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Abstract: Vimentin was originally identified as an intermediate filament protein present 

only as an intracellular component in many cell types. However, this protein has now been 

detected on the surface of a number of different cancer cell types in a punctate distribution 

pattern. Increased vimentin expression has been indicated as an important step in 

epithelial-mesenchymal transition (EMT) required for the metastasis of prostate cancer. 

Here, using two vimentin-specific monoclonal antibodies (SC5 and V9 directed against the 

coil one rod domain and the C-terminus of the vimentin protein, respectively), we 

examined whether either of these domains would be displayed on the surface of three 

commonly studied prostate cancer cell lines isolated from different sites of metastases. 
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Confocal analysis of LNCaP, PC3 and DU145 prostate cancer cell lines (derived from 

lymph node, bone or brain prostate metastases, respectively) demonstrated that both 

domains of vimentin are present on the surface of these metastatic cancer cell types. In 

addition, flow cytometric analysis revealed that vimentin expression was readily detected 

along with CD44 expression but only a small subpopulation of prostate cancer cells 

expressed vimentin and the putative stem cell marker CD133 along with CD44. Finally, 

Cowpea mosaic virus (CPMV) nanoparticles that target vimentin could bind and 

internalize into tested prostate cancer cell lines. These results demonstrate that at least two 

domains of vimentin are present on the surface of metastatic prostate cancer cells and 

suggest that vimentin could provide a useful target for nanoparticle- or antibody- cancer 

therapeutic agents directed against highly invasive cancer and/or stem cells.  

Keywords: vimentin; prostate cancer; metastases; stem cell; Cowpea mosaic virus 

 

1. Introduction  

Prostate cancer most frequently develops in men over the age of fifty and is responsible for the 

second greatest number of deaths in this age group second only to lung cancer [1]. When prostate 

cancers are found early enough while still localized within the prostatic capsule, the disease can be 

cured by radical prostactectomy [2]. However if this cancer has metastasized beyond the local prostate 

gland, no curative therapy currently exists and the disease can be lethal [3]. Under these conditions, 

death typically occurs due to the preferential abilities of certain cancer cells to metastasize to lymph 

nodes and bone or, in fewer instances, to the brain. It is the metastases that produce the poorer clinical 

outcomes of the disease. With regard to prostate cancer metastases, steps along the pathway to 

malignant transformation must first occur to produce the life-threatening cell types. It is likely that all 

metastatic cells should share some features in common despite differences in tissue specificities in 

their spread. If a protein structure could be identified that has a relationship to this common metastatic 

pathway, its targeting could provide a manner by which to treat currently incurable metastatic disease.  

We propose that surface vimentin could be such a common marker of highly metastatic cancer cells 

and as well possibly related to prostate cancer stem- or progenitor cells. Proteome analysis indicated 

vimentin expression correlated with invasion and metastases of androgen-independent prostate  

cancers [4]. To achieve a long-lasting cure in cancer therapy, it is envisioned that cancer stem cells 

must also be eliminated as well [5]. Vimentin has been previously linked to the metastatic potential of 

cancer cells as its increased expression has been demonstrated to be a marker of epithelial-

mesenchymal transition (EMT) in prostate cancer [6]. Prostate cancer cells must undergo EMT for 

invasiveness and metastases to occur. Critical alterations that occur during EMT of primary epithelial 

tumor cells result in tumor cells capable of penetrating the extracellular matrix and accessing 

lymphatic and blood vessels for tumor metastases.  

Interestingly, EMT is a normal process that occurs in embryonic development during organogenesis 

allowing epithelial cells to differentiate into spindle-shaped cells with mesenchymal properties 

showing or possessing invasive properties. The developing embryonic organ invasion fronts resemble 
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fronts of tumor metastases, and cells undergoing EMT could share characteristics of primitive tissue 

stem cells and actually represent tumor stem cell populations. A link between EMT and hypoxia may 

be a trigger of prostate cancer metastases in the tumor microenvironment. Vimentin expression was 

induced under hypoxic conditions and corresponded to increases in invasive metastatic potential of 

LNCaP tumor cells [7]. Cell surface expression of the SC5 mAb domain of vimentin was observed for 

cutaneous T-cell lymphomas [8] and earlier the CLNH11.4 MAb was shown to detect vimentin on the 

surface of a variety of malignant cells including prostate cancer cells, but not on healthy cells [9-11]. 

