal of H3K4me3 at promoters of many lineage-specific 

transcription factors and thus increase gene expression. Mechanistically, it serves to prevent the 

demethylase activity of KDM5s and the methyltransferase activity of the PRC2 complex and allows 

for methylation patterns distinct to leukemic stem cells [98].  

A recent study suggested that increased expression of RBP2 promoted a stem cell like phenotype 

and enhanced resistance to anti-cancer agents by changing chromatin structure [99]. The Settleman lab 

generated erlotinib resistant versions of PC9 lung cancer cells, which are normally erlotinib sensitive, 

by exposing these cells to media containing increasing concentrations of erlotinib [99]. Interestingly, 

they showed that the resistance could be reversed after withdrawing the drug, suggesting that erlotinib 

resistance arises from changes of epigenetic states of these cells [99]. In the erlotinib resistant 

population of PC9 cells, RBP2 expression was increased, leading to decreased global levels of 

H3K4me3 and H3K4me2. Moreover, they showed that RBP2 is required to maintain the drug tolerant 

state of PC9 cells [99]. RBP2 has previously been shown to be associated with HDAC activity  

(Figure 3B) [88-90], therefore the Settleman lab set out to determine the effect of HDAC inhibitors on 

drug resistant PC9 cell lines. They found that upon treatment with HDAC inhibitors, drug resistant 
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cells were rendered drug sensitive [99]. This provides strong rationale for development of small 

molecule inhibitors of RBP2 to overcome common drug resistance.  

4. KDM5B/PLU1/JARID1B 

Another KDM5 family protein found in humans, JARID1B (also referred to as KDM5B and PLU1), 

was discovered in experiments targeting genes regulated by a tyrosine kinase, HER2 [100]. Cells 

overexpressing HER2 were treated with the antibody 4D5 (Herceptin) which inhibited phosphorylation 

of HER2. JARID1B was identified as one gene remarkably downregulated by Herceptin treatment. 

Northern blotting was then used to show that JARID1B is consistently expressed in breast cancer cell 

lines, but is expressed at restricted levels in normal adult tissues with the exception of the testis [100]. 

Barrett et al. verified the expression of JARID1B in breast cancer cell lines and in primary tissues and 

discovered that 90% of invasive ductal carcinomas express JARID1B [101]. Other studies involving 

JARID1B and breast cancer have shown that it is a transcriptional repressor that physically interacts 

with developmental transcription factors BF-1 and PAX9 [102]. Barrett et al. performed an extensive 

analysis of the interaction between JARID1B and HDAC4 [103]. They found that two of the PHD 

domains of JARID1B interact with the N-terminal tail of HDAC4 and that JARID1B co-localizes with 

HDAC4 to matrix-associated deacetylase bodies [103].  

The exact enzymatic function of JARID1B was unknown until 2007 when several groups classified 

it as a histone demethylase [50,104,105]. Yamane et al. showed that JARID1B represses tumor 

suppressor genes such as BRCA1, CAV1 and 14-3-3σ and that knockdown of JARID1B increases 

H3K4me3 at these target genes [104]. Interestingly, they were able to demonstrate that downregulation 

of mouse JARID1B suppresses mammary tumor growth in a syngeneic mouse cancer model. This 

suggests that JARID1B could be a prime target for breast cancer therapies [104]. Consistent with the 

limited gene expression pattern of JARID1B, JARID1B knockout mice are viable [106], and will be a 

valuable tool to study its role in mammary development and breast cancer.  

JARID1B has also been shown to be a potential oncogene in other cancers such as prostate, lung, 

bladder and melanoma [107,108]. Using data from the Oncomine database [109,110] as well as frozen 

tissues, Xiang et al. showed that JARID1B is up-regulated in prostate cancer samples while showing 

limited expression in the benign prostate. These up-regulations have been noted at both the mRNA and 

the protein levels [108]. One explanation for this phenomenon might be the interaction of JARID1B 

with the androgen receptor (AR) which enhances AR-dependent transcriptional activity [108].  

Hayami et al. recently showed that at both the protein and mRNA levels, JARID1B is  

up-regulated in tumor tissues of bladder cancer and lung cancer (both SCLC and NSCLC) [107]. They 

also noted that knockdown of JARID1B induces growth suppression in cell lines derived from these 

cancers [107]. Further analysis of JARID1B knockdown cell lines led them to conclude that transcription 

factors E2F1 and E2F2 are downregulated when JARID1B expression is downregulated [107]. These 

findings further support those found by the Zhang lab suggesting that JARID1B downregulation leads 

to suppression of tumor formation, which makes it an ideal drug target for many different cancers [104]. 

