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Abstract: Recent studies in molecular and cellular biology have shown that tumor growth 

and metastasis are not determined by cancer cells alone, but also by a variety of stromal 

cells. Tumor stroma contains abundant extracellular matrix and several types of cells, 

including carcinoma-associated fibroblasts (CAFs), endothelial cells, pericytes and 

inflammatory cells including macrophages. In gastric cancer tissues, tumor cells express 

platelet-derived growth factor (PDGF)-B. Stromal cells, including CAFs, pericytes and 

lymphatic endothelial cells, express PDGF receptor (PDGFR)-β. Administration of 

PDGFR tyrosine kinase inhibitor significantly decreases stromal reaction, lymphatic vessel 

area and pericyte coverage of tumor microvessels. Administration of PDGFR tyrosine 

kinase inhibitor in combination with cytotoxic chemotherapeutic drug(s) impairs the 

progressive growth and metastasis of gastric cancer. Activated stroma might serve as a 

novel therapeutic target in cases of gastric cancer. 

Keywords: gastric cancer; stroma; platelet-derived growth factor receptor (PDGFR); 

carcinoma-associated fibroblast (CAF) 

 

1. Introduction 

Gastric cancer is the world’s fourth most common malignancy and the second leading cause of 

cancer death. The highest incidences are seen in Eastern Asia, and the lowest are observed in North 
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America [1]. Regional variations in part reflect differences in dietary patterns and the prevalence of 

Helicobacter pylori infection [1], which is an important etiological factor for the occurrence of 

non-cardia gastric adenocarcinoma [1]. Epidemiologic studies have indicated that infection with  

H. pylori is a risk factor for gastric cancer, and, in 1994, the WHO/IARC classified this bacterium as a 

definite biologic carcinogen [2]. In addition, H. pylori inoculation into the stomach of Mongolian 

gerbils was shown to be associated with the occurrence of chronic gastritis, intestinal metaplasia and 

adenocarcinoma [3,4]. Chronic mucosal inflammation induced by H. pylori infection is thought to 

contribute significantly to the pathogenesis of atrophic gastritis, intestinal metaplasia, dysplasia, and 

gastric cancers. 

Conventional therapies for gastric cancer include endoscopic treatment, surgery and chemotherapy, but 

the prognosis for advanced-stage disease with metastasis remains poor. New ideas for therapeutic strategies 

are needed, but development of novel strategies depends on detailed understanding of cancer biology, 

especially at the molecular level. A large number of genetic and epigenetic alterations in oncogenes, 

tumor suppressor genes, cell cycle regulators and DNA repair genes as well as genetic instability drive 

the multi-step process of gastric carcinogenesis [5]. In addition, the molecular events that characterize 

gastric cancers differ, depending on the histologic type, whether intestinal- or diffuse-type [5,6]. 

Recent studies have shown that tumor growth and metastasis are determined not only by cancer 

cells themselves, but also by a variety of stromal cells. The stroma constitutes a large part of most solid 

tumors, and tumor-stromal cell interaction contributes functionally to tumor growth and metastasis [7,8]. 

Tumor stroma contains many types of cells, including activated fibroblasts, vascular and lymphatic 

endothelial cells, pericytes (mural cells) and inflammatory cells such as macrophages. It has become 

clear that activated fibroblasts in cancer stroma are prominent modifiers of tumor progression, and 

they express several mesenchymal markers such as -smooth muscle actin, fibroblast activation 

protein and vimentin; they are therefore called carcinoma-associated fibroblasts (CAFs) or 

myofibroblasts [9]. However, the mechanisms that regulate activation of fibroblasts and their 

accumulation in tumors and the precise origin of these CAFs are not fully understood. Herein, we 

discuss the importance of tumor-stromal cell interaction in the growth and metastasis of human gastric 

cancer and the possibility of stroma-oriented therapy to reduce the risk of cancer metastasis, focusing 

mainly on CAFs. 

2. CAFs in the Tumor Microenvironment 

Tumor tissues contain a heterogeneous population of fibroblasts and other cells of mesenchymal 

origin that originate from both the surrounding tissue and bone marrow [10]. Fibroblasts are the most 

abundant cell type in connective tissues and form the structural framework of tissues by synthesizing 

extracellular matrix (ECM). Under normal conditions, fibroblasts are in an inactive quiescent state. 