With regard to therapeutic efficacy and targeting, glioma patients showed reduced tumor growth after 

intravenous treatments with the vimentin-specific antibody CLN-IgG [12]. 

The prostate cancer cell lines DU145, LNCaP and PC3 can be passaged and used to form xenograft 

tumors. Prostate cancer cells have previously been reported to be heterogeneous in their tumorigenic 

capacity [13]. In accordance with the cancer stem cell models that posit only a rare subset of cells are 

tumor-initiating cells, several markers for prostate cancer stem cells have been reported including the 

cell surface markers CD44 and CD133 [14,15]. In a previous report, stem-like cells isolated from 

prostate cancer patient tumors were shown to express both CD44 and CD133 and this population had 

the highest colony forming capacity and could differentiate into multiple cell types [16]. CD44 sorted 

tumor cell populations have been reported to be enriched for tumorigenic and metastatic progenitor 

cells [17]. There is now considerable evidence that CD44 expression is linked to cancer-initiation cells 

(CIC) and stem- or progenitor cells [18]. CD133 is another marker associated with being part of CICs 

and interestingly with regard to targeting has been shown to be located on the same membrane 

microdomain as the CD44 molecule [19]. Previously, a CD44+21+CD133+ population of cells 

isolated from the DU145 prostate cancer line was shown to have the capacity for self-renewal and 

reported to be a marker of prostate cancer stem cells [20]. Here, we examined the co-expression of 

surface vimentin with the CD44 and CD133 stem- or progenitor cell marker proteins.  

We demonstrate that two different domains of vimentin are detectable on the surface for each of 

three commonly studied prostate cancer cell lines LNCaP, PC3 and DU145. Each of these cell lines 

was established from metastases isolated from different lesion sites in the body corresponding to 

lymph node, bone and brain. For each tumor line, both SC5 and V9 mAbs specific for vimentin were 

capable of detecting surface expression representing two different regions of the protein. In addition, 

we found major populations of cells that express vimentin with CD44 and only a minor subset that 

express these molecules with CD133, a potential marker on cancer stem cells. Finally, we demonstrate 

that Cowpea mosaic virus (CPMV) nanoparticles are capable of binding to the surface of both LNCaP 

and PC3 cells. CPMV nanoparticles have been extensively studied have for potential applications in 

nanomedicine. CPMV nanoparticles are monodisperse and about 30 nm in size; they can be engineered 

with imaging moieties and therapeutic molecules using bioconjugate chemistry [21]. The in vivo 

properties of CPMV are well understood; after intravenous inoculation CPMV particles are cleared 

rapidly from circulation with no apparent toxicity or pathological effects [22]. CPMV nanoparticles 

were previously shown to bind surface vimentin on other human tumor cells [22,23]. While we have 

not obtained a rigorous experimental proof that vimentin binding extrapolates to the prostate cancer 

cells, we suggest vimentin domains are recognized by CPMV. These results provide the possibility of 

creating therapeutic agents capable of targeting vimentin in combination with other surface markers to 

prevent cancer metastases as well as kill cancer stem cells. 
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2. Materials and Methods 

2.1. Cell Culture 

The prostate cancer cell lines DU145, LNCaP and PC3 were obtained from American Type Culture 

Collection (Manassas, VA, USA). Dulbecco’s modified Eagle’s medium (DMEM) was used to culture 

the cell lines, supplemented with 10% fetal bovine serum (FBS), 100 g/mL streptomycin and  

