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Abstract: Natural killer T cells are T lymphocytes with unique activation and effector 
properties. The majority of NKT cells, termed type-I or iNKT cells, recognize lipid 
antigens presented on MHC-like CD1d molecules. Type-I NKT cells have the capacity to 
rapidly secrete various cytokines upon activation, thereby regulate immune responses 
exerts dominant anti-tumor and anti-microbial effector functions. Specific activation of 
type-I NKT cells in mouse models boosts immunity and prevents metastasis, which has led 
to a number of phase I-II clinical trials. Since the discovery of NKT cells other subsets 
with different specificities and effector functions have been described. This article briefly 
reviews the physiological functions of NKT cell subsets, their implications in cancer and 
the attempts that have been made to employ NKT cells for immune therapy of cancer.  

Keywords: NKT cell; prostate cancer; immunotherapy 

Abbreviations: alpha-galactosylceramide, (�-GC); antigen presenting cells (APC); 
interleukin (IL); interferon-gamma (IFN�); natural killer T (NKT) cell; T cell receptor (TCR); 
dendritic cells (DC); cytokine-induced killer (CIK) cells 

 

OPEN ACCESS 



Cancers 2011, 3                            
 

 

3662 

1. Natural Killer T Cells 

Natural killer T (NKT) cells are a subset of innate lymphocytes with unique activation and effector 
properties. The majority of NKT cells (termed type-I NKT or iNKT cells) express a semi-invariant T 
cell receptor using the segments V�14 in mice and V�24 in humans rearranged with J�18 segments 
and preferentially paired with V�8.2 and V�11 segments [1,2]. Recently, NKT cells expressing an 
invariant TCR comprised of the segments V�10 and J�50 have been identified [3]. 

Unlike conventional T cells, which recognize peptides embedded in MHC molecules, type-I NKT 
cells recognize lipid antigens presented in monomorphic, MHC-like CD1d molecules [4,5]. Type-I 
NKT cells are CD1d-restricted, hence mice lacking CD1d molecules or associated beta2-microglobulin 
lack these cells [6]. Upon TCR-mediated activation type-I NKT cells produce various cytokines, of 
which some may have opposite functions. Secreted cytokines include both regulatory factors (e.g.,  
IL-4, IL-13, IL-10, TGF-�) as well as those with a clear pro-inflammatory function (e.g., IL-2, IL-17, 
IFN�, TNF-�) [7-9]. Naming feature of NKT cells is their expression of typical markers of natural 
killer (NK) cells. These proteins include both inhibitory and activating killer receptors (including 
NK1.1 through which NKT cells can exert cytotoxic effector functions [10]. Nonetheless, most 
attention has been attributed to the capacity to rapidly release different cytokines. Hence, type-I NKT 
cells were shown to contribute to a variety of different biological systems such as host defense against 
pathogens, tumor immune surveillance and immune tolerance [11-14].  

The prototypic ligand for type-I NKT cells, α-galactosylceramide (�-GC), has been identified from 
a screen for marine compounds with anti-cancer effects [15]. In a number of studies, which will be 
discussed later, �-GC administration in mice prevented tumor metastasis [16]. Subsequently, several 
type-I NKT cell-activating CD1d ligands derived from pathogenic and non-pathogenic micro-
organisms have been identified [17-21]. However, the identity of an endogenous ligand for  
type-I NKT cells remains elusive [22-25]. Finally, it has to be noted that in the absence of CD1d 
stimulation type-I NKT cells can be activated by combinations of cytokines, such as IL-12 and IL-18 
[26,27]. Type-I NKT cells activated by CD1d: �-GC complexes secrete IL-4 within minutes after 
activation, which is followed by a sustained secretion of IFN�, displaying opposite biological functions 
to IL-4. This bi-functional cytokine secretion profile has led to the development of several �-GC 
modifications stimulating a pronounced Th1 cytokine profile and thus increased anti-tumor activity 
observed in murine cancer models [28-31].  

