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Abstract: Most cancer cells shift their metabolic pathway from a metabolism reflecting the 

Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic 

microenvironment around the tumor and becomes the driving force for a positive 

carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor 

microenvironment encourages a selection of certain cell phenotypes that are able to survive in 

this caustic environment to the detriment of other cell types. This selection can be described 

by a process which can be modeled upon spite: the tumor cells reduce their own fitness by 

making an acidic environment, but this reduces the fitness of their competitors to an even 

greater extent. Moreover, the environment is an important dimension that further drives this 

spite process. Thus, diminishing the selective environment most probably interferes with the 

spite process. Such interference has been recently utilized in cancer treatment. 
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1. Cancer Metabolism Creates an Acidic Environment 

Both cancer and normal cells depend mainly on glucose metabolism to generate ATP to carry out 

normal maintenance and proliferation, where the initial steps of glucose metabolism result in the 

formation of pyruvate and generate two moles of ATP per mole of glucose. Switching from aerobic to 

anaerobic metabolism in the absence of oxygen is termed the Pasteur-effect [1]. Alternatively, under 

anaerobic conditions, pyruvate is converted to lactic acid. This is typically observed clinically in skeletal 

muscles during severe exercise where oxygen concentrations are exhausted and glucose metabolism is 

limited to the conversion to lactic acid. Nearly 100 years ago, Otto Warburg first observed that cancer 

cells metabolize glucose to lactate even in presence of oxygen—an observation that has been repeatedly 

confirmed and is now termed the Warburg effect [2]. Since the end product is lactic acid and because the 

reduced efficiency in ATP conversion requires increased glucose flux, the up-regulation of glycolysis in 

normal or cancer cells creates an acidic interstitial/extracellular environment [3]. 

These observations create a conundrum. It is widely assumed that the malignant phenotype arises 

through a process that is formally analogous to Darwinian evolution. Thus, if cancer results from 

prolonged “somatic evolution”, then any common phenotypic property observed in a malignant cell must 

confer a fitness advantage. On the contrary, aerobic glycolysis would confer two significant proliferative 

disadvantages: (1) It is significantly (18-fold!) less efficient than oxidative metabolism in producing 

energy, thus requiring far greater glucose uptake and use; and, (2) It produces a significantly acidic 

microenvironment that is toxic to mammalian cells. When combined with hypoxia, this metabolic 

microenvironment becomes quite caustic. 

Here, we propose that aerobic glycolysis confers an evolutionary advantage due to an adaptive strategy 

that is commonly termed “spite”. In brief, an organism can evolve a less fit phenotype only if it alters the 

local adaptive landscape in such a way that it reduces the fitness of all competing populations even more. 

So, cancer cells, as actors, increase their fitness compared to normal cells as recipients. The acidic 

environment will select for acid-adapted phenotypes not the glycolytic phenotype. Only after this 

adaptation will the glycolytic phenotype confer an advantage. This combination of phenotypes then 

confers an advantage because it increases extracellular matrix (ECM) degradation to facilitate invasion, 

induces death in normal cells, increases vascular endothelial growth factor (VEGF) release, and reduces 

the effectiveness of cytotoxic T cells in generating an immune response to tumor antigens. In this general 

theory, there has developed two types of spites: (i) Hamiltonian spite and (ii) Wilsonian spite, which is a 

modified Hamiltonian spite because he added a third party that gains benefit or costs the interaction of 

actor and recipient [4] that could be represented by the immune system in our model (z-axis) (see Figure 1). 

Here, we propose the environment as an additional fourth dimension because spite might not occur in the 

absence of a suitable environment (see Figure 2a). 
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Figure 1. A comparison between the interaction spaces presented by the spite models 

proposed by Hamilton (left panel) and Wilson (right panel). Mutualism could be represented 

through the support of tumor growth by nonmalignant cells [30]. Moreover, some cancer cells 

become addicted to InterLeukin-3 to survive (primed cell for death) and so benefit from the 

immune system, and this is a kind of selfishness [31]. Yet, microenvironment acidity-induced 

cancer spite (MAICS) results in excessive cell death and eventually might prevent its 

spreadability and so it lies under the altruism umbrella because it results in an encapsulated 

tumor [32]. Cannibalism at the end results in death of both normal and malignant cells under 

the context of organismal selection so it is compatible with spite. Therefore, it would be very 

interesting if further studies carry on for determining how tumors handle the thresholds of the 

four quadrants.  