100 IU/mL of penicillin.  

2.2. Immunofluorescence and Flow Cytometric Analysis  

For fluorescence microscopy, SC5 ascites [24] and V9 mAb (Sigma, St. Louis, MO, USA) were 

used for experiments to detect surface and cytoplasmic vimentin expression. For SC5 mAb staining, 

the goat anti-mouse IgM FITC conjugate (Invitrogen) was used as the 2º detection mAb and as a 

control alone. For V9, a goat anti-mouse Alexa Flour 488 was used as the 2º detection mAb and as a 

control alone. In this analysis, a total of 5 × 10
4
 prostate cancer cell lines or HMEC-1 cells were grown 

on 35 mm glass bottom petri dishes (Matek, Ashland, MA, USA) overnight at 37 ºC in 2 mL of 

medium. For surface staining, cells were fixed with 3% paraformaldehyde, 0.3% gluteraldehyde, 1mM 

MgCl2 in PBS pH 7.2 for 5 min at RT. The cells were then blocked for 45 min with 5% PBS at RT 

followed by staining with vimentin antibody SC5 or V9 (1:200 in PBS) and then incubated for  

45 minutes at 4 ºC. For cytosolic detection, an additional permeabilization step was included following 

fixation using 0.2% Triton X-100 in PBS for 2 min at RT. Cell nuclei were stained using  

4',6-diamidino-2-phenylindole (DAPI) (1:1000 for 5 min at room temperature). Three washings in PBS 

were performed between each step of the staining procedure. Dishes were imaged using a Biorad 2100 

confocal microscope.For flow cytometric analysis, prostate cancer cells were displaced by treatment 

with 1× Citric Saline instead of trypsinization to prevent any potential proteolytic cleavage of surface 

vimentin molecules that had been previously reported [9]. The SC5 anti-vimentin ascites was used in 

this analysis along with CD44-PE (eBioscience) and CD133-APC (Catalog# 130-090-826, Miltenyi 

Biotec) mAbs as well as isotype controls. Goat anti-mouse IgM FITC mAb was used as the negative 

control for vimentin stainings. Cells were collected in 96-well U-bottom shaped plates in 100 L 

portions at a concentration of 5 × 10
6
 cells/mL. Prior to staining, cells were fixed for 5 min at RT. To 

stain for cell surface vimentin non-permeabilized cells were stained with SC5 ascites at a dilution of 

1:200 and incubated at 4 °C for 45 min in FACS buffer (PBS pH 7.4 containing 1 mM EDTA, 25 mM 

HEPES and 1% FBS). The secondary goat anti-mouse IgM-FITC conjugated antibody was then used 

at a 1:200 dilution in FACS buffer and incubated for 45 min at 4 °C. For counter-staining experiments, 

cells were then incubated with CD44-PE and subsequently CD133-APC mAb with 3 washes in PBS 

between each incubation step. Analysis was performed on a FACSCalibur flow cytometer (Becton 

Dickinson, Mountain View, CA, USA). 

2.3. CPMV Uptake by Confocal Microscopy 

CPMV was propagated in Vigna unguiculata and purified using established procedures [25]. 

PEG2000, Oregon Green 488 (O488), and/or Alexa Fluor 647 (A647) were covalently attached to 
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surface Lys residues on CPMV using N-hydroxysuccinimide (NHS) activated esters. PEG2000-NHS 

(NANOCS, New York, NY, USA), O488-NHS (*6 isomer*), or A647-NHS (Invitrogen, Carlsbad, CA, 

USA) was dissolved in DMSO and added to CPMV in a molar excess of 3000 to CPMV (2–3 mg mL
−1

), 

and the reaction was carried out for 2 hours or overnight at room temperature in a PBS pH 7.2:DMSO 

mixture of 8:2. Samples were purified using gradient ultracentrifugation in 10–40% sucrose gradients 

in 0.1 M phosphate buffer pH 7.0 (Beckman SW 28 Ti rotor, 28700 rpm, 3 hours, 4 °C) followed by 

ultra-pelleting (Beckman 50.2 Ti rotor, 42000 rpm, 3 hours, 4 °C). 

For CPMV uptake analysis, cells were grown as described above. And then 5 g CPMV-O488 

particles were added in growth media and cells were incubated at 37 C and 5% CO2 for 3 hours. 

Excess CPMV was removed and cells incubated for additional 3 hours in growth medium, prior to 

fixation, blocking, staining of the nuclei, mounting, and imaging as described above. In additional 

experiments, cell membranes were also stained using Alexa Fluor 555-labeled wheat germ agglutinin 

(WGA-A555) provides an assessment based on visualization for internalization of CPMV nanoparticles. 

