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Abstract: There is critical need for improved biomarker assessment platforms which 

integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) 

with molecular profiling, to better define prognostic subgroups or systemic treatment 

response. One roadblock is the lack of semi-quantitative methods which reliably measure 

biomarker expression. Our study assesses reliability of automated immunohistochemistry 

(IHC) scoring compared to manual scoring of five selected biomarkers in a tissue 

microarray (TMA) of 63 human breast cancer cases, and correlates these markers with 

clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and 

histologic (H) scores (% positive tumor area x staining intensity 0–3) were calculated using 

trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, 

OPEN ACCESS



Cancers 2012, 4 

 

 

726

based on Pearson correlation coefficients (0.80–0.90) for continuous data and Kappa 

statistics (0.55–0.92) for positive vs. negative stain. Using continuous data, significant 

association of pERK expression with absence of LVI (p = 0.005) and lymph node 

negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional 

p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, 

respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) 

tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with 

pathologists’ scoring, and provides meaningful associations with clinico-pathological data. 

Keywords: breast cancer; p53/cyclin D1/Ki67/pERK; tissue microarray; automated image 

analysis; clinico-pathological parameters 

 

1. Introduction 

Basic discoveries in cancer biology over the past two decades have identified key signaling 

pathways that drive malignant progression in breast cancer, and panels of biomarkers that assess their 

activation [1]. Based on these studies, several commercially available molecular marker platforms 

(such as Oncotype Dx, Mammaprint) have been developed for use in certain types of clinical decision 

making [2]. However, there is a critical need for improved biomarker assessment platforms to integrate 

knowledge from traditional clinico-pathological variables such as tumor size and grade with  

pathway-based profiles that better define prognostic subgroups or systemic treatment response. One of 

the specific roadblocks in predictive oncology is the lack of accurate and reproducible assays based on 

molecular biomarkers for predicting therapeutic outcome or guiding patient selection during the early 

clinical stages of testing novel treatment modalities. A pathologist usually scores diagnostic 

immunohistochemistry (IHC) and tissue microarray (TMA) slides by bright field microscopy or 

occasionally by digitally scanned slides. Many factors can influence pathologists’ scoring, including 

varied ambient light conditions, amount of time scoring, fatigue and lack of standardization of routine 

stains [3]. We sought to determine if an objective, automated system, Ariol, could score a breast tissue 

microarray with the same accuracy as two pathologists. We also sought to determine if the automated 

quantification of our biomarkers of interest correlated with relevant clinico-pathological parameters. 

Our main proteins of interest in this study were HER2, pERK, p53, cyclin D1, and Ki67, for which 

technical reliability of antibodies has previously been validated in IHC staining of tissue sections [4–7]. 

HER2 is amplified and over-expressed in approximately 15–20% of breast cancers, and is associated 

with increased recurrence and worse prognosis [8,9]. ERK, or Extra-cellular Regulated Kinase, is a 

member of the MAP kinase pathway, which can activate a variety of transcription factors that regulate 

cell proliferation. ERK is phosphorylated at Thr202/Tyr204 residues upon activation, and its 

phosphorylated form (pERK) is considered as a surrogate of cellular ERK activity. Aberrant  

over-expression of pERK expression frequently occurs in a variety of cancers [10], making the ERK 

pathway a potential target in cancer therapy [11]. 

Cyclin D1, p53 and Ki67 are regulators of cell cycle. Cyclin D1, a member of the cyclin-dependent 

kinase regulator family, acts as an activator of CDK 4 and CDK6 [12], and therefore as a positive regulator 
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of cell proliferation. Aberrant amplification and over-expression of cyclin D1 is a driving force in  

13–20% of human breast cancers, and is associated with poor disease outcome [13]. p53 is the most 

studied transcription factor involved in cancer and has been called “the Guardian of the Genome” [14]. 

p53 regulates genes involved in DNA repair and is a check point in cell cycle progression. p53 is 

mutated and over-expressed in approximately 25–30% of human breast cancers [15], with an increased 

incidence in triple negative (ER/PR/HER2-ve) breast cancers [16]. Ki67 is frequently used as a clinical 

measure of proliferation in tumors, and high Ki67 expression in combination with high p53 has been 

correlated with poor prognosis and treatment failures in breast cancer [17]. 