The main CD1d-expressing cell types were identified as dendritic cells (DC), macrophages, and B 
cells. Physiological functions of CD1d molecules have intensively been analyzed in the case of DC. 
Interactions between NKT cells and DC differ in some key features of those between classical T cells 
and DCs. Type-I NKT cells constitutively exhibit a memory phenotype and thus do not require 
priming. Activation of type-I NKT cells and IFN� secretion follows contacts between CD154 
(CD40L)–CD40 and CD80/86 to CD28 molecules and elicits IL-12 secretion in DCs which stimulates 
IFN� secretion in NKT cells. These interactions explain the marked ability of type-I NKT cells to 
mature DCs and amplify immune responses and is consistent with the requirement for type-I NKT 
cells for low-dose IL-12 immunotherapy in some anti-tumor responses [32-34]. Some cancer types 
also express CD1d, including prostate, glioma, hepatocellular carcinoma, B-CLL, and multiple 
myeloma, suggesting NKT cells can directly interact with tumors [35-38]. Recent studies indicate that 
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tumor cells expressing CD1d may present lipid antigens thereby bias the effector functions of type-I 
NKT cells towards tolerance. For instance, prostate tumor cells by expressing CD1d molecules inhibit 
the activation of IFN� secretion by type-I NKT cells [38]. Sriram et al. showed that pharmacological 
blockade of glycolipid shedding from the cell surface of a lymphoma cell line rescues the recognition 
and killing of such cells by type-I NKT cells [39]. Along this line, NKT-mediated killing of early stage 
myeloma cells which express CD1d molecules is lost upon transition to advanced myeloma stage and 
subsequent loss of CD1d expression [40]. 

2. Type-I NKT Cell Activities in Cancer 

Type-I NKT cells were shown to contribute to immune surveillance in spontaneous and carcinogen-
induced cancers. Mice deficient in J�18 or CD1d lack type-I NKT cells and were found to be more 
susceptible to methylcholanthrene-induced carcinoma [41]. Numerous studies demonstrated cancer-
related type-I NKT cell defects in various types of human cancer, including advanced prostate cancer, 
multiple myeloma, melanoma, colon, lung, and breast cancer [42]. Despite overall variations of 
peripheral blood type-I NKT cells between 10–1,000 NKT cells/million T cells in healthy individuals, 
numbers of type-I NKT cells in cancer patients were consistently decreased [43]. Those NKT cells 
remaining in the circulation were refractory to �-GC-stimulated IFN� secretion accompanied with a 
diminished proliferation capacity. Reminiscent of conventional T cells, IL-2 was sufficient to reverse 
the block in proliferation of NKT cells in vitro. Diminished IFN� responses observed in multiple 
myeloma and prostate cancer patients could be reversed by co-administration with �-GC and IL-12 
administration, respectively [37,44]. Comparable to the situation in humans, decreased NKT numbers 
and defective functions were observed in several murine tumor models [38,45]. 

3. Type-I NKT Cells in Prostate Cancer 

Tahir et al. first described numerical and functional type-I NKT cell defects in advanced prostate 
cancer patients [44]. Similar defects were later found in the murine transgenic adenocarcinoma of the 
mouse prostate (TRAMP) model [38]. Consistent with this, Bellone et al. demonstrated the 
exacerbation of prostate cancer in type-I NKT cell-deficient TRAMP mice [45]. TRAMP mice are 
transgenic for the SV40 large T antigen (Tag) under control of the rat Probasin promotor. Beginning 
with puberty, male TRAMP mice express the oncogene and progressively develop prostate 
intraepithelial neoplasia as early as age of 10 weeks. TRAMP tumors metastasis spreading to lymph 
nodes, lung, and bone marrow, thus exhibit histological features of human prostate cancer [46].  