3. Results 

3.1. Expression of two Different Domains of Vimentin as Detected by SC5 and V9 mAbs on the Surface 

of DU145, LNCaP and PC3 Prostate Cancer Cell Lines 

The DU145, LNCaP and PC3 cell lines were isolated from three distinct metastatic sites from 

prostate cancer patients from brain, lymph node and bone, respectively. We determined whether at 

least two different domains of vimentin could be displayed on the surface of these metastatic lines as 

dual targeting of closely associated epitopes could be utilized for possible improvements of targeted 

immunotherapy. As shown in Figure 1, differential expression of surface versus cytosolic vimentin 

was detectable for each of these metastatic cell lines following confocal microscopy analysis. Using 

SC5 mAb recognizing vimentin, a punctate staining pattern on the surface of each cell line was 

detected for DU145, LNCaP and PC3 cells. It is not clear why a punctate staining pattern occurs or 

why not all cells stain positive for vimentin. In addition, the intensity of DU145 vimentin cell surface 

staining appears less intense in comparison to PC3 and LNCaP cells. It is possible that detection of 

surface vimentin is dependent on a density threshold and that the absence of staining could reflect 

different stages of cell differentiation or assemblage of hemidesmosomes. This polarized (punctate) 

localization pattern of surface vimentin has been previously reported on HeLa, HT-29 and HuT-78 

cells [8,22,23] 

The vimentin staining pattern was contrastingly different following permeabilization of the cells 

with Triton-X 100. Here, each of the permeabilized cell lines demonstrated a more diffuse and intense 

staining pattern of the cytoplasmic compartment.whereas cells stained with the secondary goat  

anti-mouse control antibody produced no staining pattern. SC5 is a monoclonal antibody that 

recognizes the rod 1 coil domain of the vimentin protein. In data not shown, the V9 mAb produced an 

identical staining pattern similar to that seen for the SC5 antibody with punctate surface and diffuse 

cytoplasmic staining. V9 recognizes a distinct carboxy terminal domain of vimentin. Interestingly as 

seen from the figure, not all cells had detectable surface vimentin expression; this is consistent with 

what was found for surface vimentin expression on cervical, breast and colon cancer cell lines [23]. 
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Thus, these results demonstrate that at least two unique domains of vimentin are expressed on the 

surface of each of the metastases derived prostate tumor cell lines.  

Figure 1. Vimentin is detected on the surface of DU145, LNCaP and PC3 tumor cells by 

SC5 mAb on non-premeabilized cells by confocal microscopy (40×). Intracellular 

expression is also detected in cells permeabilized by treatment with Triton-X 100. The goat 

anti-mouse FITC 2
o
 mAb used alone as a control produced no staining pattern. Similar 

staining results were obtained with the anti-vimentin mAb V9 (data not shown). Results 

indicate two different epitope domains of vimentin are present on the surface of each 

prostate cancer cell line.  

 

3.2. Flow Cytometric Examination Reveals Differential Expression of Surface Vimentin between the 

Three Different Prostate Metastatic Cancer Cell Lines  

Earlier examination of PC3 cells revealed a hierarchy in subpopulations of cells in culture for their 

tumorigenic capacity with holoclones expressing CD44 being stem-like cells with tumor initiating 

activity [26]. To begin to examine for differences in function of vimentin positive cells, we first 

performed flow cytometry analysis using the SC5 mAb (Figure 2). We were able to detect both 

qualitative and quantitative differences in the surface expression of vimentin between the three 

different prostate cancer lines. DU145 cells revealed a much lower percentage of positive staining for 
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surface vimentin expression in comparison to both the LNCaP and PC3 cell lines: 35.9% of DU145 

cells stained for surface vimentin in comparison to 82.1% for LNCaP and 73.8% of PC3 cells, 

respectively. Vimentin expression appeared to be dichotomous with high and intermediate staining 

populations of cells for each tumor type.  

