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Abstract: Functionally, the pancreas consists of two types of tissues: exocrine and 

endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. 

Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor 

for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of 

cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. 

Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than 

exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause 

of morbidity and mortality. Importantly, different growth factors and their receptors play 

critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various 

growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine 

appropriate treatment. This chapter describes the role of different growth factors such as 

vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet 

derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), 

and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the 

crosstalk between different growth factor axes and their respective signaling mechanisms, 

which are involved in pancreatitis and pancreatic carcinoma, are also discussed. 
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1. Growth Factors in Pancreatic Development 

The pancreas develops from the fusion of the ventral and dorsal pancreatic bud after rotation 

(Figure 1) [1]. Congenital pancreatic anomalies such as agenesis (totally absent pancreas), pancreas 

division (failure of the fusion of the ventral and dorsal pancreatic buds) and annular pancreas 

(duodenum encircled by the pancreatic head) are rare. Embryonic model systems have established the 

importance of fibroblast growth factors for growth of the primitive pancreatic rudiment [2] and 

subsequent pancreatic development [3]. Specific growth factors (transforming growth factors, insulin 

and insulin-like growth factors) have been shown to be involved in the process of proliferation and 

differentiation of insulin- and glucagon-secreting pancreatic cells [4]. On the other hand, in zebrafish 

embryos-, the lateral plate mesoderm (LPM) adjacent to the ventral pancreatic bud expressed fibroblast 

growth factor-10 (FGF10), which plays a crucial role in ventral pancreatic induction and growth. 

Moreover, fibroblast growth factor-24 (FGF24) expression is vital for the pancreatic LPM patterning 

required for subsequent induction of the ventral pancreatic bud [5]. Overall, these studies suggest that 

growth factors play a pivotal role in pancreatic development.  

Figure 1. The pancreas is developed from fusion of ventral and dorsal bud. 

 

2. Vascular Endothelial Growth Factor (VEGF) 

Both normal pancreatic development and pancreatic pathogenesis involve angiogenesis—the 

process of making new blood vessels. Several studies have reported that angiogenesis plays a 

significant role in tumor growth and metastasis [6,7]. Usually, activation of angiogenesis results from 

overexposure of proangiogenic factors together with diminished expression of anti-angiogenic factors [8,9]. 

Growth factors involved in the process of angiogenesis include vascular endothelial factor (VEGF), 

basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth 
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factor (TGF) and tumor necrosis factor (TNF) [6,10,11]. Of these, VEGF has been demonstrated to 

be the most potent angiogenic factor, playing a vital role in every step of angiogenesis [12–16]. 

In the early 1980s, VEGF was first identified as vascular permeability factor (VPF) secreted by tumor 

cells [17]. Later, Leung and co-workers (1989) demonstrated that VEGF was able to promote angiogenesis 

in an in vivo system [18]. Members of the VEGF family are VEGF-A, VEGF-B, VEGF-C, VEGF-D, 

placental growth factor, and viral VEGF homologues that are also called VEGF-E (Figure 2) [19]. VEGF 

is a secreted homodimeric glycoprotein with a molecular weight of approximately 45 kD [12,13,18,20]. 

Five different isoforms of VEGF have been identified and named according to their number of amino 

acids: VEGF
121

, VEGF
145

, VEGF
165

, VEGF
189

, and VEGF
206 

[21–24]. VEGF
121

 and VEGF
165

 are the 

major components found in soluble forms [21,22]. VEGF
165

 is secreted by a variety of normal and 

transformed cells [23]. VEGF
206

 is rarely expressed [23], and VEGF 
145

 expression is limited to the 

reproductive organs [25]. All isoforms differ in efficiency of secretion and affinity for heparin. 

However, all increase vascular permeability and act similarly by stimulating mitogenesis and migration 

of vascular endothelial cells [23,26]. 

Figure 2. VEGF signaling in pancreatic cancer. Binding of ligands with VEGFRs stimulates 

malignant transformation of the pancreas. EC = endothelial cell. 

 

The regulation of VEGF expression in tumor cells is a complex process that includes growth 
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intratumoral tissue VEGF (t-VEGF) protein was upregulated in various malignant conditions. These 

studies also found some correlation between the t-VEGF and clinicopathological factors of the disease 

(in particular, progression and metastasis) [32–34]. Studies have also shown that rapid progression and 

poor prognosis of pancreatic carcinoma correlates with high t-VEGF levels (Figure 3) [34–36]. 

Pancreatic carcinomas are usually unresectable making it difficult to measure t-VEGF from tissue 

samples. Thus, Kobayashi and co-workers (2005) measured the plasma VEGF levels of pancreatic 

cancer patients to assess its usefulness as a tumor marker for distinguishing pancreatic carcinoma from 

chronic pancreatitis [37]. 

Figure 3. Variable expression of VEGF and VEGFRs in normal pancreas, pancreatitis and 

pancreatic carcinoma. 
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VEGF is thought to act in paracrine fashion by binding with high affinity tyrosine kinase receptors 

(Figure 2). Two tyrosine kinase receptors with high affinities for VEGF have been identified: VEGFR1 

[fms-like tyrosine kinase 1 (flt-1)] and VEGFR-2 [fetal liver kinase 1 (flk-1) is the murine homologue]. 

VEGFR1 and VEGFR2 have an amino acid sequence homology of 44% [38,39]. Binding of VEGF to its 

receptor causes autophosphorylation of the receptor and subsequent signaling cascade activation [40,41]. 

Flk-1, murine homologue of VEGFR2, has 85% sequence homology with human KDR (Kinase insert 

domain receptor) [42]. 

It has previously been described that VEGF is predominantly present in endothelial cells [12,13,40,41]. 