In the present study, we sought to assess concordance of visual and automated scoring methods for 

various biomarkers, and to explore associations of automated scores with established clinico-pathological 

parameters with the hope of providing a reference point for validation of automated quantitative 

scoring methods such as the Ariol imaging platform for use in clinical settings. 

2. Results 

2.1. Comparison of Manual Versus Automated Scoring 

We observed a strong correlation between the manual and automated biomarker scores for the five 

biomarkers based on continuous data, ranging from 0.80 for p53 to 0.90 for HER2 (Table 1). When 

scores were categorized as positive or negative based on a threshold H score of >20, we found that 

chance corrected agreement between the two scoring methods ranged from Kappa = 0.55 for Ki67 to 

Kappa = 0.92 for pERK (Table 1). The proportion of tumors with positive biomarkers using Ariol 

scoring was: HER2 (25%), nuclear p53 (29%), cyclin D1 (65%), pERK (31%) and Ki67 (30%). 

Table 1. Correlation of manual scoring and Ariol automated scoring of biomarkers. 

Biomarker 
Pearson Correlation 
Coefficient (95% CI) 

Kappa Statistic (95% CI) Proportion Positive + 

pERK 0.89 (0.75–0.97) 0.92 (0.80–1.00) 18/58 (31%) 

p53 0.80 (0.65–0.92) 0.75 (0.56–0.95) 16/56 (29%) 

Cyclin D1 0.85 (0.71–0.94) 0.73 (0.55–0.92) 37/57 (65%) 

Ki67 0.81 (0.71–0.91) 0.55 (0.36–0.74) 17/56 (30%) 

HER2 0.90 (0.83–0.95) 0.62 (0.40–0.84) 14/56 (25%) 

CI, Confidence interval; +: Determined based on threshold H score of >20. Denominators are less 
than 63 due to cores missing Ariol or manual scores. 

2.2. Associations of Automated Scoring Between Biomarkers 

We first correlated each of the biomarkers with one another using continuous scores. Of the ten 

pairs of correlations, none were significant (all p > 0.1 and r < 0.22), except p53 with Ki67 which had 

a correlation of 0.43 (95% CI, 0.05, 0.67) yielding a p-value of 0.0013 and a false discovery rate  

of 0.013. There was no significant association between any biomarkers using dichotomous scores  

(all Kappas < 0.25). 
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2.3. Associations of Biomarkers with Clinico-Pathological Parameters 

In an exploratory analysis of continuous biomarker data, we found that over-expression of pERK 

was correlated with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) (Table 2, 

Figure 1). An association of p53 over-expression with high grade tumors was observed (p = 0.032). 

Ki67 positivity was also correlated with high grade (p = 0.0007), and inversely with triple negative 

cases (p = 0.008) (Table 2, Figure 2b,c). Thus p53 over-expression and Ki67 are associated with 

aggressive rapidly proliferating cancers. However, cyclin D1 expression correlated inversely with the 

triple negative tumor subset (p = 0.0002) (Table 2, Figure 2d), but showed no correlation with high 

grade (Table 2, Figure 2f). Consistent with its known adverse prognostic effect, a trend of HER2 

association with recurrence (p = 0.096) was also evident (Table 2). Using dichotomized data (based on 

a threshold H score of >20), we observed a similar pattern of associations, except a correlation of 

pERK with lymph node negativity was not evident. 

Figure 1. Dot plots of pERK Ariol H scores versus two clinico-pathological parameters. 