Figure 2. Characterization of vimentin detected on the surface of DU145, LNCaP and PC3 

prostate cancer cell lines. Flow cytometry analyses were performed on cells that were 

displaced with 1× Citric Saline so as not to proteolytically disturb surface molecule 

expression. Cell staining was performed with SC5 mAb followed by FITC-conjugated 

2º mAb.  

 

3.3. Flow Cytometric Examination Reveals Robust Surface Expression of CD44 on all three of the 

Metastatic Prostate Cancer Cell Lines  

CD44 is an important surface receptor protein that binds hyaluronan and is involved in cell adhesion 

and migration [27]. With regard to prostate cancer progression, CD44 has been reported to be on the 

population of tumor cells enriched in tumorigenic potential [17]. We therefore, examined the 

metastatic tumor cell lines for their surface expression of CD44. As shown in Figure 3, each of the 

three different metastatic prostate tumor cell lines examined had remarkably high percentages of CD44 

positively staining cells with each line staining for CD44 at greater than 95%. This high percentage of 

staining detected could be related to the citric saline procedure for detachment of the cells. There is a 

stalk-like structure between the N-terminus globular domain and the transmembrane domain that 

contains many putative proteolytic cleavage sites [28]. CD44 expression also appeared to be 

dichotomous as reflected by the presence of high and intermediate staining populations within the 

prostate cancer cell lines. Cells used in these experiments were all derived from freshly split cells and 

used within 24 hours for analysis. It is unclear if this could also impact the detection of CD44 in our 

hands. Regardless from our analysis, the majority of cells from each metatstatic tumor line express the 

CD44 molecule on their surface.  
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Figure 3. Characterization of CD44 detected on the surface of DU145, LNCaP and PC3 

prostate cancer cell lines. Flow cytometry analyses were performed on cells that were 

displaced with 1X Citric Saline so as not to proteolytically disturb surface molecule 

expression. Cell staining was performed with CD44-PE conjugated mAb.  

 

3.4. Flow Cytometric Examination Reveals Vimentin and CD44 Are Co-expressed with CD133 in a 

Small Subpopulation for all three of the Metastasis-Derived Prostate Cancer Cell Lines 

A CD44+21CD133+ population of cells was previously characterized as a stem cell in primary 

and metastasized prostate cancers [13,16]. We next determined whether surface vimentin would  

co-express with CD44 and CD133. As shown in Figure 4, co-expression of surface vimentin with the 

CD44 and CD133 molecules was found on a small subpopulation of cells. This surface expression 

pattern of vimentin could mark stem- or progenitor-like cells in all three metastatic prostate lines if 

CD133 and CD44 are also co-expressed in this population. Interestingly, CD133 expression appeared 

to preferentially mark CD44 high populations of cells. As a population, Vimentin+CD44+CD133+ 

cells represented approximately only 0.3, 0.4 and 5% of the total sorted tumor cell population for the 

DU145, PC3 and LNCaP lines, respectively. PC3 cells have been characterized to have a higher 

metastatic capacity versus DU145 followed by LNCaP cells that are not invasive [29,30]. Given the 

expression profile of these three cell types, CD133 expression would not appear to associate with 

invasive capacity. However, there does appear to be some correlation with the intensity of CD44 

expression and metastastic invasiness. The intensity of CD44 expression for PC3 cells qualitatively 

shifted almost half a log higher compared to both DU145 and LNCaP cells. Clearly additional factors 

must contribute, as LNCaP cells are the least invasive of the cell types. CD44 has been shown to 

associate with membrane-associated metalloprotease that cleaves CD44 to produce a modified 

ectodomain that can enhance tumor cell migration [31]. It is interesting to speculate that this cleavage 

could account for better binding to CD133 epitope 1 recognized on PC3 cells by this mAb but this 

concept remains to be tested. Analysis of CD44 and vimentin expression revealed two major 

populations of cells (data not shown). We found one population of cells to be Vimentin-High,  

CD44-Intermediate and another to be Vimentin-Intermediate, CD44-High. It is intriguing to speculate 

that these two populations actually represent meroclones or paraclones and that the CD44-High,  

Vimentin-High are holoclones that harbor stem-like cancer cells that has been reported for PC3 cells in 

culture [26].  
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Figure 4. Characterization of surface vimentin+ CD44+ CD133+ population of cells on 

DU145, LNCaP and PC3 prostate cancer cell lines. Flow cytometry analysis was 

performed on cells that were displaced with 1X Citric Saline so as not to proteolytically 

disturb surface molecule expression. Cell staining was performed with SC5 mAb directed 

against vimentin, CD44-PE and CD133-APC mAbs.  