However, they become activated in wound healing and fibrosis, both of which require tissue 

remodeling. Stroma rich in myofibroblasts is termed “reactive stroma”, and it characterizes many 

invasive carcinomas including those of the breast, pancreas, colon and stomach because of their 

similarity to granulation tissue [11]. Once the wound healing process is completed, most of the 

myofibroblasts are eliminated from the granulation tissue by means of apoptosis; however, 

myofibroblasts in tumor stroma, i.e., CAFs, are not eliminated by apoptosis. Therefore, tumors have been 
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referred to as “wounds that never heal” [12]. CAFs have gene expression profiles that are distinct from 

those of normal fibroblasts [13], and the cells acquire a modified phenotype, similar to that of fibroblasts 

associated with wound healing. Normal fibroblasts are reported to inhibit progression of cancer [14,15]. 

However, numerous studies have provided evidence that CAFs promote tumor growth [16,17]. 

CAFs synthesize a variety of fibrillar ECM components, such as type-I, type-III and type-V 

collagen and fibronectin [18,19]. CAFs are known to modulate tumorigenic properties of neoplastic 

cells, including their proliferative, apoptotic and angiogenic properties [20], and they are thought to 

play a central role in the complex process of tumor-stroma interaction and consequent tumorigenesis. 

In experiments involving coinjection of CAFs and tumor cells CAFs promoted tumor growth [21]. 

Moreover, recent studies revealed extensive changes in the phenotype, and even the genotype, of CAFs 

compared with their normal counterparts [22]. Lieubeau et al. reported that progressive tumor growth 

correlates with proliferation of myofibroblasts, whereas regression of tumors is linked to the presence 

of a fibrous capsule, suggesting that the presence of myofibroblasts contributes to the growth of tumor 

cells [23]. Other studies have shown that a poor prognosis in cases of colorectal carcinoma is 

associated with abundance of CAFs or increased expression of fibroblast activation protein [24,25]. 

Experiments have shown that CAFs can affect sensitivity of pancreatic carcinoma cells to chemo- or 

radio-therapy; the tumor cells become less sensitive to chemotherapy when co-cultured with CAFs or 

grown in fibroblast-conditioned medium [26]. 

3. Bone Marrow-Derived MSCs as an Origin of CAFs 

Although CAFs have been implicated in important aspects of solid tumor biology including tumor 

growth, angiogenesis and metastasis, the precise origins of CAFs are not clear [27]. CAFs are highly 

heterogeneous and are thought to be a mixed population derived from different sources. The main 

progenitors of CAFs seem to be resident fibroblasts [17]; CAFs can also originate from mural cells 

including pericytes and vascular smooth muscle cells [11], endothelial cells [28] and bone 

marrow-derived cells including various stem cells [29]. Epithelial-to-mesenchymal transition (EMT) 

of cancer cells and endothelial-to-mesenchymal transition (EndMT) may also account for CAFs that 

are present in tumors. 

The two main types of stem cells in the bone marrow are hematopoietic stem cells and 

mesenchymal stem cells (MSCs). MSCs can be defined according to their ability to self-renew and 

differentiate into tissues of mesodermal origin, including bone, cartilage, muscle and adipose and 

connective tissues [30]. MSCs are reported to migrate to sites of tissue injury and sites of inflammation 

as well as to stroma in solid tumors, where they interact with tumor cells [31]. The interaction between 

MSCs and tumor cells may occur within the bone marrow microenvironment, a niche in which cancer 

cells can survive [32]. However, it has been shown that cancer cells at the primary site release specific 

factors that induce MSC mobilization and recruitment to stroma in solid tumors [31], where they 

interact with tumor cells within the tumor microenvironment and differentiate into CAFs [33]. Several 

studies have implicated molecules such as stromal-cell-derived factor (SDF)-1/CXCR4, monocyte 

chemoattractant protein (MCP)-1/CCR2 and platelet-derived growth factor (PDGF) in the 

tumor-homing ability of MSCs [34-36]. In an in vitro experiment, MSCs exposed to tumor-conditioned 
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medium over a prolonged period of time assumed a CAF-like myofibroblastic phenotype, promoting 

tumor cell growth both in vitro and in vivo [37]. 

Guo et al. [38] recently constructed a mouse model of gastric cancer (Gan mouse model) by 

simultaneous activation of prostaglandin E2 and Wnt signaling in the gastric mucosa. Microvessel 

density increased significantly, and the expression of VEGF-A was induced predominantly in the 

stromal cells of gastric tumors in the model. Moreover, the investigators showed by bone marrow 

transplantation experiments that a subset of gastric myofibroblasts is derived from bone marrow [38]. 