Dot plots of pERK Ariol H scores versus LVI (present, absent) (a) and lymph node (−,+) (b) 

status are shown. Significance between groups was determined using an exact Wilcoxon 

rank sum test, as described in Materials and Methods (p values indicated). Bars indicate the 

mean H score in each group, and the dotted line indicates the threshold for positive versus 

negative stain based on dichotomized data. Twenty five biomarker associations were tested 

in total. The dot plots displayed had a False Discovery Rate of <5% (see Experimental 

Section). The displayed p-values are unadjusted for the number of tests performed. 
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Figure 2. Selected dot plots of associations of p53, Ki67 and cyclin D1 with  

clinico-pathological parameters Dot plots of Ariol H scores of p53 (a), Ki67 (b,c) and 

cyclin D1 (d–f) versus selected clinico-pathological parameters are shown. Significance 

between groups was determined using an exact Wilcoxon rank sum test, as described in 

Materials and Methods (p value indicated). Bars indicate the mean H score in each group, 

and the dotted line indicates the threshold for positive versus negative stain based on 

dichotomized data. Statistical analysis was performed as in Figure 1. Examples of significant 

biomarker associations with indicated clinico-pathological parameters are shown (a–e). An 

example of no correlation of cyclin D1 with grade is shown for comparison (f). 
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Table 2. Unadjusted bivariate association between biomarkers and clinico-pathologic parameters. 

Biomarker 
(Ariol Score) 

Clinical Parameter n † 
Original continuous score  Score dichotomized as positive >20 

Concordance index a p-value  Odds Ratio (exact 95% CI) b p-value 

pERK LVI (present) 56 0.25 c 0.005 *,c  0.00 (0.00–0.41) c 0.0028 *,c 

 Lymph node status (+) 58 0.28 c 0.002 *,c  NS 0.22 

 SBR score d (8 or 9) 58 NS 0.37  NS 0.38 

 ER/PR/HER2-ve (TN) 58 NS 0.89  NS 0.44 

 Recurrence (yes) 51 NS 0.47  NS 1 

p53 LVI (present) 54 NS 0.21  NS 0.74 

 Lymph node status (+) 56 NS 1.00  NS 1.00 

 SBR score (8 or 9) 56 0.67 0.032  6.5 (1.4–40) 0.0074 * 

 ER/PR/HER2-ve (TN) 56 NS 0.11  NS 0.26 

 Recurrence (yes) 48 NS 0.92  NS 1.00 

cyclin D1 LVI (present) 55 NS 0.36  NS 1 

 Lymph node status (+) 57 NS 0.033  4.3 (0.96–26.1) 0.041 

 SBR score (8 or 9) 57 NS 0.44  NS 0.17 

 ER/PR/HER2-ve (TN) 57 0.15 c 0.0002 **,c  0.038 (0.001–0.34) c 0.0003 **,c 

 Recurrence (yes) 50 NS 0.69  NS 0.72 

Ki67 LVI (present) 55 NS 0.42  NS 0.55 

 Lymph node status (+) 57 NS 0.36  NS 0.57 

 SBR score (8 or 9) 57 0.75 0.0007 **  9.4 (2.4–38) 0.0002 ** 

 ER/PR/HER2-ve (TN) 57 NS 0.008 *  NS 0.083 

 Recurrence (yes) 50 NS 0.2  NS 0.15 

HER2 LVI (present) 54 NS 0.16  NS 0.11 

 Lymph node status (+) 56 NS 0.38  NS 0.76 

 SBR score (8 or 9) 56 NS 0.13  NS 0.16 

 ER/PR/HER2-ve (TN) 56 NS 0.24  NS 0.47 

 Recurrence (yes) 49 0.65 0.096  NS 0.26 
a A concordance index <0.5 implies an inverse association while a concordance index >0.5 implies a direct association. Possible values range from zero (perfect 
discordance) to one (perfect concordance); b An odds ratio <1 implies an inverse association while and odds ratio >1 implies a direct association; c An inverse correlation 
was observed based on a and b above; d SBR score (8 or 9) denotes high grade tumours, compared to all others. * and ** denote false discovery rates of <0.05 and <0.01 
accounting for the 25 comparisons.; Abbreviations: LVI, lymphovascular invasion; TN, triple negative; NS, not significant. † n = # of evaluable cases. Observations 
missing Ariol score or parameter do not contribute to the measures of bivariate association. 



Cancers 2012, 4 

 

731

3. Discussion 

In this study we have demonstrated strong concordance between manual and automated Ariol 

scoring for both dichotomized (positive versus negative) and continuous data for five extensively 

studied robust biomarkers. Both dichotomous and continuous scores yielded similar results with 

appropriate statistical testing, though the latter generally yielded a higher level of significance. Our 

findings indicate that our software algorithms have been properly optimized, and that Ariol analysis 

provides an objective means of automated quantification of IHC scoring. Automated Ariol 

methodologies are therefore reliable and may allow higher throughput, with standardized quantitative 

scoring for broader comparison among pathologists. 