(DU145)       (LNCaP) 

    

(PC3) 

 

3.5. Vimentin Is not Detected on the Surface of HMEC-1 Cells a Surrogate Cell Type for Vascular 

Endothelium 

The HMEC-1 cell line was generated by transfection with human telomerase catalytic protein to 

prevent unwanted activities that SV40 transduction might contribute to cellular function [32]. HMEC-1 

cells were derived from primary human microvascular endothelial cells and serve as an in vitro model 

for human endothelium. As an approximation of in vivo vascular binding capacity, we examined 
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HMEC-1 cells against SC5 mAb to determine if surface vimentin is present (Figure 5). We found that 

unlike the metastatic prostate cancer lines, no surface vimentin is detectable on HMEC-1 cells. 

However, permeabilized cells still produced the diffuse cytoplasmic vimentin detection consistent with 

its role as an intermediate filament protein. This result suggests that intravenous delivery might not 

inhibit vimentin-targeted delivery of tumor therapeutic agents either through antibody or nanoparticles 

if targeted through an appropriate vimentin domain. It has previsouly been shown that anti-vimentin 

antibodies can be specifically targeted to tumors in vivo. Data indicate that surface vimentin is 

preferentially expressed on tumor endothelium compared to healthy vasculature [33]. This is consitent 

with previous reports showing that CPMV is preferentially localized to tumor endothelium [34]. 

Furthermore, it was shown that CPMV nanoparticles could be targeted to surface vimentin-expressing 

HT-29 tumors in vivo [23]. The expression, display, function, and availability of surface vimentin or its 

CPMV binding epitope(s) are unknown. It remains to be determined what forms of vimentin are 

surface displayed at sites of tumors, its neovasculature versus other possible tissue target sites that 

could complicate the delivery of therapeutic agents. 

Figure 5. Vimentin is not detected on the surface of HMEC-1 cells by SC5 mAb on  

non-premeabilized cells by confocal microscopy (40X). Intracellular expression is detected 

upon permeabilization by treatment with Triton-X 100. The goat anti-mouse FITC 2º mAb 

used alone as a control, produced no staining pattern. Results indicate that the SC5 domain 

of vimentin is not present on the surface of human microvascular endothelial cells. 

 

3.6. Cowpea Mosaic Virus (CPMV) Nanoparticles Are Capable of Targeting PC3 and LNCaP 

Prostate Tumor Cells through Surface Vimentin 

We next determined whether the metastatic prostate tumor cells could be targeted with a 

nanoparticle, CPMV. CPMV nanoparticles can be functionalized with a variety of moieties used in 

imaging in therapy (reviewed in [21]). CPMV were previously shown to bind to surface vimentin on 

cells [22] and these nanoparticles were capable of localizing to HT-29 tumors (a highly aggressive 

human colon carcinoma line) in vivo using the chick chorioallantoic membrane experimental human 

tumor xenograft tumor model [23]. As shown in Figure 6A, PC3 cells are shown to be capable by 

binding to 1 g CPMV-O488 particles (1 × 10
6
 particles per cell) after only 3 hours of incubation. A 

similar binding staining pattern was found for the LNCaP cell line (data not shown). In Figure 6B, cell 
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membranes on PC3 cells were stained using Alexa Fluor 555-labeled wheat germ agglutinin  

(WGA-A555). Internalization of CPMV nanoparticles is suggested by the appearance of the green 

staining within the red membrane WGA-A555 fluorescence marker. However, more rigorous proof of 

internalization is still required as is the specific requirement of vimentin expression for the prostate 

cancer lines. To confirm specificity, CPMV particles were conjugated to polyethylene glycol (PEG). 