JARID1B has also been suggested as a potential target for anti-cancer vaccines [111]. Liggins et al. 

discovered that JARID1B is one of the non-X cancer-testis (CT) antigens. These types of proteins are 

of interest due to their limited expression in normal tissues but overexpression in many kinds of 
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cancer. Additionally, they can induce a cytotoxic T-lymphocyte response which makes them prime 

candidates for cancer vaccine development. Among a panel of CT antigens screened in B- and T-cell 

malignancies, JARID1B is highly expressed in both cases at the mRNA level [111]. Indeed, in breast 

cancer patients, there are T cells that react with HLA-A*201* peptides of JARID1B [112].  

JARID1B expression has previously been shown to be expressed at higher levels in melanocytic 

nevi than in advanced and metastatic melanomas [113,114], but its role in melanoma was unclear until 

recently. Roesch et al. found that increased JARID1B expression marks a slow cycling population of 

melanoma cells [113]. This cell population is associated with prolonged growth and self-renewal 

potential in serial transplantation experiments. This study also noted a link between JARID1B and 

Notch signaling by showing that JARID1B represses the Notch ligand Jagged 1. This repression leads 

to less Notch cleavage and a subsequent decrease in expression of Notch target genes [113]. These 

results suggest that, in melanoma, JARID1B may not be required for cancer establishment but that it 

most likely contributes to tumor progression and metastasis. Furthermore, they found that expression 

of JARID1B is dynamically regulated, which suggests that stemness of melanoma cells could be 

dynamic [113].  

5. KDM5C/JARID1C/SMCX 

Another KDM5 family protein, JARID1C (also known as KDM5C and SMCX), has mostly been 

studied in context of mental retardation but has been linked to some forms of cancer [105,115-117]. 

Human papillomavirus (HPV) is thought to be the leading cause of cervical cancer and the second 

most common cause of cancer death in women worldwide [118]. The long control region (LCR) of 

HPV contains oncogenes E6 and E7 which can be repressed when bound by E2. In an effort to 

determine genes involved in the tumor suppressor capabilities of E2, the Howley lab performed an 

siRNA screen. This screen identified JARID1C as a mediator of the HPV E2 tumor suppressor  

protein [119]. They then determined that JARID1C is physically recruited by the E2 protein to repress 

the transcription of the oncoproteins E6 and E7 through the HPV LCR [119].  

Clear cell renal cell carcinomas (ccRCC) are traditionally classified as having mutations in the VHL 

gene and activation of the HIF pathway [120,121]. In an effort to discover other mutations in ccRCC 

as part of the Cancer Genome Project, the Sanger Institute underwent an extensive gene expression 

analysis of a ccRCC tumor panel. This screen led to the discovery that 3% of ccRCC tumors contain 

truncation mutations in JARID1C [8]. They also noted that JARID1C is associated with hypoxic 

tumors rather than non-hypoxic tumors and that most tumors with JARID1C mutations also contained 

VHL mutations [8]. JARID1C was shown to be a HIF target gene in RCC cells, but it suppresses 

tumor growth, suggesting that inactivation of both VHL and JARID1C is required for tumor formation 

in this subtype of ccRCC [122].  

6. KDM5D/JARID1D/SMCY 

The least well documented member of the KDM5 family, JARID1D (also referred to as KDM5D 

and SMCY), is coded for by the SMCY gene, which is located on the Y chromosome. JARID1D, like 

other KDM5 family members, is capable of demethylating di- and tri-methyl H3K4 [75,105,123]. 

While there is no direct link between JARID1D and cancer, a deletion analysis of Y chromosome 
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specific genes in human prostate cancer revealed that 52% of cases showed deletion of the JARID1D 

gene [124]. This study associated loss of specific Y chromosome genes with prostate cancer, 

suggesting a role for JARID1D in the pathogenesis of the disease.  