Although computer-assisted image analysis enables automated quantification of IHC staining 

intensity, its accuracy strongly depends on a priori lesion grading and epithelial/stromal compartment 

identification by trained Pathologists. Pathologic assessment is also crucial for selecting appropriate 

cut-offs for positive and negative stains, and for optimal training of algorithms. Our observed 

concordance between manual and automated scoring is similar to that reported previously for HER2 [18], 

estrogen/progesterone receptors [19,20] and aromatase [20]. However, the novelty of our study lies in 

the training of the Ariol computer algorithms to score the TMA slides. Moreover, we have created our 

own algorithms for both cyclin D1 and pERK and have shown that statistically they are as robust as 

the commercially available algorithms, and can yield relevant associations with clinico-pathological 

data. Furthermore, our study has extended Ariol-platform based analysis to include continuous as well 

as dichotomous scores for five biomarkers that could provide a more quantitative assessment for 

clinical correlative studies. 

In an exploratory, hypothesis-generating analysis, automated Ariol scoring yielded some 

statistically significant correlations of specific pairs of biomarker and clinico-pathological parameters, 

using bivariate analysis. Furthermore, continuous and dichotomous (+ve versus –ve) data yielded 

similar results, except for pERK which correlated with lymph node negative status, Ki67 which 

correlated with triple negative cases, and HER2 which approached significance with recurrence using 

continuous but not dichotomous scores. Thus analysis of continuous data can validate thresholds  

set based on pathologists’ assessment and may provide improved statistical power for clinical  

correlative studies. 

In this same cohort we have reported a significant increase in expression of Centromere Protein-A 

(CENPA) expression in invasive breast cancers compared to normal breast tissues using bivariate 

analysis of continuous data [21]. Similarly, a 50 case breast cancer study (CAN-NCIC-MA22) was 

used to demonstrate significant association of low tumor RNA integrity with response to 

chemotherapy [22]. While our study demonstrates the feasibility and potential reliability of this 

approach, the sample size is insufficient for multivariate analysis of biomarkers and clinical 

parameters. We believe this cohort is representative of an otherwise unselected population of 

premenopausal women with breast cancer given its assembly as consecutive premenopausal patients 

seen at a single institution over a defined timeframe. Whether our observations can be generalized to a 

population including postmenopausal women, or even male breast cancer, is unknown. Ultimately, 

validation of any biomarker correlations or associations with molecularly defined breast cancer 
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subtypes and clinical outcome requires prospective validation of hypotheses so generated in a larger 

patient cohort with clinical follow-up data. 

Several clinical studies have suggested that high pERK expression correlates with early stage  

node-negative breast cancer, and is an independent indicator of long relapse-free and overall survival [23]. 

Taken together, these studies indicate that ERK is not associated with enhanced proliferation and 

invasion of human breast carcinomas. Our analyses also show a correlation between pERK and 

LVI/lymph node negativity consistent with reported correlations between elevated pERK and early 

stage breast cancer. Other clinical studies however, show that ERK1/2 activity in primary tumors 

correlates with node-positivity, suggesting a correlation with late stage, metastatic breast cancer [24]. 

We speculate therefore that ERK activity may have different roles in early (initiation and progress) and 

late (metastatic) stages of tumor development. As a result, correlative relationships between pERK and 

clinical parameters and as well their “detectability” may be strongly dependent on tumor stage. 

Stratification of samples into early and late stage tumors may enhance the power and “detectability” of 

correlations, especially in studies on a larger cohort. 