However, very little is known about VEGF expression in pancreatic carcinoma. Immunohistochemical 

staining has revealed that vascular endothelial cells surrounding a pancreatic malignant tumor express 

both flt-1 and flk-1 in murine models. In contrast, no receptor overexpression was observed in 

endothelial cells from normal pancreas or chronic pancreatitis. This result suggests that upregulation of 

the VEGF/VEGF receptor system is limited to malignant transformation of the pancreas and is not 

associated with pancreatitis or other chronic inflammation (Figure 3). VEGF receptor expression has 

also been observed in 50% of human pancreatic tumor cells [43]. In contrast, flk-1 expression has been 

demonstrated in a nontransformed rat ductal model system [44]. Hence, it appears there are species-

specific differences in the VEGF receptor expression patterns.  

Another molecule important for VEGF signaling is Neuropilin-1 (NP-1). NP-1 was first identified 

as a mediator of chemorepulsion, which is responsible for determining the direction of axonal growth 
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in the developing neuronal system. NP-1 is also known to be a coreceptor for VEGF-A
165

, placental 

growth factor-2, VEGF-B, and VEGF-E [45]. NP-1 is expressed in endothelial cells where it forms a 

complex with VEGFR2 [46,47]. Our data, and that of others, have noted that NP-1 works 

independently of VEGFR2 in endothelial cell migration and adhesion to extracellular matrix proteins 

[48,49]. This suggests two possible modes of NP-1 action: (i) by crosstalk with VEGFR2 signaling; 

and, (ii) independently without any interaction with VEGFR2 [50]. Further, we established that the 

interaction of the three C-terminal amino acids of NP-1 with NP-1 interacting protein [also known as 

RGS-GAIP interacting protein, (GIPC)] is necessary for endothelial cell migration and angiogenesis 

[51]. Studies using a transgenic murine model have shown that overexpression of NP-1 is 

phenotypically characterized by excessive vessel formation [52]. Further investigation found that another 

variety of Neuropilin, called NP-2, also participates in angiogenesis by binding with VEGF-A
165

,  

VEGF-A
145

 [53], and placental growth factor-2 [54]. Many studies have reported upregulated expression 

of NP-1 and NP-2 in pancreatic cancer cells and pancreatic ductal adenocarcinoma tissue [55,56]. Fukahi 

and co-workers (2004) have described that NPs promote angiogenesis by enhancing direct action of 

VEGF [55]. 

3. Insulin-like Growth Factor (IGF) 

Insulin-like growth factor 1(IGF-1) is a polypeptide hormone [57] that functions as a multifunctional 

growth factor [58] to stimulate cell growth and differentiation through high affinity binding to IGF I 

receptors. Signaling cascades are activated when IGF-1 or IGF-2 binds with IGF-I receptor (IGF-IR) 

and ligand, causing receptor phosphorylation [59,60]. The IGF-IR has two isoforms: alpha and beta [61]. 

Two other molecules, IGF-binding proteins (IGF-BP) and IGF-II receptors, have important roles in the 

activation of the IGF-IR pathway [62–64].  

Several growth factors, including IGF-I, are recognized to be involved in the process of pancreatic 

cell regeneration following acute pancreatitis [65]. During pancreatic acinar cell regeneration, IGF-1 

expression increases over 50-fold, and there is a dose-dependent increase in acinar cell regeneration 

when treated with IGF-1 [65]. 

Extracellular matrix formation and composition are greatly altered in chronic pancreatitis and 

pancreatic carcinoma [66]. There is evidence that IGF-1 has a positive role in regulation of collagen 

and cartilage proteoglycan synthesis [58]. Accumulated tissue deposition in chronic pancreatitis [67] 

and potent desmoplastic reaction in pancreatic carcinoma [68] are involved in the extracellular matrix 

formation (Figure 4). Our group’s unpublished data shows that blocking the association of the PDZ (a 

scaffold protein) domain of GIPC with IGF-IR, using peptides, reduces proliferation of pancreatic cells 

both in vivo and in vitro. Our group, as well as Muders (2007), have also demonstrated the importance 

of IGF-IR in the pathological progression of pancreatic cancer [69]. Previously, we have shown that 

IGF-IR has a very vital role in pancreatic cancer cell proliferation, invasion, and VEGF upregulation [70]. 

Moreover, biological aggressiveness of pancreatic adenocarcinoma is dependent on association 

between IGF-IR and EGFR expression [71]. Further studies are needed to evaluate the crosstalk 

between these two important pathways in order to understand their role in pancreatic cancer 

progression and metastasis. 
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Figure 4. The role of IGF-1 in promoting a strong desmoplastic reaction leading to 

pancreatitis and, thus, promoting pancreatic carcinoma. 
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4. Platelet Derived Growth Factor (PDGF) 

The platelet derived growth factor (PDGF) family includes four members: PDGF-A, PDGF-B, 

PDGF-C, and PDGF-D. These proteins are secreted as homodimer or heterodimer proteins. PDGF 

receptors are made up of alpha (α) and beta (β) chains. PDGF-A, PDGF-B, and PDGF-C can 

specifically bind to PDGF-α and -β chain receptors, while PDGF-D binds only to PDGF-β chain 

receptors [72–74]. To characterize different staging of pancreatic fibrogenesis, Gunter Kloppel’s group 