7. Summary 

In recent years much has been discovered about histone demethylases and their roles in cancer. In 

this review, we have chosen to focus on the role of KDM5 family members in cancer, specifically, due 

to their ability to regulate an activating mark on H3K4. One of the primary hallmarks of cancer is its 

limitless replicative ability, much of which is acquired through overexpression of oncogenes and 

repression of tumor suppressor genes. KDM5 family members are capable of removing the H3K4me3 

activating mark from histones which makes them potential players in the downregulation of tumor 

suppressors, but could also suggest that their activity could repress oncogenes. These activities indicate 

that KDM5 family members could be prime targets for many different therapies in a context dependent 

manner. Indeed these enzymes have been suggested to have oncogenic properties in some tissues and 

to have tumor suppressor functions in others (Table 1). Therapies targeting this family of enzymes are 

currently under development by many groups. 

Table 1. KDM5 family demethylases in cancer. 

Demethylase Cancer type Notes Potential role 

KDM5A/RBP2/JARID1A 

gastric overexpressed [91] oncogene 

leukemia NUP98 fusion [97] oncogene 

cervical overexpressed [125] oncogene 

lung drug tolerance [99] oncogene 

KDM5B/PLU1/JARID1B 

breast overexpressed [100] oncogene 

prostate overexpressed [108] oncogene 

bladder overexpressed [107] oncogene 

lung overexpressed [107] oncogene 

melanoma tumor progression [113] oncogene 

KDM5C/SMCX/JARID1C 

cervical  mediator of human 

papillomavirus protein E2 [119] 

tumor suppressor 

kidney inactivating mutations [8] tumor suppressor 

KDM5D/SMCY/JARID1D prostate deleted [124] tumor suppressor 

The term “cancer stem cell” (CSC) has been defined as cancer cells within a given tumor that are 

capable of re-forming the tumor [126]. These cells are thought to remain after other tumorigenic cells 

die off during most cancer therapies. These remaining cancer stem cells can re-develop into a more 

aggressive tumor that is resistant to therapies. Treating cancer stem cells could provide a potent 

method for treating these more aggressive cancers and preventing recurrence. It is generally thought 

that cancer may arise from a progenitor cell that becomes a cancer stem cell or from a stem cell that 

becomes cancerous. The connection between epigenetic regulation and development suggests that 

epigenetic changes may be the first step in cancer progression. In fact, it was proposed that cancer stem 

cells arise through epigenetic changes [1]. A clear understanding of how histone demethylases act in 
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stem cell development may give us hints of how to eliminate cancer stem cells. Specific to the KDM5 

family proteins, drug resistant cells overexpressing RBP2 seem to have some features found in cancer 

stem cells [99] and JARID1B marks a subpopulation of human melanoma cells that can sustain tumor 

growth and self renewal, suggesting a new definition of melanoma stem cells [113].  

One class of histone modifying enzymes that has been successfully targeted for cancer therapy is 

HDACs [3]. Many histone demethylases, including RBP2 [88-90], JARID1B [103] and JARID1C [116], 

have been shown to interact with the HDAC complexes. Additionally, recent studies suggest that 

demethylases are linked to HDACs through the Sp1 protein [127]. This link was discovered when the 

Chen lab noted that cells treated with HDAC inhibitors appeared to also be downregulated for KDM5 

demethylase activity. These studies suggest that success of HDAC inhibitors could be correlated to 

their interactions with the KDM5 enzymes. HDACs generally act on many different histone residues, 

while the catalytic activity of the KDM enzymes is limited to specific histone residues. This suggests 

that KDM inhibitors are likely to have more specific biological effects and therefore be more specific 

anti-cancer epi-drugs than HDAC inhibitors.  

In this review we have covered many different angles for development of anti-cancer therapies 

using the KDM5 family of demethylases. This family of enzymes can be crucial in the expression and 

repression of oncogenes and tumor suppressor genes and can themselves serve as both. They also 

provide insight into the cancer stem cell model and how we might develop drugs targeting these cells. 

Some of the limitations in drug discovery thus far have been the lack of appropriate readouts for 

demethylase activity and the similarity of mechanism between all proteins of this class. Recently, more 

accurate demethylase assays have been developed and high throughput screening techniques have been 

optimized for identifying specific inhibitors of these enzymes [128,129]. These inhibitors/epigenetic 

drugs will have the potential to reprogram cancer cells or cancer stem cells with the same gusto as the 

HDAC inhibitors and could have a revolutionary effect on the future of cancer treatment.  
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