Previous reports have shown ERK regulates G1 cell cycle progression through activation of several 

immediate early genes, which in turn lead to induction of Cyclin D1, a major regulator of G1-S 

transitions [25]. Consistent with this, our data identify a correlation between pERK and proliferation 

(Ki67). However our data, as well as those of others, have not identified correlations between cyclin 

D1 and pERK and the reason for this is presently unclear [23]. We speculate that at early stages, ERK 

activity is sensitized to regulation by stromal influences (that include growth-factors and ECM), and 

hence it may exhibit temporally transient fluctuations in its steady-state activity. Thus the window of 

detection may be small and would hamper detection of correlations with cyclin D1, especially in the 

reduced sample size of our representative cohort. Moreover, signal regulatory mechanisms are more likely 

to be intact in the early stages of breast cancer. Hence, pERK signal may be immediately down-regulated 

upon cyclin D1 induction by feedback mechanisms. This would further reduce the window of 

detection for correlations [25]. Lastly, since ERK activity associated with upregulation of cyclin D1 

requires ERK translocation to the nucleus, we examined nuclear pERK activity to optimize unmasking 

of correlations in our study. However, correlations masked by feedback dependent down-regulation of 

ERK activity (post-cyclin D1 induction) could be detected if nuclear localization of inactive ERK was 

used as a surrogate marker of cyclin D1 transcriptional induction. In this regard it is interesting that 

correlations between cyclin D1 and inactive (nonphosphorylated) ERK have been reported [23]. 

We detected positive correlations between TN tumors and proliferation (Ki67 staining). Surprisingly, 

however an inverse correlation between TN tumours and cyclin D1 levels was found. This finding is 

consistent with previously reported associations of cyclin D1 with better prognosis in breast cancer [26–28]. 

However, in addition to their role in promoting cell cycle entry, evidence suggests that cyclin D1  

over-expression also serves to maintain proliferation and concomitantly inhibit differentiation [25]. We 

speculate that cyclin D1 levels may be reduced in advanced terminally-differentiated metastatic 

tumors, as cells at this stage no longer require cyclin D1’s regulatory effects on proliferation and 

differentiation. Indeed these cells may have acquired terminal invasive states in which upstream inputs 

are uncoupled from cyclin D1 induction. Such cells may take constitutive proliferative and differentiative 

cues instead, from aberrantly functioning downstream components such as Rb and E2F [29]. Hence 
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reduced cyclin D1 levels may be an important marker for TN tumors and warrants additional 

confirmation in a larger cohort. 

4. Experimental Section 

4.1. Patients 

With Queen’s University Research Ethics Board approval, breast tumor specimens were collected 

from 63 consecutive consenting female patients who received treatment for breast cancer at the Cancer 

Centre of Southeastern Ontario at Kingston General Hospital between 2005 and 2007. Clinico-pathological 

information for each case was retrospectively obtained from the electronic and paper patient record 

and entered into an anonymized database by an experienced oncologist. Archival normal breast tissues 

from twenty reduction mammoplasty specimens were included to provide non-malignant controls. 

Patients included in the study were premenopausal (less than 49 years of age at diagnosis), had 

primary invasive mammary carcinomas (>90% are ductal and/or lobular) and were stage T1-3a, N0-1, 

M0. Patients were excluded if they had any previous history of cancer, bilateral breast disease or 

neoadjuvant chemotherapy. Mean age of this patient cohort was 43.5 years, (range 29–49). The 

majority of the patients (60%) had N0 disease and received adjuvant chemotherapy (74%). Tumor 

grade was defined, based on tubule formation, mitotic activity and nuclear size, and showed the 

following distribution based on SBR (Scarff-Bloom-Richardson) score: grade I (SBR 3–5, 14%) grade 

II (SBR 6–7, 37%) and grade III (SBR 8–9, 51%). ER, PR and HER2 receptor status of the patient 

cohort, based on immunohistochemistry, defined a subgroup (14%) of triple negative (ER/PR/HER2-ve) 

breast cancers in the cohort (Table 3). As the cohort was assembled from consecutive consenting 

patients, there was no selection bias for any prognostic variables tested. Survival was defined as the 

number of patients that were alive or had recurrence up to the summer of 2010. 

Table 3. Clinico-pathologic characteristics of patients included in the study (63 tumor cohort). 