(2006) designed an elaborate study of human pancreatic specimens. They characterized different stages 

of disease progression in tissues from patients with alcohol-related chronic pancreatitis (Figure 5). The 

initial stage was characterized by fibrogenesis. During the initial stages, macrophage and ductal cells 

are the main sources of TGF- and PDGF-B, which cause fibroblast activation and proliferation. In the 

later stages of disease progression, fibrogenesis is slowed due to decreased numbers of macrophages 

and PDGF-B immunoreactivity. It also has been shown that overexpression of PDGF-D increases 

migration and invasion of pancreatic cancer cells through matrigel and induces tube formation of 

human umbilical vein endothelial cells (HUVECs) with the resultant activation of matrix 

metalloproteinase-9 (MMP-9) and VEGF. Wang and co-workers 2007 describe the positive regulatory 

role of PDGF-D in migration, invasion and angiogenesis through activation of MMP-9 and VEGF [75]. 
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Figure 5. Role of PDGF in formation of pancreatitis, pancreatic carcinoma and progression of cancer. 
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5. Fibroblast Growth Factor (FGF) 

The fibroblast growth factor (FGF) family consists of a group of homologous growth-promoting 

polypeptides [76–80], which enhance tumor growth, angiogenesis, and progression [77–80]. These 

growth factors have an affinity for heparin and glycosaminoglycans [76]. FGF plays an important role 

in new angiogenesis and tissue remodeling by transforming small neoplastic lesions to extensive 

tumors [9,10,81]. 

Several factors, including FGF, are necessary to maintain mitogenesis, angiogenesis, progression, 

chemotaxis, and sustainability of the enhanced malignant growth [34,78–80,82]. Thus, FGF plays an 

important role in tissue development, differentiation, and repair [20,82,83]. Kuwahara (2003) found 

that FGF was overexpressed in pancreatic malignancies and pancreatic cell lines [36]. FGF is 

overexpressed in many other solid tumors and may promote acceleration of neoplastic processes and 

poor patient prognosis [84]. This protein is also reported to be upregulated in tissue and cell lines from 

lung [85,86], prostate[87] and colon [88,89]. 
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Several groups have found FGF protein involvement in different cancer model systems. To further 

explore the involvement of FGF, Anton Wellstein’s group (2006) developed a monoclonal antibody to 

identify the FGF binding protein (FGF BP1) in various bioassay systems [90]. Both FGF BP1 mRNA 

and protein were overexpressed in a series of malignant tissues including human pancreatic 

adenocarcinoma and pancreatitis (Figure 6). Wellstein’s group also reported that FGF BP1 could be a 

potential target for treatment in pancreatic carcinoma and pancreatitis since it is expressed at high 

levels in pancreatic intraepithelial neoplasia. The high level of FGF BP1 persisted throughout 

progression of tumor invasion and metastasis. FGF BP1 overexpression may well be an angiogenic 

switch that transforms pancreatitis into malignancy. If so, it has potential as a screening parameter for 

early diagnosis and treatment.  

Figure 6. FGF-dependent regulation in transformation from pancreatitis to pancreatic 

intraepithelial neoplasia to invasive cancer. 
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Basic FGF (FGF-2) is an FGF family member that is significantly overexpressed in human 

pancreatic carcinoma [84,91]. It binds with transmembrane receptors, which contain intracellular 

tyrosine kinase domains [92]. By inducing synthesis of proteinases, FGF-2 promotes angiogenesis [93], 

stimulates endothelial cell migration and DNA synthesis [94], and promotes in vitro capillary tube 

differentiation [95]. It is also worth noting that FGF-2 participates in tumor angiogenesis. 

6. Epidermal Growth Factor (EGF) 

Epidermal Growth Factor (EGF) must bind to the epidermal growth factor receptor (EGFR) to be 

activated. EGFR is a transmembrane protein that binds to EGF and transforming growth factor α 

(TGF-α). Once bound to the receptor, it stimulates the phospholipase C gamma 1 (PLC gamma 1) 

activity. Pancreatic ductal and acinar cells of chronic pancreatitis patients have shown higher 

concentrations of EGFR, TGF-α and PLC gamma 1 [96]. A series of studies confirmed EGF and 

EGFR upregulation in different pancreatitis models [97]. Friess et al. (1995) reported that c-erbB2 and 

c-erbB3, two members of the EGFR family involved in tyrosine kinase activity, are also upregulated in 

chronic pancreatitis (Figure 7) [97]. There is solid evidence that upregulation of c-erbB2 is associated 
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with pancreatic head enlargement. This suggests the importance of c-erbB2 in pancreatic cell 

proliferation. In a study of pancreatic ductal adenocarcinoma, Bergmann et al. (2006) found overexpression 

of EGFR in four out of seven patients [98]. 

Figure 7. Role of EGF and EGFRs family members in pancreatic diseases. 
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7. Transforming Growth Factor Beta (TGF-ß) 

Transforming growth factor (TGF) is a dominant mediator that regulates fibrogenesis. It was shown 

to be a pluripotent growth factor, in that it is expressed in 87% of chronic pancreatitis patients 

compared to 17% of normal subjects [99]. However, no measurable level of IL-10, IL-6, or TNF-α was 

found in any of the pure pancreatic juice samples from any of the patients in this study. These data 

indicate that TGF-β may play a crucial role in the pathogenesis of chronic pancreatitis, by promoting 

local inflammation and stimulating fibroblast collagen secretion (Figure 8) [99]. TGF-β is known to be 

active in almost every tissue and cell. Aberrant expression or dysregulated expression of TGF-β has been 

observed in various disease processes including autoimmune disease, fibrosis and carcinogenesis [100]. 

Recent studies have reported that TGF-β has a predominant role in the accumulation of pathological 

extracellular matrix in pancreatic fibrosis [101–103]. In a transgenic mouse model, overexpression of 

TGF-β1 promoted phenotypic character development partially resembling chronic pancreatitis [104]. 

In that study, development of fibrosis and upregulation of TGF-β1 mRNA occurred 14 days after birth. 