PEGylation is an effective strategy to reduce biospecific interactions. We recently demonstrated that 

CPMV particles covalently attached to PEG2000 (termed P2 formulation) were effectively shielded 

and vimentin-mediated cell interactions are significantly blocked up to 3 hours [35]. Such control 

experiments were conducted, and uptake of P2 particles in PC3 cells was not apparent (data not 

shown). These data further indicate vimentin-specific targeting of CPMV to surface vimentin-positive 

prostate cancer cells. However, testing with known inhibitors for internalization, vimentin competition 

or blocking antibody studies remain to be done. It is likely that surface vimentin can be targeted on 

metastatic prostate cancer cells by this nanoparticle. LNCaP cells did not appear to internalize the 

CPMV nanoparticles (data not shown). We do not know what accounts for this difference between the 

cell lines as it is currently unknown what domain(s) of vimentin are required for CPMV interaction or 

internalization.  

Figure 6. 5 × 10
4
 cells were grown in 35 mm glass bottom petri dishes (Matek, Ashland, 

MA, USA) overnight at 37 C and 5% CO2. For CPMV binding and uptake studies,  

(A) 1 g CPMV-O488 particles (1 × 10
6
 particles per cell) were added in growth media 

and cells were incubated at 37 C and 5% CO2 for 3 hours, prior to fixing using 4% 

paraformaldehyde and 0.3% glutaraldehyde in PBS pH 7.2 for 5 min at room temperature. 

Cell nuclei were stained by adding 4',6-diamidino-2-phenylindole (DAPI) (1:9500 for  

10 min at room temperature). Slides were mounted using Vecta Shield mounting medium 

(Vector Laboratories, Burlingame, CA, USA). (B+C) cell membranes were stained using 

Alexa Fluor 555-labeled wheat germ agglutinin (WGA-A555) and CPMV uptake could be 

demonstrated (B), PEGylated CPMV particles do not interact with the cells (C). Imaging 

was performed using a Biorad 2100 confocal microscope with a 60x oil objective. Data 

were analyzed and images were created using ImageJ. 

 

 



Cancers 2011, 3                

 

 

2881 

4. Discussion 

In this report, we demonstrate for the first time that multiple epitope domains of vimentin are 

expressed on the surface of three different prostate cancer cell lines derived from three different 

metastatic tissue sites. It is a highly desirable goal to be able to target metastases. Thus, the detection 

by SC5 and V9 mAbs recognizing the rod 1 coil and C-terminus region of vimentin on the surface of 

these metastatic cells could provide unique targets in the development of novel therapeutic agents 

designed to eliminate metastases. Moreover, we were able to demonstrate that surface vimentin is  

co-expressed on the surface of three different metastasis-derived prostate cancer cell lines with CD44 

and CD133 molecules. Several studies have indicated CD44+ populations of cells to be enriched in 

tumorigenic stem cells [17,36]. Preparative enrichment and transfer of this cell population enriched in 

CD44 and CD133 have been done in the past to demonstrate progenitor potential associated with this 

population of cells. It is interesting to speculate that these triple expressing Vimentin+CD44+CD133+ 

phenotype of cells are CSCs. However, these studies remain to be carried out for the 

Vimentin+CD44+CD133+ prostate cancer cells  

What role CD44 might have in the hierarchy of stem cell function could be related to its association 

with membrane-type 1 matrix metalloproteinase (MT1-MMP). CD44 has been shown to direct  

MT1-MMP to front of migrating cell lamellipodia [37]. MT1-MMP is required for degradation of the 

extracellular matrix for cancer cell migration. From our analysis, differences in the intensity of CD44 

expression were detected between the PC3, LNCaP and DU145 cell lines. An increased intensity in 

CD44 staining on the PC3 cell line was detected in comparison the DU145 and LNCaP cell lines. 

However, it is likely that this increased signaling cannot account totally for differences in invasiveness 

as LNCaP cells stained qualitatively similar to that of the slightly more invasive DU145 cell line. It is 

intriguing to speculate that proteolytic processing of CD44 accounts for any additional invasiveness of 

the tumor lines. This aspect of function remains further to be explored.  