Parameter Status Number (%) 

Age 
(Median: 45) 

(Range: 29–49) 

<30 1 (2.1) 

30–40 11 (22.9) 

41–49 36 (75) 

Tumor Stage 

stage 1 26 (54.2) 

stage 2 16 (33.3) 

stage 3 1 (2.1) 

stage 4 1 (2.1) 

Unknown 4 (8.3) 

Tumor Grade a 

Grade I 8 (12.7) 

Grade II 23 (36.5) 

Grade III 32 (50.8) 

LVI 
Absent 42 (64.3) 

Present 15 (35.7) 
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Table 3. Cont. 

Parameter Status Number (%) 

Number of positive lymph nodes 

0 21 (60) 

1–3 11 (31.4) 

4–10 1 (2.9) 

>10 2 (5.7) 

ER Status 
Negative 14 (29.2) 

Positive 34 (70.8) 

PR Status 
Negative 12 (25) 

Positive 36 (75) 

HER2 Status b 

Negative 36 (75) 

Positive 9 (18.8) 

Missing value 3 (6.2) 

ER/PR/HER2 Status 
Triple negative  10 (14) 

Others 53 (86) 

Survival 

Positive 11 (17) 

Negative 43 (68) 

Missing value  9 (15) 
a Tumor grade is determined based on SBR score (See Experimental Section); b HER2 staining was 
scored using the Hercept test® scoring system (See Experimental Section). 

4.2. Tissue Microarray Construction 

Primary breast cancer specimens were routinely formalin fixed and paraffin embedded (FFPE) in 

the Queen’s Laboratory of Molecular Pathology (QLMP) and Kingston General Hospital. From this 

material, we constructed primary breast cancer TMAs in the QLMP. Sections of FFPE primary tumors 

were first stained with hematoxylin and eosin and reviewed by a pathologist. Representative tumor 

areas were circled and matched with the donor blocks. From each donor block, three 0.6-mm cores 

were punched out and embedded 1 mm apart in a recipient block using a Tissue Microarrayer (Beecher 

instruments, Silver Springs, MD, USA). A technical TMA for antibody optimization was constructed 

consisting of 8 breast tumors and 4 normal breast tissues from reduction mammoplasty specimens. 

Two test TMAs consisting of tissues from our 63 tumor cohort and 20 normal mammoplasty 

specimens were used for correlational studies. 

4.3. Immunohistochemistry (IHC) 

IHC was performed on 5 μm thick TMA sections for pERK (#4370, Cell Signaling, Boston, MA, 

USA), p53 (#760-2542, Ventana Medical Systems, Tuscon, AZ, USA), Ki67 (#790-4286, Ventana 

Medical Systems) and cyclin D1 (cat# RM-9104-S, Neo Markers, Freemont, CA, USA), according to 

REMARK guidelines [30]. Antigen retrieval was done with citrate buffer (pH 6.5) and slides were 

stained manually overnight at 1:100 dilution (for cyclin D1) or using the Ventana Benchmark 

automated staining system (Ventana Medical Systems, Tucson, AZ, USA) (for p53 and Ki67). Normal 

tonsil tissue was used as positive control for cyclin D1, Ki67, and p53. The pERK antibody used in our 

study has previously been used for staining of breast tumor tissues [23,31] and was optimized 
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manually (citrate buffer, pH 6.5), and then for Ventana staining (1/200 dilution) using protocol #82 

CC. HER2+ve breast tumor versus normal breast tissues were used as positive and negative controls. 

In all clinical cases, we routinely assessed ER/PR staining (see below) in normal ducts versus tumor 

regions from whole sections, as an internal control for tissue quality (e.g., normal ducts should show 

focal immunoreactivity of ER/PR). Technical reproducibility was tested for each biomarker by 

comparing replicate staining of serial sections from whole tissue blocks or the technical 8 tumor TMA. 

We looked at the overall intensity and gradations in the staining while comparing the cancer cells and 

interspersed stromal elements. Although there were minor differences between two consecutive 

sections, the overall staining intensity and pattern of staining was almost identical (data not shown). 

