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Abstract: Osteosarcoma (OS) is the most common primary malignant tumor of the bone, 

and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study 

was to discover and characterize genetic networks differentially expressed in metastatic 

OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was 

performed to discover genetic networks differentially activated or organized in metastatic 

OS compared to localized OS. Broad trends among the profiles of metastatic tumors include 

aberrant activity of intracellular organization and translation networks, as well as 

disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 

network, which interacts with the disorganized DLG2 hub, was also found to be 

differentially expressed among OS cell lines with differing metastatic capacity in xenograft 

models. PRKCε transcript was more abundant in some metastatic OS tumors; however the 

difference was not significant overall. In functional studies, PRKCε was not found to be 

involved in migration of M132 OS cells, but its protein expression was induced in M112 

OS cells following IGF-1 stimulation.  
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1. Introduction 

Osteosarcoma (OS) is the most common primary malignant cancer of the bone, with nearly  

1,000 diagnoses annually in North America [1,2]. High-grade intramedullary osteosarcoma 

(―conventional‖) constitutes the majority of cases, and is an aggressive disease that typically 

metastasizes to the lungs [1,2]. Approximately 10–20% of patients present to the clinic with 

discernable metastasis, and a further 20–30% develop metastasis despite aggressive treatment [3]. 

Currently neoadjuvant chemotherapy in combination with surgical resection of osteosarcomas can 

achieve 5-year overall survival rates of approximately 65% [4,5]. However, delineation of the molecular 

mechanisms contributing to osteosarcoma metastasis has the possibility of identifying specific 

therapeutic targets that improve prognosis of patients with metastatic osteosarcoma. 

Expression profiling is an ―omic‖-level discovery technique that allows the quantification of 

thousands of different transcripts simultaneously between different disease states [6]. This technology 

has many applications in the cancer field including distinguishing subtypes of a particular cancer, 

identifying transcripts differentially expressed between those types, and predicting the subtype of a 

cancer based on the expression of identified transcripts [6,7]. In recent years it has been shown that 

analysis of expression profiles at the level of sets of transcripts rather than individual transcripts has 

more statistical power, is more reproducible between studies, and provides informative context to the 

results [7–9]. There are many algorithms for gene-set or network-based analytical algorithms, 

including the popular gene-set enrichment analysis (GSEA) and the proprietary ingenuity pathway 

analysis (IPA) [10]. Additionally dozens of other network-based analytical algorithms have been 

published that either utilize different statistical methods or that interrogate a unique cellular application 

(reviews: [8,9]). Two such algorithms are the methods of Chuang et al. that aims to discover 

differentially ―activated‖ genetic networks [11], and ―Dynemo‖ published by Taylor et al. that aims to 

discover differentially organized genetic networks [12]. These algorithms have successfully been 

applied to uncover molecular alterations in expression profiles of poor-outcome breast cancers, and 

have achieved over 70% predictive accuracy in -classifying those tumor samples utilizing a five-fold 

cross-validation strategy [11,12]. 

The aim of the present study was to identify differentially activated and organized networks in 

expression profiles of metastatic-at-diagnosis osteosarcomas (MD-OS) compared to expression profiles 

of localized-at-diagnosis osteosarcomas (LD-OS). This analysis would assist in the prioritization of 

candidate networks for in vitro characterization in osteosarcoma cell lines, including cells of differing 

metastatic capability. 
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2. Results 

2.1. Unsupervised Hierarchical Clustering of Expression Profiles Reveals Distinct Subtypes of 

Osteosarcomas  

Expression profiling was performed on 46 LD-OS tumor samples and 17 MD-OS tumor samples 

using UHN ―human 19 k cDNA microarrays (H19K)‖, that contain approximately 19,000 cDNA spots 

mapped to approximately 9,000 unique transcripts. Unsupervised gene discovery techniques were used 

to identify a subset of 596 genes that exhibited at-least six-fold change in expression in at-least four 

tumors (p ≤ 0.001), and hierarchical clustering of tumors according to the expression pattern of these 

genes demonstrated two broad groups of tumors. One group (Figure 1B, red dendrogram) contained all 

but two of the MD-OS tumors, and the other group (Figure 1B, green and blue dendrograms) contained 

all but one of the LD-OS tumors. This analysis supports the notion that osteosarcomas of varying 

metastatic status at the time of diagnosis exhibit distinct expression patterns, and that division of 

tumors into these categories (localized at diagnosis or metastatic at diagnosis) is appropriate for 

subsequent supervised analysis. 

Figure 1. (A) Unsupervised hierarchical clustering of 596 highly variable genes.  

(B) Dendrogram depicting separation of MD-OS tumors (green bars) and LD-OS tumors 

based on expression of highly variable genes. (A) Unsupervised hierarchical clustering of 

OS tumor samples (Partek Genomics Suite) was performed on a subset of 596 genes found 

to be significantly differentially expressed within the dataset (expression varies by at least 

6 fold, in at least 4 patients, p ≤ 0.001), according to methods previously described [13,14].  

(B) The dendrogram reveals two clusters, one with red dendrogram lines that contains 

mostly metastatic-at-diagnosis tumors (green rectangles). A second cluster, which can be 

subdivided further (blue and green dendrogram lines) contains mostly localized-at-diagnosis 

tumors (purple rectangles). 

 

 
  

A 
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2.2. Differentially Activated and Organized Networks in Metastatic Osteosarcomas  

The expression information was integrated with the Pathway Commons database of physical and 

genetic interactions [15], yielding a dataset of 5,855 genetic networks. Supervised analysis was 

performed on these data in a manner similar to previous publications to identify the differentially 

activated and organized networks in MD-OS expression profiles. To describe broad trends in human 

metastatic OS, inclusive cut-off levels were identified to delineate as many networks as possible that 

were significantly differentially activated or organized in the metastatic samples. For this analysis, four 

hundred and ninety seven (497) of the 5,855 genetic networks were identified as differentially 

activated and six hundred and eighty three (683) networks were significantly differentially organized. 