We characterized the interactions between type-I NKT cells and tumor cells in this mouse  
model ([38], Figure 1). Upon �-GC administration serum levels of the cytokines IL-4, IFN� as products 
of iNKT cells as well as IL-12 as a product of activated DCs were diminished in tumor-bearing mice, 
suggesting type-I NKT cells were refractory to stimulation. The tumor cell line TRAMP-C2 [47], 
human prostate tumor cell lines as well as mouse prostate epithelium (PrEC) expressed CD1d 
molecules on the surface, suggesting prostate (tumor) cells can directly interact with iNKT cells.  
Type-I NKT cells of healthy mice express low levels of the activation markers CD25, CD69, IL-12R 
in the steady state. Upon contact to TRAMP-C2 cells iNKT cells up-regulated these molecules and 
secreted IL-4. Notably, neither loading of tumor cells with �-GC nor addition of IL-12 were sufficient 
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to induce the IFN� production of NKT cells in contact to prostate tumor cells. Collectively, these data 
suggested that tumor cells, although up-regulating activation markers on type-I NKT cells (in 
particular the IL-12 receptor) inhibit complete responses, observed as a lack of IFN� production. Only 
the combination of the high-affinity ligand �-GC plus IL-12 led to the secretion of IFN� in healthy 
type-I NKT cells. Moreover, TRAMP-C2 cells inhibited the phosphorylation of the transcription factor 
STAT4, showing that tumor cells concurrently provide positive signals for activation (IL-12R  
up-regulation) and inhibit intracellular signals downstream of the IL-12R (i.e., STAT4). 

Figure 1. Proposed model of NKT cell-tumor interactions in murine prostate cancer. 

 

Which factors are responsible for the IL-12R blockade is not fully clear. One may speculate that 
CD1d expressing prostate tumor cells present an Th2-biasing endogenous lipid antigen in CD1d 
molecules, explaining the basal production of cytokines in the absence of exogenous �-GC. 
Reminiscent of these data, Chang et al. isolated the glycolipid lysophosphatidylcholine (LPC) from 
plasma of multiple myeloma patients binding to CD1d and skewing the cytokine secretion of type-I 
NKT cells towards IL-13 [48].  

Promising data of �-GC and NKT cells obtained from animal models led to a number of phase I 
and phase II clinical trials in cancer patients. These published and ongoing trials employed different 
approaches, sometimes used in combination (Table 1):  

(a) Activation of endogenous type-I NKT cells by �-GC; 
(b) Activation of endogenous type-I NKT cells by DCs/ monocytes, loaded with �-GC; 
(c) Expansion and re-infusion of type-I NKT cells. 
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Table 1. Examples of published and ongoing clinical trials using NKT cell subsets. 

Indication Treatment Responses Ref. 
type-I NKT cells 
advanced cancer  �-GC i.v. no clinical response in 24/24, SD 1 in 7/24 patients [50] 
non-small cell lung 
cancer 

�-GC-loaded PBMC, i.v. 
increased serum IFN� in 10/17, SD in 5/17, 
progressive disease in 12/17 patients 

[79] 

metastatic 
malignancies 

�-GC-loaded monocyte-
derived immature DC 

increased IL-12 and IFN� levels in 6/9 patients. 
Clinical responses: not monitored 

[56] 

multiple myeloma 
�-GC-loaded monocyte-
derived mature DC 

Increased NKT numbers and serum IL-12 & 
IFN��levels in 5/5 patients. 

[53] 

head and neck 
cancer 

�-GC-loaded monocytes, 
intranasal submucosa 

increased NKT numbers in 4/9, increased NK 
cytotoxicity in 8/9 patients 

[52] 

non-small cell lung 
cancer 

�-GC-loaded monocytes, 
intranasal submucosa; type-I 
NKT cells i.a. (tumor-feeding) 

increased NKT numbers in 7/8, PR 2 in 3/8, SD 
disease in 4/8 patients 

[57] 

metastatic 
malignancies 

in vitro expanded type-I NKT 
cells, i.v. 

Ongoing trial (NCT00909558)  

non-small cell lung 
cancer 

in vitro expanded, activated 
type-I NKT cells, i.v.  
Dose-escalating. 

No clinical response in 6/6 patients. Increased NKT 
numbers and increased IFN� levels in 2/3 patients 
with level 2 dose of iNKT cells  

[80] 

melanoma 
in vitro expanded type-I NKT 
cells i.v. 