We examined whether circulating MSCs have the ability to migrate to the stroma of orthotopic gastric 

tumors. After injection of PKH-labeled MSCs into the tail veins of TMK-1 tumor-bearing mice, MSCs 

were detected specifically in the tumor stroma at the primary site. In contrast, MSCs were not detected 

in non-cancerous tissues. In addition, we found that commingled MSCs were functionally incorporated 

into the stroma of orthotopic tumors, where they expressed CAF markers -smooth muscle actin, 

PDGF receptor (PDGFR)-β and fibroblast activation protein [33]. Thus, the interaction between MSCs 

and cancer cells may lead MSCs to differentiate into CAFs. Tumor cells mixed with MSCs and 

implanted orthotopically resulted in a greater tumor volume and lower survival than did implantation 

of tumor cells alone. From a clinical study, Worthley et al. [39] reported recently that bone 

marrow-derived cells differentiated into CAFs in human gastric cancers that developed in female 

recipients of male allogeneic (sex-mismatched transplantation) stem cells. However, the precise bone 

marrow cell type that gives rise to CAFs remains unclear. Very recently, it was shown in a mouse 

model of inflammation-induced gastric cancer that at least 20% of CAFs originated from bone 

marrow-derived MSCs [40]. 

4. Growth Factors for Stromal Components in Gastric Cancer 

Gastric cancer cells express a broad spectrum of growth factors, angiogenic factors, 

lymphangiogenic factors and cytokines (Figure 1). Members of the epidermal growth factor family, 

including transforming growth factor (TGF)-, amphiregulin and cripto, act as autocrine growth 

factors for gastric cancer cells. Growth factors that regulate angiogenesis are vascular endothelial 

growth factor (VEGF)-A [41], interleukin-8 [42], fibroblast growth factor (FGF)-2 [43] and 

platelet-derived endothelial cell growth factor (PD-ECGF) [44]. These angiogenic factors are released 

not only by cancer cells but also by CAFs and inflammatory cells in tumor stroma. Lymphangiogenic 

factors such as VEGF-C [45] and -D [46] are also expressed by gastric carcinoma cells. TGF-β, PDGF, 

insulin-like growth factor (IGF)-II and FGF-2 are involved stroma reaction and commonly 

overexpressed in diffuse-type gastric cancers including scirrhous cancers. Development of scirrhous 

gastric cancer in particular may require synchronous overexpression of TGF-β, PDGF, IGF-II and 

FGF-2, all of which may function mainly as paracrine growth factors [6]. Although the mechanisms 

that regulate activation of fibroblasts and their accumulation in tumors are not fully understood, PDGF, 

TGF-β and FGF-2 are known to be involved in this process [16,17,47]. Recently, cancer exosomes 

were shown to trigger fibroblast differentiation into CAFs due to the presence of TGF-β at the 

exosome surface [48]. The crosstalk between tumor cells and stromal cells is bi-directional, with 

hepatocyte growth factor and stromal cell-derived factor-1 secreted by CAFs, stimulating the growth 

and progression of tumor cells themselves [49]. 
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Figure 1. Gastric cancer cells express a variety of growth factors and cytokines, which act 

in an autocrine or paracrine manner. Interaction between tumor cells and stromal cells 

through the PDGF/PDGF receptor (PDGFR) system influences stromal reaction, 

lymphangiogenesis and maturation of tumor vessels. PDGFR tyrosine kinase inhibitor can 

modulate the tumor microenvironment and enhance the effect of chemotherapeutic agents. 

 

5. PDGF Associates with Stromal Reaction in Human Gastric Cancers 

PDGF and PDGFR are expressed in many types of human neoplasm, including gastric cancer [50-52]. 

PDGF is a dimeric protein of the following molecular variants: PDGF-AA, PDGF-BB, PDGF-AB, 

PDGF-CC and PDGF-DD [53]. PDGFR signaling is reported to increase proliferation of tumor cells in 

an autocrine manner [54] and to stimulate angiogenesis [55], recruit pericytes [54,56] and control 

interstitial fluid pressure in stroma, influencing transvascular transport of chemotherapeutic agents in a 

paracrine manner [57]. 