On day 70, increased deposition of fibronectin resulted in expanded accumulation of the extracellular 

matrix. Otsuki’s group (2006) developed a rat model system of chronic pancreatitis by applying 

continuous pancreatic duct hypertension (PDH). They showed ,after induction of PDH for two weeks, 

histologically proven development of interlobular fibrosis as well as intralobular fibrosis [105]. They 

also observed that the TGFβ-1 mRNA expression in pancreas was also upregulated during PDH.  
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Figure 8. TGF-β-mediated upregulation of desmoplasia in pancreatitis and pancreatic 

carcinoma development. 
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Bergmann et al. (2006) have shown that all (n = 7) pancreatic ductal adenocarcinomas from patients 

under 40 years-old have overexpression of TGF-β1 and loss or significant reduction of Smad4, which 

is also known to be a tumor suppressor [98]. Cellular localization by in situ hybridization and 

immunohistochemistry reveals the upregulated expression of TGF mRNA levels in chronic  

alcohol-related pancreatitis [106,107] and chronic obstructive pancreatitis [108]. Another study 

demonstrated that all three isoforms of TGF-beta (TGF-B1, TGF-B2, and TGF-B3) were present in 

chronic obstructive pancreatitis tissues [108]. That study was able to detect localized expression of all 

isoforms of TGF-β in myofibroblasts, TGF-β1 in inflammatory cells, TGF-β2 in small/large ducts, and 

TGF-β3 in endothelial cells, inflammatory cells, and small/large ducts. Moreover, that study also 

showed that macrophage/neutrophil and myofibroblasts are possible candidates of fibrogenic  

TGF- expression [108]. 

Desmoplasia (increased deposition of stromal collagen) is a major stromal reaction in pancreatic 

duct cell carcinoma (PDC) and chronic pancreatitis. However, there is no unified conclusion on 

whether it accelerates [109] or suppresses [110] carcinoma invasion in various cancer models. A series 

of studies examined the expression of TGF-β in pancreatic ductal carcinoma and chronic pancreatitis. 

No clear difference was shown in the upregulation of TGF-β1 and its receptor in epithelial cells 

between the cases of pancreatic ductal carcinoma and pancreatitis. However, expression of TGF-β type 

II receptor (TβRII) was significantly upregulated in pancreatic ductal adenocarcinoma rather than in 

chronic pancreatitis [111]. 
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8. Pancreatitis 

In the early 1960s, pancreatic inflammatory disease was divided into four categories based on 

disease onset and course. The four categories are: acute, relapsing acute, chronic relapsing and chronic 

pancreatitis [112]. Acute pancreatitis is a short-term disease, whereas, chronic pancreatitis (CP) is a 

slowly progressive inflammatory disorder that has two clinically-defined stages: (i) early-stage CP 

with recurrent acute pancreatitis; and, (ii) late stage CP with exocrine insufficiency, diabetes, and 

calcification [113]. Cellular dysfunction, increased cell turnover, and glandular destruction are the 

recognized feature of all forms of pancreatitis [114]. 

9. Acute Pancreatitis 

Acute pancreatitis is defined as an acute inflammatory reaction of the pancreas, which is clinically 

diagnosed based on severe acute abdominal pain and multiorgan failure [115]. Multiorgan dysfunction 

is caused by the release of activated pancreatic enzymes into the interstitium and autodigestion of 

pancreas [115]. Approximately 70% to 80% of acute pancreatitis cases are mild in nature. The rest are 

severe, with 15 to 25% of the severe cases being fatal [116]. Impacted gallstones and alcohol abuse are 

the leading causes of acute pancreatitis [27,117]. Most forms of acute pancreatitis can progress to 

chronic pancreatitis (CP). In contrast, biliary pancreatitis never progresses to CP [118]. 

Studies have been conducted to determine the initiating events involved in acute pancreatitis 

pathogenesis. These studies have shown that acinar cells are likely to be the first within 12 hours 

of the onset of acute pancreatitis [119]. Transplantation-induced pancreatitis is caused by  

ischemia-reperfusion [120,121]. Bile salt-induced pancreatitis [122] presents with arteriolar 

vasoconstriction and hypoperfusion of the microcirculation. Subsequently, arteriolar vasodilatation 

follows arteriolar vasoconstriction and establishment of capillary perfusion. Cellular interaction between 

leukocyte and endothelial cells increases during the vasodilatation phase, but is not present during 

vasoconstriction [123]. It has been reported that expression of IGF-1[58,65] and TGF-β1[124] are 

remarkably upregulated in acute pancreatitis. Moreover, IGF-1 increases regeneration of pancreatic 

acinar cells following acute pancreatitis [65]. During recovery period following pancreatitis some 

growth factors like PDGF-A, FGF-2, VEGF and TGF-ß are maximally changed [125] suggesting that 

acute pancreatitis resolved without fibrogenesis does not progress into chronic pancreatitis. Therefore, 

acute pancreatitis can be transformed to chronic pancreatitis if growth factor dependent fibrogenesis 

and excessive extracellular matrix formation persistently continue during or following recurrent acute 

pancreatitis. To date no evidence shows any specific growth factor that causes acute pancreatitis to 

become premalignant.  

10. Chronic Pancreatitis 

Chronic pancreatitis is divided into two stages: (i) an initial stage of recurrent acute pancreatitis (early 

stage chronic pancreatitis); and, (ii) progressive pancreatic dysfunction and/or calcification (late stage 

chronic pancreatitis). Late stage chronic pancreatitis eventually can lead to pancreatic cirrhosis [126,127]. 

Progressive fibrosis in chronic pancreatitis leads to morphological and functional devastation in the 

pancreas [128]. In animal model systems of acute [129] and chronic [104,129] pancreatitis, as well as 
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in chronic human pancreatitis [106,125] activated pancreatic stellate cells) have changed their 

morphological character. At an early stage, chronic pancreatitis may be a reversible disease. 