Ongoing trial (NCT00631072)  

CIK cells 
metastatic 
malignancies 

IL-2 transfected CIK cells 
progressive disease 6/10, CR 3 in 1/10 patients, SD 1 
in 3/10 patients 

[78] 

non-small cell lung 
cancer 

chemotherapy plus CIK cells 
59 patients. Median survival time increased from 11 
to 15 months 

[81] 

non-small cell lung 
cancer 

activated CIK cells 
42 patients. Increased 2-year survival rate 
(94.7±3.6% vs. 78.8±7%) 

[82] 

renal cancer CIK cells CR in 3/16, PR in 1/16, SD in 6/16 patients [83] 
1 SD, stable disease; 2 PR, partial response; 3 CR, complete response. 

Giaccone et al. in a phase I study published in 2002 described the first experience with 
intravenously injected free �-GC into 24 patients with advanced cancer [49,50]. Frequencies of type-I 
NKT cells in patients were significantly lower compared to healthy individuals and further decreased 
to undetectable levels 24 hrs post-injection. Upon activation murine type-I NKT cells down-regulate 
TCR and NK markers for several days continuing to produce cytokines [51], hence, a decrease in 
detectable type-I NKT cells as Giaccone et al. observed might be judged as successful NKT cell 
activation. This notion has been challenged by other studies observing increased numbers of type-I 
NKT cells upon treatment [52,53]. In contrast to �-GC injection into mice, no liver toxicity could be 
observed in this study [49,50]. This might be attributed to the low number of type-I NKT cells resident 
in human livers compared to mice whose livers are naturally enriched for type-I NKT cells ([54], 
Table 2). Immunological effects as transient increases in GM-CSF and TNF-� serum levels were 
dependent on pre-treatment NKT numbers rather than �-GC dosage. Despite the decrease in NKT cell 
numbers and increases in serum cytokines no anti-tumor responses were observed in this study. 
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Table 2. Functional differences between human and mouse NKT cells. 

 Human Mouse 
Coreceptor expression CD4+, CD8+, DN type-I NKT 

subsets 
CD4+, DN type-I NKT cell subsets 

 type-I NKT cell cytokine profile Th2 cytokines: CD4+ > CD4− 
Th1 cytokines: CD4+ < CD4− 

Less pronounced dichotomy of type-I 
NKT cell cytokine production 

 type-I NKT frequency (blood) Blood: <0.1–1% Blood: ~1–2%  
NKT cell distribution Liver enriched for type-II NKT Liver enriched for type-I NKT cells 
Effects of �-GC injection No anti-tumor response 

No liver toxicity 
Prevents tumor regression and metastasis 
Liver toxicity 

Preclinical data obtained from mice indicated that injection of �-GC loaded DCs results in 
prolonged secretion of cytokines and less pronounced TCR downregulation in comparison to injection 
of free glycolipid [55]. These observations led to several phase I-II studies in advanced cancer patients, 
improving the immunological and clinical outcome as compared to the initial study by Giaccone et al. 
(Table 1). Nieda et al. enrolled a total of 12 patients who received intravenously injected autologous, 
immature DCs loaded with �-GC [56]. Serum IFN� levels significantly increased after the first DC 
administration and were further elevated after the second round of treatment, interpreted as a memory 
effect on NKT cells. Furthermore, two of 12 patients treated showed decreased serum tumor markers 
for up to 12 months post-treatment. Although transient drops of type-I NKT frequencies were observed 
after DC administration the overall frequencies did not change during the study course, suggesting that 
�-GC-loaded DC overcome functional defects of endogenous pre-treatment type-I NKT cells. Injected 
DCs mostly migrated to the liver and to lesser extent to the spleen of patients. In view that human liver 
harbors relatively low numbers of type-I NKT cells, specifically targeting DCs to spleens by using 
functionally mature DCs might improve the treatment outcome.  

Mature DCs have been shown to be more potent in stimulating T cells and thus were expected to be 
superior NKT stimulators in vivo. Chang et al. intravenously treated five advanced cancer patients 
with �-GC-loaded monocyte-derived DCs subsequently matured by TNF-�, IL-1� and IL-6 [53]. 
Importantly and in contrast to other studies using free �-GC or �-GC loaded immature DC, 
administration of mature DC significantly increased and could be detected for up to six months  
post-treatment. Whether the increased basal IL-12 release by mature DCs or the altered migration 
(e.g., to spleens) accounts for the improved immunological effects remains unsolved. 