CD133 is a transmembrane pentaspan protein that is described as a surface marker on human 

hematopoietic cells [38]. CD133 alone or in combination has been used as identification of cancer 

stem cell populations from metastatic tumors of brain [39], liver [40], pancreas [41], lung [42],  

colon [43] and the prostate [16]. However, CD133 expression has been reported to not solely be 

restricted to tumor initiating cells [44] and therefore finding additional molecule markers that may 

identify cancer stem cells is important. We were unable to directly detect any major shifts in CD133 on 

the bulk population of DU145, LNCaP and PC3 cells by flow cytometry analysis with the CD133 mAb 

(data not shown). However when CD133 populations were analyzed in CD44 by surface vimentin 

sorting, we found a subpopulation of cells for each tumor cell type that expressed all three surface 

markers. This population would be consistent with being a prostate cancer stem cell. Experiments are 

underway to examine whether this subpopulation has the ability for self-renewal.  

With regard to prostate cancer targeting, we were able to show uptake of CPMV nanoparticles by 

the prostate cancer cell lines and that HMEC-1 cells (surrogate cells for human vascular endothelium) 

did not bind the SC5 vimentin specific mAb. This result indicates that intravenous delivery of vimentin 

targeting antibody constructs or nanoparticles may not be taken up non-specifically in the vasculature 

and preferential target metastatic tumor cells. Indeed previous studies have shown that CPMV homing 

to tumors in vivo is observed [23,34]. Furthermore peptide targeted and native CPMV particles were 
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shown to localize to PC3 tumors in vivo [Steinmetz 2011 Prostate Imaging, Small]. We suggest the 

potential utility of CPMV nanoparticle to target prostate cancers via vimentin interactions, this, 

however, requires formal testing. An additional possible benefit for targeting through vimentin 

recognition is that a unique extracellular deposition for vimentin has now been shown to mark the 

stroma of prostate cancer lesions but not prostate hyperplasia or normal prostate epithelial tissue [45]. 

This unique stromal distribution pattern could also aide and serve as highly selective target for novel 

therapeutic agents against this cancer. In addition, increased expression of vimentin has also been 

found to localize on tumor neovasculature and this expression could also aide in the targeting or serve 

as a target in vimentin-directed cancer agents. 

We found that surface vimentin is detectable on the metastases-derived prostate cancer cells. 

This finding is consistent with other studies on expression of vimentin for metastatic versus  

non-metastatic breast cancer cells [23]. Surface vimentin expression may be a common marker for 

various metastatic cancers. Thus, targeted delivery of engineered therapeutic CPMV nanoparticles may 

open a strategy for treatment of metastatic disease. 

Finally, determining the actual topography of what domains of vimentin are expressed on the 

surface of prostate and other metastatic cancer cells could provide insights for the creation of novel 

therapeutic antibody agents, such as spectral-targeted antibody derivative constructs [46]. These agents 

are capable of binding multiple antigen targets simultaneously. Therefore, domains of vimentin that are 

displayed on the surface as well as the co-expressed CD44 and/or CD133 molecules could be used in 

therapeutic targeting. Such dual binding constructs could provide better tumor specificity through the 

added avidity of binding of each domain. The characterization of surface vimentin domain topography 

is of interest but still remains to be fully determined to utilize for targeted therapy. 

5. Conclusions 

We describe in this report that at least two different epitope domains of vimentin can be detected on 

the surface of three different prostate cancer tumor cell lines derived from different metastatic tissue 

sites. This commonality in expression on the metastatic lines makes surface vimentin an interesting 

and possibly universal target by therapeutic agents designed to treat metastases. Surface vimentin was 

found to be co-expressed on a subpopulation of cells along with CD44 and CD133 suggested to be 

markers of prostate cancer stem cells. Whether surface vimentin also marks stem- or pro-genitor cells, 

remains to be formally demonstrated. Finally as a proof-in-principle, we were able to demonstrate 

CPMV nanoparticles can target prostate cancer cells. Our findings suggest the possibility of creating 

novel nanoparticle or antibody derivative constructs using vimentin as a way to target prostate cancer 

metastases and/or stem cells therapeutically. 
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