Histologically it can be characterized by pancreatic fibrosis. The development of fibrosis due to 

pancreatitis is no longer considered as a chronic injury epiphenomenon, but, rather an active process. 

Pancreatic stellate cell (PSC) activation plays a vital central role in both in vivo [101,106] and in vitro 

[101] processes of pancreatic fibrogenesis. PSC activation and resulting pancreatic fibrogenesis can be 

prevented by antioxidant and cytokine inhibitory treatments [101]. Repetitive cerulin induction in mice 

produces reversible acute pancreatitis resembling the characteristic features of chronic pancreatitis in 

humans [129]. Expression levels of TGF-β1, connective tissue growth factor, FGF-1, and FGF-2 

mRNA expression levels were elevated in a transgenic mouse model of chronic pancreatitis [104]. In 

both the human pancreas and animal model systems, PSC activation was present with pancreatic 

fibrosis [106]. However, destruction, fibrosis and remodeling of tissues, and active involvement of the 

pancreatic parenchymal cells are the characteristic features of chronic pancreatitis with dysregulated 

immune response [130].  

The extra-acinar tissue of the exocrine pancreas in chronic pancreatitis and pancreatic carcinoma 

share a number of common features [82,131]. In both cases, continued expression or upregulation–or 

both–of cytokines, transforming factors, and growth factors might improve angiogenesis and 

neoplastic transformation [132,133]. Clinical observations [134] and epidemiologic observations 

indicate that chronic pancreatitis is a risk factor for pancreatic carcinoma, but the evidence for this 

etiological conclusion is not convincing [132,133,135]. For example, a long-term (five year) study of 

213 patients with chronic pancreatitis found 11 cases who also had pancreatic carcinoma. Of those, 

71.8% had chronic alcoholic pancreatitis. Systematic follow-up of chronic pancreatitis patients [136] 

may help track the transformation of chronic pancreatitis to pancreatic carcinoma. Among patients 

with hereditary pancreatitis, 20% were found to have pancreatic carcinoma during autopsy. Within any 

one family, hereditary pancreatitis may affect one member, while pancreatic cancer strikes another [137]. 

This may be due to different phenotypic presentations of the same genetic defect. 

The mechanism of transformation of chronic pancreatitis to pancreatic carcinoma is not well 

understood. Many of the growth promoting factors involved in tissue remodeling and regeneration in 

chronic pancreatitis are frequently overexpressed in pancreatic cancer [135]. Proliferation and invasion 

of pancreatic tumor cells in the angiogenic process requires macrophage inflammatory chemokine-3 [138]. 

Thus, chronic pancreatitis cannot be defined as a single pancreatic pathology. Instead, various 

pancreatic pathologies and persistent, progressive inflammation in the area of injury are the hallmarks 

of the disease. Pancreatic carcinoma is a neoplastic growth, which may arise from unknown etiology or 

from growth factor-induced transformation of chronic pancreatitis. There are some common factors 

involved in both chronic pancreatitis and pancreatic carcinoma, which may act as an angiogenic switch 

that produces transformation and progression of the inflammatory condition to neoplasia. 

11. Autoimmune Pancreatitis 

Nonalcohol-related chronic pancreatitis, is a variant of chronic pancreatitis, having distinct 

pathological features from alcohol-related chronic pancreatitis [139]. In a comparative study, patients 

with nonalcohol-related chronic pancreatitis had pancreatic inflammation in the ducts, resulting often 
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in duct obstruction, and occasionally, in duct destruction. The nonalcohol-related pancreatitis patient 

group included some patients with autoimmune or related diseases, such as Sjögren's syndrome, 

primary sclerosing cholangitis, ulcerative colitis, and Crohn's disease. Several studies reported the 

positive interrelationship between Sjögren's syndrome, primary sclerosing cholangitis, and chronic 

sclerosing pancreatitis [140,141]. 

The role of TGF-β in maintaining pancreatic immune homeostasis has been extensively discussed [142]. 

Hahm (2000) described that overexpression of the dominant negative mutant of TβRII disrupts normal 

immune homeostasis in the pancreas. This leads to production of autoantibodies against target cells, 

from which the pathological inflammatory process might be initiated and accelerated. Thus, TGF-β 

signaling seems to be important for the regulation of normal immune homeostasis and preservation of 

the integrity of pancreatic acinar cells. 

12. Pancreatic Tumors 

Histological classification of epithelial tumors of the exocrine pancreas is outlined in Table 1 as below. 

Table 1. Histological classification of exocrine pancreatic epithelial tumors [143].  

Benign 
Borderline (Uncertain  

Malignant Potential) 
Malignant 

 Serous cystadenoma 

 Mucinous cystadenoma 

 Intraductal papillary-

mucinous adenoma 

 Mature teratoma 

 Mucinous cystic tumor with 

moderate dysplasia 

 Intraductal papillary-mucinous 

tumor with moderate dysplasia 

 Solid-pseudopapillary tumor 

 Severe ductal dysplasia- 

carcinoma in situ 

 Ductal adenocarcinoma 

 Mucinous noncystic carcinoma 

 Signet-ring-cell carcinoma 

 Adenosquamous carcinoma 

 Undifferentiated (anaplastic) 

carcinoma 

 Mixed ductal endocrine carcinoma 

 Osteoclast-like giant-cell tumor 

 Serous cyst adenocarcinoma 

 Mucinous cyst adenocarcinoma 

 Noninvasive 

 Invasive 

 Intraductal papillary-mucinous 

carcinoma 

 Noninvasive 

 Invasive (papillary- 

mucinous carcinoma) 