Under culture conditions, gastric cancer cell lines express PDGF-B at various levels but not 

PDGFR-β [51]. When cells from these lines are implanted orthotopically into the gastric wall, cells 

with high PDGF expression produce tumors with abundant stroma. In contrast, cells with low PDGF-B 

expression form medullary tumors with little stromal reaction. In surgical specimens, we found 

expression of PDGF-B to be associated with stromal reaction [52]. We also found expression of 

PDGF-B and PDGFR-β to be significantly greater in diffuse-type gastric carcinomas than in 

intestinal-type gastric carcinomas [52]. 

In gastric cancer tissues, PDGF-B expression is found in tumor cells, but PDGFR-β expression is 

found predominantly in stromal cells. By double immunofluorescence, it has become apparent that 

PDGFR-β is expressed by CAFs, pericytes and lymphatic endothelial cells in stroma of gastric cancer 

tissues [51]. Pericytes play an important role in regulating vessel maturation and function by 

production of VEGF, which stabilizes endothelial cells. A variety of signaling factors mediate 

pericyte-endothelial cells interaction, including VEGF, PDGF-B and Ang/Tie2. We recently found 
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correlation between the PDGF-B mRNA expression level in gastric carcinoma tissues and lymphatic 

metastasis, suggesting that PDGF-B acts as a lymphangiogenic factor [52]. 

6. Stroma-Directed Molecular Targeted Therapy 

A novel category of anti-cancer drugs, “molecular-targeted drugs” has become available. The tumor 

microenvironment is increasingly being viewed as a potential therapeutic target, and strategies are 

being developed to disrupt tumor-stroma interactions. Although efficacy of anti-angiogenic therapy has 

been studied extensively, the concept of targeting CAFs to obtain a therapeutic advantage in cancer has 

not been explored in depth. 

Angiogenesis is considered one of the most important molecular targets for anti-cancer therapy 

because it is essential for tumor growth and metastasis. Weidner et al. [58] first reported a direct 

correlation between the incidence of metastasis and the number and density of blood vessels in 

invasive breast cancers. Similar studies have confirmed this correlation in gastric cancers [41,59]. 

Induction of angiogenesis is mediated by various molecules released by both tumor and host cells [60]. 

Several growth factors that regulate angiogenesis have been identified. VEGF-A is one of the most 

potent angiogenic factors and is expressed in almost all human solid tumors, including gastrointestinal 

cancers [61-63]. In these cancers, expression of VEGF-A correlates with advanced-stage disease and 

poor prognosis. Therefore, inhibiting VEGF-A is a rational strategy for treating cancer. Bevacizumab 

is a humanized monoclonal antibody that targets VEGF-A. Significantly prolonged survival has been 

reported in patients with metastatic colorectal cancer treated with bevacizumab in combination with a 

cytotoxic agent(s) [64]. A randomized trial evaluating the efficacy of bevacizumab combination 

therapy in patients with gastric cancer (the AVAGAST study) was conducted internationally, Japan and 

Korea included. Adding bevacizumab to chemotherapy as first-line treatment for advanced gastric 

cancer did not significantly increase overall survival (the primary endpoint of the study) [65]. The 

reason AVAGAST did not achieve the primary objective is not clear, but it might have been due in part 

to the histologic heterogeneity of gastric cancer. The prognosis of gastric cancer depends on both 

histologic type and disease stage [66]. Intestinal-type gastric cancer tends to metastasize to the liver in 

a hematogenous manner. In contrast, diffuse-type gastric cancer is more invasive; dissemination is 

predominantly peritoneal. Factors responsible for liver metastasis and peritoneal dissemination have 

not yet been identified; however, we have found that the angiogenic phenotype differs between 

intestinal-type and diffuse-type gastric cancers. The intestinal-type is more dependent on angiogenesis. 

Intestinal-type, but not diffuse-type, tumors have been shown to express high levels of VEGF-A, and the 

VEGF-A expression level correlates significantly with vessel count [41,67]. In contrast, expression levels 

of PDGF, TGF-β and FGF-2 are higher in diffuse-type tumors, especially scirrhous-type tumors [43,50,68]. 