Further published and ongoing trials were initiated to test the safety and therapeutic potential of  
ex vivo expanded and re-infused NKT cells. Kunii et al. designed a phase I trial in patients with 
recurrent head and neck squamous carcinoma received enriched iNKT cells and �-GC loaded DCs. 
Type-I NKT cells were injected into tumor-feeding arteries and DCs co-administered by nasal 
submucosal injection. V�24+ NKT (type-I) cell numbers increased in seven of eight patients, three 
cases showed a partial response, four exhibited a stable disease [57].  

4. Subsets of NKT Cells in Anticancer Therapy 

NKT cells exhibit a significant heterogeneity in terms of specificity. Whereas type-I NKT cells 
constitute the majority of the NKT family and protect from tumor growth, at least three other subsets 
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of NKT cells with different specificities, phenotypes and functions emerged, of which two were 
described in the context of immune surveillance [58] and will be discussed further. 

4.1. Type-II NKT Cells 

Type-II NKT cells are CD1d-restricted but express a polymorphic TCR. This cell type was first 
described by Cardell et al. demonstrating type-II NKT respond to different lipids than type-I NKT 
cells [59]. The main ligand of type-II NKT cells identified so far is sulfatide, a glycolipid derived from 
myelin sheath [60]. CD1d tetramers loaded with sulfatide or �-GC showed non-overlapping staining, 
suggesting that at least two distinct populations of natural killer T cells exist [59].  

Type-II NKT cells were shown to suppress immune surveillance against different murine tumor 
models, including fibrosarcoma, colon carcinoma, renal carcinoma and B cell lymphoma [61-64]. 
Using an elegant system Ambrosino et al. reciprocally activated type-I and type-II NKT cells by �-GC 
and sulfatide, respectively, in tumor-bearing mice. Whereas activation of type-I NKT cells protected 
against tumor growth, as expected, activation of type-II NKT cells suppressed this protective effect 
[63]. Blockage of immune surveillance was dependent on the expression of IL-13, which subsequently 
induced Gr-1+CD11b+ myeloid suppressor cells producing TGF-� [65]. Exceptionally, in the 
osteosarcoma model, Terabe et al. also provided evidence that type-II NKT cells can suppress immune 
surveillance independent of IL-13 [64]. Even more so, when type-I and type-II NKT cells were 
simultaneously stimulated with their respective CD1d ligands �-GC and sulfatide type-II NKT cells 
were able to suppress type-I NKT cells in a cell-cell contact dependent manner [63]. Whether (CD1d+) 
tumor cells present type-II NKT–stimulating ligands remains an unsolved, challenging question. A 
further unsolved issue is whether type-II NKT cells migrate into tumors and perhaps inversely 
correlate with disease state. To our knowledge, no clinical trials targeting type-II NKT cells have been 
conducted to date. 

4.2. Cytokine-Induced Killer (CIK) Cells 

A subset of lymphocytes showing a NKT cell-like behavior, termed cytokine-induced killer (CIK) 
cells, provided encouraging results in clinical studies in both autologous and allogeneic context [66,67]. 
CIK cells are a heterogenous population of cytotoxic T lymphocytes which express a non-invariant 
TCR repertoire, in the majority express the CD3+CD56+ phenotype and show marked expression of the 
activating natural killer cell receptor NKG2D (CD314) and CD94. Unlike for type-I and type-II NKT 
cells the nature of CIK cell antigens remains elusive. CIK cells are generated ex vivo by incubation of 
peripheral blood lymphocytes with an agonistic anti-CD3 monoclonal antibody, IL-2, IL-1�  
and IFN� [68]. CIK cells can be generated from CD1−/− mice suggesting that these cells differ from 
type-I and type-II NKT cells [69]. Target recognition and cytotoxicity of CIK cells is non-major 
histocompatibility complex-restricted but NKG2D-dependent [70]. The expression of NK markers on 
CIK cells is reminiscent of virus-specific CD8+ T lymphocytes which acquire expression of inhibitory 
NK cell markers and thereby regulate the immune response in infection [71,72]. Even more so, recent 
data suggest that CIK cells are effector memory T cells [73]. 