 Acinar cell carcinoma 

 Acinar-cell cystadenocarcinoma 

 Mixed acinar- endocrine carcinoma 

 Pancreatoblastoma 

 Solid pseudopapillary carcinoma 

 Miscellaneous carcinomas 
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13. Pancreatic Cysts 

Pancreatic cyst/pseudocyst are collections of fluid encapsulated by fibrous and inflammatory 

tissue [144] and devoid of epithelial lining [145]. Regardless of the underlying pathology, the nature of 

the cyst can range from completely benign, to premalignant, to malignant. Timely surgical removal of 

the cyst can help prevent disease progression. Categorizing cystic lesions can help predict treatment 

outcomes [146]. Most cystic lesions are pancreatic pseudocysts [146]. Only a small percentage of 

cystic lesions are true cysts or tumors [146]. Hydatid pancreatic cysts are rare variants of a cystic 

lesion, which is predominantly present in endemic region [147].  

Benign pancreatic cystic lesions can be divided into four major groups: serous cyst adenoma, 

mucinous cyst adenoma, intraductal papillary adenoma and solid pseudopapillary tumors (SPT) [148]. 

The description of pancreatic cystic lesions is limited to non-neoplastic tumors. Pancreatic 

pseudocysts can develop as a complication of severe acute pancreatitis [149]. In one study, 

immunological assays were performed to examine fluid from pancreatic cysts for growth factors, such 

as EGF, TGF-α, IGF-1 and IGF-2. The growth factor levels were within the normal plasma range. 

However, mucinous cyst fluid exhibited significantly higher levels of pS2 protein than non-mucinous 

lesions, including pseudocysts and serous cystadenomas [150]. 

14. Pancreatic Carcinoma 

Pancreatic cancer is one of the most aggressive malignancies. It has a very poor prognostic 

outcome [151,152] even with advanced medical treatment. It is one of the leading causes of cancer 

death in the U.S. [153,154]. It is quite difficult to justify surgery for pancreatic cancer based only on 

resectability of the tumor. Poor outcomes from this disease are most likely due to vascular invasion, 

rapid progression, and resistance to treatment [155]. Extensive evaluation of different prognostic 

factors is needed to determine life expectancy with or without resection [151]. This evaluation should 

include histopathology and staging classification determined by assessing tumor size, local 

involvement, and metastasis. To date no approach has been evaluated to assess the molecular basis 

involved in vascular invasion to justify the indication of surgery. This field is quite open to select a 

better prognostic group where the chance of therapeutic curability can be tried with multimodality 

treatment. Generally, endocrine tumors and cystadenocarcinoma have a better prognosis. Treatment of 

localized pancreatic carcinoma by adjuvant chemo-radiation in addition to surgery has been shown to 

enhance the patient survival [156]. It has a very poor outcome even after resection with a five-year 

survival of about 5% [151] and 3 to 5% [152] in operated patients. The median survival time after 

establishment of diagnosis is four to six months [152], because in very few cases adjuvant  

chemo-radiation in addition to surgery are indicated. Pancreatic adenocarcinoma is a devastating 

malignant condition [155], and belongs to 80–90% of all pancreatic tumors [157] with an overall  

five-year survival rate of less than 4% [158]. Mutation of k-ras oncogene on codon 12 has vital impact 

on improvement of current histological and differential diagnosis with chronic pancreatitis [159]. But 

in later stage development, growth factors and their receptors (EGF, nerve growth factor, gastrin, 

bombesin), proangiogenic factors (VEGF, FGF, PDGF) and invasive factors (metalloproteinases,  

E-cadherin, beta integrin, urokinase and tissue plasminogen activators) lead to progression and 

metastasis of pancreatic carcinoma [159]. The potential risk factors of developing pancreatic 

adenocarcinoma are mucinous cystadenoma and intraductal papillary mucinous tumors of the pancreas. 
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Chronic pancreatitis [114,160] and a history of diabetes for more than 15 years [160] are also 

contributing risk factors for pancreatic adenocarcinoma. Conceptually, chemotactic mobility of 

macrophage and mast cells occurring in chronic inflammation are totally different from the pancreatic 

carcinoma. However, these inflammatory cells are the contributing factor in metastasis and higher 

angiogenic activity of pancreatic cancer. Accumulation of inflammatory cells in pancreatic cancer is 

significantly higher in pancreatic cancer in comparison to normal pancreas and chemotectic stimuli 

that are secreted from the tumor cells have greater contribution for accumulation of inflammatory  

cells [135]. In treating pancreatic carcinoma, it is a great challenge to overcome local relapse and 

prevent metastasis and angioinvasion with current available treatment. Utilizing recent advancements 

in growth factor involvement in pancreatic carcinoma could be a better approach to identify different 

subgroups where the chance of curability will be higher. 

Table 2. Variability of growth factor expression in pancreatitis versus pancreatic carcinoma. 

Growth Factors Pancreatitis Pancreatic Carcinoma 

FGF FGF, FGF BP FGF, FGF protein 

EGF EGFR, TGF, PLC 1, cerB2, 

c-erB3 

EGFR 

TGF TGF TGF, TRII 

VEGF No VEGFR expression VEGFR,t-VEGF, plasma VEGF 

PDGF PDGF needed for early fibrogenesis PDGF overexpression related to 

migration and invasion(in vitro) 

IGF Participate in tissue regeneration IGF1R in patholgical tumor 

progression 

Figure 9. Major growth factor-dependent exocrine pancreatic diseases 

Acute Pancreatitis

Chronic Pancreatitis

Autoimmune 

Pancreatitis

 Malignant Ductal 

 Serous cyst 

adenocarcinoma

 Mucinous cyst 
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 Intraductal 
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Pancreatitis
Exocrine Pancreatic 

Disease
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15. Crosstalk between the Growth Factor Signaling Pathways and Their Overall Influence in 

Pancreatic Pathogenesis 

Tissue remodeling and pancreatic fibrogenesis contribute to chronic pancreatitis development. In 

contrast, the desmoplastic reaction subsequent to fibrogenesis is predominent in pancreatic carcinoma. 