Tumor heterogeneity was assessed by comparing stained sections from each of two test TMAs for 

cyclin D1, p53, and pERK. The two TMAs represent three cores each from different areas of the same 

tumor, thus allowing us to assess tumor heterogeneity. Excellent reproducibility was observed between 

H scores for each marker from the two TMAs, as determined by Pearson/Spearman correlations  

(0.79–0.82), indicating minimal intra-tumor heterogeneity of expression for our biomarkers. The slides 

were also stained for ER, PR and HER2 (Clone 4B5) on the Ventana system using the respective 

Ventana antibody kits (pre-diluted by supplier—Ventana). 

4.4. Manual Scoring 

For pERK, p53, cyclin D1 and Ki67 staining, the % positive tumor area and nuclear staining 

intensity (scale of 0–3) were scored by two pathologists independently, with resolution of discordant 

cases by a senior pathologist. Cores that were lost/damaged during sectioning or had less than 10% of 

tissue with tumor were not scored, and the number of evaluable cases for each analysis is indicated in 

Tables 1 and 2. A histo (H) score was then calculated for each core by multiplying % positive area and 

staining intensity for a value from 0–300, and expressed as the average of 3 cores per tumor. For ER 

and PR staining, the fractions of positive tumor nuclei were scored as 0 (<1%), 1+ (1–25%), 2+ (25–75%), 

and 3+ (>75%). The data for ER/PR staining were dichotomized into negative (0) versus positive  

(>1+) cases. HER2 membranous staining was scored using the Hercept test® (Dako Corporation, 

Carpinteria, CA, USA) scoring system as “0” (no staining or membrane staining in <10% of the tumor 

cells); “1+” (incomplete membrane staining in >10% tumor cells); “2+” (weak to moderate complete 

membrane staining in >10% of tumor cells); “3+” (strong complete membrane staining in >10% of 

tumor cells). The data for HER2 staining were categorized into negative (<1+) versus positive (>3+) 

cases. In this study, breast cancer cases were tested for HER2 in the era prior to the ASCO/CAP 

guidelines (2007) requiring 30% of invasive carcinoma cells showing 3+ membrane staining [32] and 

patient care decisions were made upon the basis of those results. The incidence of HER2 

overexpression for these cases was 18% (Table 3)—within the range reported in the literature. These 

values along with ER/PR status, were therefore used to define triple negative cases in this study. 

4.5. Automated Scoring 

TMA slides were scanned into the Ariol Image Analysis System SL-50 (Leica, San Jose, CA, 

USA), and an image analysis protocol was adapted based on previous studies for HER2 [18,19]. 

Scoring of algorithms was optimized using a nuclear script, which gates all hematoxylin-stained tumor 
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nuclei based on geometric characteristics such as size, shape, compactness and roundness. This allows 

for scoring only of tumor area, ignoring stromal components such as fibroblasts and tumor-infiltrating 

lymphocytes. Positive tumor nuclei are gated on color, hue and intensity of brown staining (shown for 

pERK in Figure 3a), as well as geometric characteristics. This allows for calculation of percentage 

positivity on a cell-by-cell basis. The script is optimized on training areas from several cores and 

multiple patients (Figure 3b,c). The untrained and trained automated H scores were each plotted 

against the manual H Scores, and a Pearson correlation coefficient (with p value) was calculated 

(Figure 3d,e) to assess concordance. For p53 and Ki67, commercially available baseline scripts were 

optimized for our staining, while for cyclin D1 and pERK a generic nuclear script from the company 

software was optimized for scoring (Figures 3 and 4). A conversion formula for the staining intensity 

provided by the manufacturer was used in the calculation of H scores, analogous to the calculation 

used for manual scoring. 

Figure 3. Optimizing Ariol Software for pERK IHC scoring. A TMA slide immunostained 

for pERK was scanned into the Ariol Sl-50 slide scanner (a) and a nuclear analysis was 

done without (b) or with (c) training based on size/shape characteristics (bi, bii) and color 

(ci, cii). The same cores were scored manually by two pathologists. The untrained (d) and 

trained (e) automated H scores were each plotted against the “gold standard” manual H 

Scores, and a Pearson correlation coefficient (with p value) was calculated. A linear 

regression line of best fit is shown. The values at the origin in each plot are indicated.  

(a), 200× magnification; (b and c), 600× magnification. 
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Figure 3. Cont. 

 

Figure 4. Gating of p53, cyclin D1 and Ki67 staining using trained Ariol algorithms. 