Cell surface receptors are feasible targets for cancer therapy, and several PDGFR inhibitors are used 

routinely in clinical practice. Imatinib, sorafenib and sunitinib are currently used for various malignancies, 

including gastrointestinal stromal tumor, chronic myeloid leukemia, hepatocellular carcinoma and 

renal cell carcinoma. These agents have been shown to target tumor cells and should naturally target 

PDGFR on CAFs and pericytes as well. We determined the effects of imatinib, PDGFR-β tyrosine 

kinase inhibitor, on stromal components in tumors grown up from human gastric carcinoma cells 

implanted into the stomachs of nude mice [51]. The stromal reaction was significantly reduced in mice 
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treated with imatinib in comparison to that in control mice (Figure 2A). We also noted morphologic 

differences between pericytes in the control mice and pericytes in the imatinib-treated mice. Pericytes 

in the control mice were enlarged and overlapped each other, whereas pericytes in mice treated with 

imatinib were very thin (Figure 2C) [51]. However, stromal alteration by imatinib alone had no 

immediate anti-tumor effect in our experimental model. Therefore, irinotecan was administered with 

imatinib. We found that blockade of PDGFR-β signaling by oral administration of imatinib combined 

with intraperitoneal injection of irinotecan significantly inhibited not only the growth of tumors 

(Figure 2D) but also the incidences of lymph node and peritoneal metastasis. Blockade of PDGFR 

signaling decreased stromal reaction and the areas of vascular and lymphatic vessels (Figure 2B). 

Imatinib may inhibit pericyte coverage and disrupt interaction between pericytes and endothelial cells, 

sensitizing endothelial cells to chemotherapeutic agents. In addition, disruption of the reactive stroma 

by imatinib decreases interstitial fluid pressure and facilitates drug delivery, enhancing the efficacy of 

irinotecan in gastric cancer (Figure 1). 

Figure 2. Effects of imatinib on extracellular matrix (ECM), lymphatic vessels, and 

pericytes. (A, B) Immunohistochemical detection of type-1 collagen (A) and lyve-1 in 

TMK-1 orthotopic tumors was carried out by the linked streptavidin-biotin method.  

The ECM and lymphatic vessel areas were reduced by treatment with imatinib;  

(C) Morphology and distribution of pericytes (as shown by red fluorescence) differs 

between tumors in control mice and tumors in mice treated with imatinib. Endothelial cells 

are shown by green fluorescence; (D) Antitumor effects of imatinib and irinotecan on the 

growth of TMK-1 orthotopic tumors in mice. Treatment with irinotecan alone significantly 

inhibited tumor growth in mice treated with irinotecan alone, and imatinib in combination 

with irinotecan enhanced the antitumor effects of irinotecan. 
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Recently, we found that tumor tropism of MSCs was inhibited by treatment with imatinib in vivo 

and in vitro. Oral administration of imatinib significantly inhibited the tumor growth- and 

metastasis-promoting effects of MSCs in our orthotopic colon cancer and liver metastasis models. 

Treatment with imatinib also decreased the number of MSCs in the tumor stroma and inhibited the cell 

proliferation- and angiogenesis-promoting effects of MSCs as well as the apoptosis-inhibiting effect of 

MSCs [69]. These findings point to a possibility that migration of MSCs and the tumor-promoting 

effects of MSCs can be controlled by molecularly targeted anti-tumor drugs aimed at bone 

marrow-derived cells. 

In phase II clinical trials, imatinib monotherapy has been shown to be largely ineffective for 

malignant glioma, breast and prostate cancers [70-73]. Similarly, imatinib combined with cytotoxic 

chemotherapeutic agents has failed thus far [74,75]. The reasons are unclear, but the clinical trials to 

date have enrolled unselected patients. As noted above, gastric cancer cells express PDGF-B, but 

PDGFR-β expression is found predominantly in stromal cells. In our experimental animal models, 

treatment with imatinib alone or in combination with cytotoxic agents had no effect on the growth and 

metastasis of medullary tumors, for which the stromal reaction is minimal [51]. Stromal compartment-rich 

tumors, such as diffuse-type gastric carcinomas, may be tumors in which targeting the PDGF/PDGF-R 

signaling pathway for enhancement of the chemotherapeutic effect is most applicable. 

7. Conclusions 

The different cell types populating the tumor stroma, i.e., CAFs, endothelial cells, pericytes and 

inflammatory cells, and the ECM help to create a microenvironment permissive of tumor growth, 

angiogenesis and invasion. The findings presented in this review indicate that stroma-directed 

molecular targeted therapy might be a valid complement to conventional treatments that target the 

cancer cells themselves. Because most solid tumors have reactive stroma, targeting stromal cells may 

have broad clinical implications as a therapeutic strategy. Further understanding of the cellular and 

molecular mechanisms that regulate cancer-stromal cell interaction and inhibition of stromal cell 

activation may facilitate development of an effective anti-tumor therapy. 
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