The pathogenesis of pancreatitis and pancreatic carcinoma are both dependent on extracellular matrix 

formation. Growth factors are known to mediate interactions between PSC and acinar cells that 

contribute to extracellular matrix formation. Several studies have demonstrated that growth factor-

induced PSC activity has several functions. In addition to extracellular matrix formation, PSCs act like 

macrophages by scavanging damaged and senescent acinar cells in order to maintain the tissue 

homeostasis and, thus, protect against inflammation and tissue remodeling [161]. Unlike the 

professional phagocytes the PSCs do not release TGF-β while engulfing polymorphonuclear cells 

(PMN) [161]. Under oxidative stress, PSCs induce excessive extracellular formation in the presence of 

PDGF, TGF-β and other chemokines [101,102]. Switching from tissue remodeling to desmoplasia 

appears to be a crucial point of transformation for the cell; moving from inflammatory processes to 

proliferative functions can lead to neoplastic transformation.  

Several growth factors are involved in ischemia/reperfusion (I/R)-induced acute pancreatitis, such 

as VEGF, PDGF-A, FGF and TβRII at different phases of inflammation and regeneration [162,163]. 

Maximal expression of FGF, VEGF and TβRII is found in the early regenerative stage of acute 

pancreatitis, suggesting the possible involvement of these factors in promoting pancreatic recovery 

from damage and accelerating healing [162,163]. There is no direct evidence that TGF and PDGF have 

role in angiogenesis. However, there is indirect evidence that there are positive interactions between 

TGF-β1, PDGF-A and angiogenesis. A molecule called endocrine-derived VEGF or prokineticins 

plays a distinct role in angiogenesis in pancreatic pathology when exposed to TGF-β1 and PDGF-A [164]. 

Dependency of pancreatic diseases on growth factors are presented in the schematic diagram (Figure 9). 

Pancreatic cancer cells have upregulated expression of IGF-1 and IGF-IR that correlate to the 

aggressiveness of the disease. On the other hand, the mechanism of IGF-IR activity is crucially related 

to the other signaling cascades interrelated to the phenotypic behavior of the disease. For example, cell 

invasion requires Ras activation by IGF-IR, while cell proliferation and VEGF expression requires Src 

activation through IGF-IR. Our laboratory has clearly delineated the involvement of Ras and Src 

signaling in IGF-IR activity in pancreatic cancer cell proliferation and invasion [70]. Moreover 

Sp1-dependent VEGF transcription is regulated by IGF-IR signaling through IRS-2 and modulated by 

a negative feedback loop of PKC-zeta to IRS-2 [165]. Molecular targeting against IGF-IR has been 

shown to reduce pancreatic tumor growth and vessel density in an in vivo system [166]. Stoeltzing et al. 

has also suggested the possible existence of autocrine activation of IGF-IR that might affect VEGF 

secretion and angiogenesis in human pancreatic cancer. Treating advanced pancreatic cancer in mice 

by targeting EGFR and VEGFR in addition to Gemcitabine results in significant tumor reduction and 

decreased angiogenesis by down-regulating proangiogenic molecules [167]. No direct relationship has 

been found between VEGF and EGF. However, it has been observed that blocking EGFR 

downregulates expression of NRP-1 and, thus, reduces angiogenesis in an in vivo model [168]. As 

NRP-1 is a known coreceptor for VEGF, it has been assumed that EGF has some indirect interaction 

with VEGF through NRP-1. 
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In comprehensive pancreatic cancer treatment, surgery is the prime modality. However, surgery is 

not suitable in many of the cases. Poor surgical outcome is often due to the extensiveness of the 

disease at diagnosis. Proper judgment is necessary to identify the potential cases that will benefit from 

surgical intervention. Extensive staging investigation can include serum analysis of various growth 

factors. Hence, growth factor levels can guide physicians and surgeons in making decisions about 

using aggressive chemotherapy and radiotherapy as adjuvants in specific groups of patients likely to 

respond to these treatments. In late stage pancreatic cancer, specific serum growth factor levels are 

overexpressed such as EGF, VEGF, FGF and PDGF [159]. A multivariate analysis of pancreatic 

cancer divided the patients into two groups based on their serum concentration of VEGF, bFGF, and 

IGF-1: resectable and unresectable. They found serum VEGF and bFGF were higher in the pancreatic 

carcinoma group. Although the VEGF level is correlated to tumor resectability, the bFGF and IGF-1 

were not. They reported that VEGF was correlated to tumor grade, nodal involvement, vascular 

invasion, metastases and stage; bFGF was associated with tumor size and grade; and IGF-1 was 

correlated with vascular invasion [169]. 

The potential mobilization of mesenchymal stem cells (MSC) [170] toward the site of 

inflammation, injury, or tumor development has drawn scientific attention. Several growth factors are 

involved in mobilization of MSC toward the lesion site. Growth factors, such as PDGF, EGF, and 

VEGF drive mobilization of MSC toward the pancreatic tumor. These growth factors also participate 

in tumor angiogenesis [171]. Growth factor-driven MSC migration can be blocked using antibodies 

against PDGF, EGF, and VEGF in an orthotopic mouse pancreatic cancer model. Tumor stroma is a 

recognized component of tumor microenvironment in pancreatic carcinoma. Stromal production is 

accelerated by the abundance of FGF, EGF, TGF, and connective tissue growth factor [172]. MSC 

have a vital role in stromal development [173] and development of growth factor-targeted MSC 

treatment may promote new approaches for pancreatic cancer chemotherapy. 