Although CIK cells have been reported to express NK killer receptors, the exact mechanisms of 
tumor cell recognition remain under debate. Killing of AML cells by CD3+ (CD56+ and CD56−) CIK 
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cells is dependent on interactions between HLA expressed on tumor cells and TCR but independent of 
NK cell receptors [74]. In contrast, Marten et al. demonstrated the improved anti-tumor activity of 
CIK cells to be mainly attributed to the pronounced proliferation rate leading to an increase in total 
lytic units [75]. 

Recently, DCs transduced with the tumor-associated antigen (TAA) PSMA were shown to stimulate 
CIK-cell mediated lysis of PSMA-expressing prostate tumor cells. Furthermore, the co-cultivation of 
Ad-PSMA-transduced DCs with CIK cells increased the production of IFN� after restimulation with 
PSMA peptide mixtures [76]. In a recent study by Pang et al. the antitumoral effects of allotumour 
RNA-transfected DCs cocultured with autologous CIK cells on hormone-refractory prostate cancer 
were evaluated [77]. The cocultured cells significantly inhibited tumor growth in SCID mice and 
induced cancer cell necrosis and apoptosis. Maturation of tumor RNA-pulsed DCs with autologous 
CIK cells enhanced antitumor immunity, which could be induced by increased CD4+ Th1 and CD8+ T 
cells and decreased CD4+CD25+ regulatory T cells. 

Recently, clinical trials aimed at combining active immunotherapy using tumor vaccines with 
passive immunotherapy using CIK cells have been performed. Evidence is rising that the application 
of CIK cells in combination with pulsed DC may indeed improve the immune response towards 
cancer. Autologous CIK cells modified to produce IL-2 have been tested in patients with metastatic 
renal cell carcinoma, colorectal carcinoma and lymphoma in a phase I trial without major side effects 
[78]. In this study, ten patients received 1–5 intravenous infusions of IL-2-transfected CIK cells. While 
six patients remained in progressive disease, three patients showed no change by additional treatment, 
and one patient with lymphoma developed a complete response. Various trials using CIK cells have 
been successfully performed. Recently, a first report of the international registry on CIK cells 
summarized published trials [66]. In 11 trials CIK cells were adoptively transferred to 426 patients 
with various cancer entities including hepatocellular carcinoma, gastric cancer, Hodgkin and non-
Hodgkin’s lymphoma. In 384 patients a clinical response was reported, 24 of them showed a complete 
response, 27 patients a partial and 40 patients a minor response. The total response rate was 91/384 
(23.7%) patients, 161 (41.2%) patients had a stable disease. Taken together, adoptive immunotherapy 
with CIK cells can prevent tumor recurrence and improve quality of life and progression-free survival. 
Meanwhile 596 patients with CIK cell transfusions have been reported [66]. 

5. Future Perspectives 

Natural killer T cells have been acknowledged as potent regulators of immune surveillance. Despite 
promising preclinical data obtained in murine tumor models, first clinical trials on cancer patients 
administering free �-GC showed only modest effects. Significant improvements in terms of clinical 
responses have been made harnessing ex vivo expanded NKT cells in conjunction with autologous 
dendritic cells. A general drawback of these trials still is the discordance between the sites of 
biological action (i.e., the tumor site) and the frequency and cytokine production of circulating  
type-I NKT cells as common read-out parameters. Whereas type-I NKT cells in most cases were 
administered intravenously, tumors are the site of biological action. A potent treatment approach  
has been designed by Kunii et al. by targeting type-I NKT cells to the tumor site by injection into 
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tumor-feeding arteries [52]. To our knowledge, no information is available so far on the localization of 
NKT cells to and cytokine secretion at tumor site.  

Further improvement of clinical trials which resulted only transient clinical responses so far has 
been hampered by the a lack of data about whether in vivo expanded NKT cells underly similar 
functional defects as endogenous NKT cells.  

Since its discovery, the NKT cell family gave rise to several new subsets with different biological 
functions. Ambrosino et al. by demonstrating that type-II NKT cells inhibit the activation of type-I 
NKT cells opened up for a new field of investigation [63]. Future pre-clinical studies are required to 
elucidate the role of type-II NKT cells, which antigens they recognize in and how these subsets 
interact in human cancer.  
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