 
X-axis ≡ cancer or premalignant cell; Y-axis ≡ normal cell; Z-axis ≡ immune system 

2. Consequences of Microenvironment Acidity 

It seems that carcinogenesis can undergo a positive feedback mechanism (control) and/or propagation 

reaction where once acidity appears around the cell, the tumor microenvironment become hostile, which 

could be seen as a point of no return. This acidic microenvironment selects pre-malignant (actor) 

glycolytic traits that adapt in the acidic microenvironment with normal cells (recipient) and, in this way; 

the acidic microenvironment produces Hamiltonian spite (Selfishness). 

In a positive feed-back cycle, these glycolytic traits then aggravate the microenvironment acidity that 

selectively increases the malignant phenotype. This hostile microenvironment selects more virulent types 

of cells expressing invasion promoting traits such as degradation of ECM, activation of VEGF, carbonic 

anhydrase [5,6], lactate dehydrogenase, cathepsin B and matrix metalloproteinases MMP-2 and  

MMP-9 [7,8]. Moreover, the acidic microenvironment inhibits the immune response [9]. Finally, the 

acidic microenvironment generates extremely virulent cell types that can phagocytosize stroma, normal 

cells, sibling cancer cells, yeast, etc., in a process called Cannibalism [10]. Cannibalism is a characteristic 

of secondary tumors, not primary tumors, and it occurs when malignant cells face starvation (low nutrients 

level), i.e., shifting from the Warburg-effect into Cannibalism. Cannibalism, as an indicator of reverse 
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evolution of cancer [11-13], represents an additional tool of spite by increasing fitness; under starvation 

conditions cancer cells acquire the life style to survive, normal cells die. Thus, tumor cannibalism is a 

second tool of spite when the Warburg-effect does not reconcile with this starved environment. We do not 

know if tumor dormancy could represent an additional spite model or not if we compare it with normal 

cells under a high caustic environment due to tumor acidity or chemotherapy. Because metastases is an 

efficient process [14], tumor spite represents a successful strategy for tumor survival. 

Figure 2. Here we propose a hypothetical model in which the environment where the player 

interactions are carried out (i.e., the acidic extracellular space; blue background) can play an 

important role in determining the choice and dynamics of spite. At this point, it is not possible 

to determine if there is a space-time quadrant where the environment has a greater or lesser 

effect and this will be an interesting point for future research. (a) Because microenvironment 

acidity-induced cancer spite (MAICS) blunts the immune system [33], interference with 

MAICS would probably create a shifting to Wilsonian spite. Thus, the third party reappears 

(Z-axis in (b) (Wilsonian spite) (b) This kind of shifting does not misconstrue to malignant 

and normal cells only but a spite process could happen also between secondary tumor cells 

(cannibal cells) and primary tumor cells. 

(a)  

 
(b) 
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The interaction of the cannibal cell (actor) alone with the recipient cell could be described as an 

example of Hamiltonian spite (selfishness). Interestingly, this Hamiltonian spite could be expanded to 

Wilsonian spite, where the primary tumor (third party) obtains additional beneficial effects from such a 

suppression of immune cells. Hence, tumor acidity might represent an attractive model for mixed types of 

spite. In this way, alteration of the acidic microenvironment eventually results in catastrophic dismantling 

carcinogenesis cascade (Gatenby-Gillies' Model) [15] via a positive feedback loop that finally results in 

spite. We suggest the term "microenvironment acidity-induced cancer spite (MAICS)" to define this acidic 

microenvironment-driven spite cascade (see Figure 2b). 

3. Interference with MAICS (Anti-MAICS) 

Recently, the targeting of MAICS (microenvironment acidity-induced cancer spite) has been suggested 

to be an attractive strategy in the war against cancer [16] that could most probably be achieved by the 

simultaneous use of several chemotherapeutic agents including: Proton Pump Inhibitors (PPIs) [17,18], 

bicarbonate (HCO3
-), carbonic anhydrase inhibitors e.g., Acetazolamide [19-21], Na+-H+ exchanger 

inhibitors e.g., Amiloride [22-24], H+- ATP Synthase inhibitors e.g., Resveratrol [25-27]. Furthermore, 

spite represents a successful strategy in the generation of resistance [28], so once again MAICS would be 

an attractive target against chemotherapeutic resistance [29] 

4. Conclusions 

Our hypothesis is that the Warburg effect and tumor cannibalism are evolutionary consequences of a 

process termed ‘spite’, which arises through a series of steps in carcinogenesis. Thus, the tumor 

microenvironment is a suitable medium created to carry out these steps that provide tumor cells fitness 

and, in this context, targeting the tumor microenvironment represents a novel and potentially useful 

strategy in cancer therapy. 
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