TGF-βs are multifunctional polypeptides that participate in many types of tumor stromal reactions. 

To date, the way that TGF-βs act in the pancreatic cancer microenvironment is not completely 

understood. However, TGF-β1 was shown to upregulate VEGF production and enhance liver 

metastasis by modulating angiogenesis [174] and immunogenicity [175] in an in vivo mouse model. 

One study has shown increased serum levels of TGF-β1 and VEGF in all cases of pancreatic 

adenocarcinoma. However, they could not find any variation between TGF-β1 level and pancreatic 

cancer staging [176]. 

Explaining the molecular mechanism of peritoneal metastasis in gastrointestinal malignancy can 

give us insight into how FGF-mediated enhancement of VEGF production can contribute to metastasis. 

One group has reported that addition of FGF can enhance the amount VEGF produced by human 

peritoneal mesenchymal cells in vitro [177]. FGF sometimes works as second line proangiogenic 

factor by modulating the production of VEGF and angiogenesis. Using adenoviral technology to 

inhibit FGF activity was anti-angiogenic in a pancreatic cancer mouse model. These data taken 

together suggest a crucial role of FGF in angiogenesis via production of VEGF in vivo. Combining 

adenoviral technology against both VEGF and FGF resulted in a synergistic affect that prevented 

angiogenesis and, thus, tumor progression [178]. In another study, FGF-7 worked as an  

epithelium-specific growth factor in paracrine fashion through FGFR2/IIIb and acted as a mediator of 

mesenchymal-epithelial interactions [179]. 
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Tissue remodeling and pancreatic fibrogenesis interactions both contribute to the development of 

chronic pancreatitis. On the other hand, desmoplastic reaction beyond fibrogenesis takes predominance 

in pancreatic carcinoma. In both the pathogenesis of pancreatitis and pancreatic carcinoma, 

extracellular matrix formation played an important role in formation of desmoplasia, and, hence, the 

tumor microenvironment. However, the role of desmoplasia surrounding the pancreatic neoplasm is 

poorly understood. Several investigators have defined the regulatory role of stromal components, 

which participate in pancreatic cancer cell activity. However, it is still unclear how the cellular 

components like PSCs in tumor stroma maintain the microenvironmental homeostasis to promote 

tumor cell growth and metastasis. In vitro culture of pancreatic cancer lines with tumor derived stromal 

cells have shown resistance to chemotherapy in comparison to cancer cells alone [180]. Extracellular 

matrix formation and growth factors are known to be involved in the balanced interaction between 

PSC and acinar cells. A series of studies noted that growth factor-induced PSC activity participates in 

different ways. In addition to forming the extracellular matrix, PSC act like macrophages by 

scavanging damaged and senescent acinar cells in order to maintain tissue homeostasis and, thus, 

protect against inflammation and tissue remodeling [161]. Unlike the professional phagocytes the 

PSCs do not release TGF-β while engulfing polymorphonuclear cells (PMN) [161]. Under oxidative 

stress PSCs induce excessive extracellular matrix formation in presence of PDGF, TGF-β and other 

chemokines [101,102]. There is a possible autocrine loop for activation and proliferation of rat PSC in 

the presence of TGF-b1. This PSC activity was abolished by TGF-b1 neutrilising antibody. There is 

possible autocrine loop for activation and proliferation of rat PSC in presence of TGF-β1. This PSC 

activity was abolished by TGF-β1 neutralizing antibody. Interestingly, activated PSC participate in 

extracellular matrix formation through several growth factors such as bFGF, TGF-β1 and PDGF [181]. 

Switching from tissue remodeling to desmoplasia appears to be a crucial point in the transformation 

from inflammation to tumorigenic proliferation. From review of literatures we have summarized the 

differential expression of several growth factors in pancreatic pathogenesis in table 2.  

16. Future Direction 

In vivo [101,106] and in vitro [101] activation of PSCs have extensive involvement in pancreatic 

tumor microenvironment and tumor desmoplasia. However, growth factor enrichment of tumor 

microenvironment has resulted in extracellular matrix formation and thus, tumor desmoplasia [181].  

Engagement of these growth factors (VEGF, IGF, PDGF, FGF, EGF, TGF) and their signaling 

cascades at different stages of pancreatitis and pancreatic carcinoma development appear to be crucial 

for the progression of these diseases. Intensive investigation is needed to determine whether the 

crosstalk between different growth factors in pancreatitis and pancreatic carcinoma is useful to define 

the pathological staging of patients and dissect them into different treatment subgroups. In depth 

explorations are required to define growth factors’ participation in the process of transformation of 

chronic pancreatic diseases to intraepithelial neoplasia and then to pancreatic adenocarcinoma. 

Molecular targeted chemotherapy may improve the therapeutic approach as an adjuvant to surgery in 

some pancreatic carcinoma patient subgroups. Hence, understanding of the molecular signature of 

different growth factors and their receptors is of importance for diagnosis and management of 

pancreatic disease. 
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17. Conclusions 

Studies investigating the involvement of growth factors provide novel insights into the 

patholophysiological processes of pancreatic disease. Conceptually, development and progression of 

pancreatitis and pancreatic carcinoma depend on various signaling pathways involved in cancer 

desmoplasia, proliferation and progression. Areas for future exploration include a better understanding 

of the crosstalk between various molecules involved in angiogenesis, tumor progression, and sustained 

tumor cell growth. These studies will provide additional insight into growth factor regulated processes 

that may translate into novel therapeutic approaches that target specific growth factors and their 

mediators that are involved in pancreatic disease processes. 
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