Examples of positive immunostaining for p53, cyclin D1 and Ki67 are shown (a,c,e). 

Optimized Ariol color classifiers are shown as a red overlay (b,d,f). 100× magnification, 

left, and 600× magnification, right. 
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Figure 4. Cont. 

 

4.6. Statistical Analysis 

Two types of analyses were done, using (a) binarized data (scored +ve or –ve), and (b) continuous 

data (no threshold). The choice of cut-point for binarized data was somewhat arbitrary, but was based 

on the distribution of the markers rather than optimizing the test/agreement performance. We noted 

that for most of the markers, the values were either near zero or quite a bit greater than 20, so we 

considered values less than 20 as negative since these values likely differ from zero only by noise due 

to the limited accuracy of the method. Using the data to choose “optimal cut-points” for each marker is 

to be avoided with such a small sample size, as this approach would greatly overestimate the 

performance of the markers and could introduce additional bias. Therefore, we dichotomized the Ariol 

and manual scores for all biomarkers at 20 and considered values >20 as positive and <20 as negative. 

Pearson’s correlation coefficient was used to measure the correlation between the Ariol and manual 

continuous scores, as well as the correlation between the various Ariol biomarker scores. Since the 

scores were not normally distributed we used the non-parametric percentile based bootstrap with 

10,000 replications to estimate confidence intervals for the correlation coefficients. The agreement 

between scoring methods and associations among dichotomized biomarker scores is described by 

Cohen’s Kappa statistic which corrects for expected chance agreement. 

For testing associations of biomarkers with clinico-pathological parameters two types of analyses 

were done, using (a) binarized (scored +ve or –ve) or (b) continuous (no threshold) Ariol scores. 

Associations of binarized biomarker scores with clinico-pathological parameters were determined by 

Fisher exact test. For associations of continuous biomarker scores with clinico-pathological parameters, 

we used the exact Wilcoxin rank-sum test, which assesses whether one of any two samples of 

independent observations tend to have larger values than the other. 

Next, we assessed the association between the dichotomized Ariol biomarker scores and: grade, 

LVI, lymph node status, ER/PR/HER2 status and recurrence. Grade was dichotomized into low (I + II) 

and high (III); ER/PR/HER2 receptor status was dichotomized as triple negative versus all other subtypes 

(Table 3). The continuous Ariol scores were compared between the dichotomized clinico-pathological 

variables by the exact Wilcoxon-rank-sum test. The association between clinico-pathological variables and 
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Ariol is described by the concordance index which is the probability that someone with a positive 

clinico-pathological variable has a higher Ariol score than someone with a negative clinico-pathological 

variable plus half the probability that they have the same Ariol score. The concordance index is also 

known as the C-statistic which is equivalent to the area under the Receiver Operating Characteristics 

curve [33]. The strength of association between “positive” (i.e., >20) Ariol biomarker values and the 

clinico-pathological variables are described by odds ratios with exact 95% confidence intervals and 

tested by Fisher’s exact test. A concordance index of <0.5 or odds ratio of <1 implies an inverse 

correlation, while a concordance index of >0.5 or an odds ratio of >1 implies a direct correlation. We 

report unadjusted p-values, but to account for the large number of tests we note comparisons that have 

false discovery rates below 5% and 1% [34]. The analysis was conducted using SAS version 9.1 (SAS 

Institute Inc., Cary, NC, USA). 

5. Conclusions 

In this paper, we have applied an improved automated method for quantifying biomarker expression 

in human breast cancer cases, using several robust biomarkers that have clinical relevance. Concordance 

between manual and automated scoring may assist researchers in more efficient quantitative analysis 

of TMAs with larger patient cohorts, and in discovery of novel prognostic/predictive biomarkers. 

Furthermore, analysis of continuous data validated results obtained using dichotomous scores, and 

provided enhanced statistical power. Whereas our observed biomarker correlations with specific 

clinico-pathological variables reflect previous reports in the literature, further validation in a larger 

dataset is required. Moreover, the implication of larger scale biomarker evaluations for crucial 

management decisions requires that these reproducible automated methods be introduced into clinical 

laboratories over the next several years. 
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