Networks annotated to transport, translation, organization and protein modification were more 

commonly differentially activated than expected by chance (Table 1, column 8). Networks annotated 

to the processes of organization, transport and translation were more commonly differentially organized 

than expected by chance, as were metabolic networks (Table 1, column 11). Three hundred thirty eight 

(338) differentially activated, and one hundred and sixty two (162) differentially organized, networks 

were visualized and clustered according to their Gene Ontology Process annotation (Figure 2). This 

visualization allowed the observation that clusters of differentially activated networks interact with large, 

significantly disorganized hubs (e.g., Figure 2—―protein modification‖ process: cluster of 

differentially activated networks interacting with the disorganized hub breakpoint cluster region 

(BCR). This pattern is also observed in the ―translation‖ and ―transport‖ processes. 

Table 1. Enrichment of genetic networks in metastatic osteosarcomas according to cellular 

processes at the global (Permissive) significance level. 

Cellular Processes All Networks in Study Significant Networks: Permissive Cutoffs 

 Subsets Entire Networks Differentially Activated Differentially Organized 

1 2 3 4 5 6 7 8 9 10 11 

 # % of all # % of all # % of all p-value # % of all p-value 

protein modification 573 9.8 575 9.8 52 10.5 * 5.3E-02  49 7.2  

transport 1002 17.1 869 14.8 194 39 * 1.1E-34 Ϯ 133 19.5 * 9.0E-05 Ϯ 

signaling 954 16.3 955 16.3 69 13.9  87 12.7  

transcription 595 10.2 635 10.8 17 3.4  48 7  

stress 247 4.2 257 4.4 15 3  9 1.3  

metabolism 1340 22.9 1410 24.1 58 11.7  275 40.3 * 5.7E-24 Ϯ 

cell cycle 65 1.1 68 1.2 6 1.2 * 1.6E-01 7 1  

reproduction 130 2.2 137 2.3 6 1.2  0 0  

intracellular organization 195 3.3 201 3.4 27 5.4 * 3.4E-03 Ϯ 54 7.9 * 9.1E-10 Ϯ 

development 338 5.8 357 6.1 0 0  0 0  

translation 146 2.5 99 1.7 50 10.1 * 4.4E-19 Ϯ 17 2.5 * 3.9E-2 Ϯ 

death 31 0.5 36 0.6 0 0  3 0.4  

cytoskeleton 57 1 59 1 0 0  0 0  

ion transport 10 0.2 8 0.1 2 0.4 * 1.6E-01 0 0  

proliferation 3 0.1 2 0 1 0.2 * 2.1E-01 0 0  

homeostasis 2 0 2 0 0 0  0 0  

differentiation 6 0.1 6 0.1 0 0  0 0  

NaN 161 2.7 179 3.1 0 0  1 0.1  

Totals 5855 100 5855 99.8 497 100  683 99.9  

* denotes an enrichment (increase in proportion) above that found in the appropriate ―all networks in study‖ 

category (e.g., column 7 is compared to column 3, and column 10 is compared to column 5). Ϯ denotes a 

significant p-value (p ≤ 0.05).  
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Figure 2. Nodes represent differentially activated (red squares) and organized (blue 

squares) networks in metastatic OS samples. Green edges represent genetic overlap 

between networks. Genes in significant networks were annotated with simplified Gene 

Ontology Slim Generic terms (Table 6), and networks were grouped into processes by the 

most commonly occurring term in each network. Networks meeting the cut-off conditions 

detailed at the top of the figure were visualized with the Enrichment Map plugin for 

Cytoscape. The size of each node reflects the number of genes included in the network. 

 

2.3. Genes Previously Implicated in Osteosarcoma Metastasis are among Significant Network Results 

Next, it was examined if the genetic networks discovered to be differentially activated or organized 

in expression profiles of MD-OS samples contained genes previously implicated in OS metastasis. 

Extensive literature review led to the generation of a query list containing genes whose expression is 

either correlated with outcome in human OS patients, or genes that have been shown to be involved in 

OS metastasis in xenograft studies or animal models of OS (Table 2). Thirty-two genes from this list 

were included in the present study (i.e., present on the expression profiling microarrays), and it was 

found that five such genes were among networks found to be significantly differentially activated in 

MD-OS expression profiles, and twenty-eight were among networks found to be significantly differentially 

organized in MD-OS expression profiles (Tables 3 and 4). 

Table 2. Genes previously implicated in metastatic progression of OS. 

Gene Ref. Gene Ref. Gene  Ref. 

BIRC5 [16] IVD -- CXCR3 X [17] 

CAV1 [18] KIT [19] EGF X [20,21] 

CCN1 [22] LRP5 [23] EGFR2 X [24–29] 

CCN3 [30] MMP2 [31] FADD X [32] 

CD44 [33] PDGFRA [34,35] HIF1 X [36] 
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Table 2. Cont. 

Gene Ref. Gene Ref. Gene  Ref. 

CDH11 [37] PEDF [38] IL12A X [39] 

CDH2 [37] RECK [40] IL12B X [39] 

COL18A1 [41] S100A6 [42] INS X [43–51] 

CXCR4 [52–55] SPARC [56] MAML1 X [57] 

DPF2 -- TIMP1 [58] MIRK X [59] 

EGFR [60] PLAUR [61] MMP14 X [62] 

EZR [25,63,64] VEGFA [55,65–72] MMP9 X [58,73,74] 

FAS [32,75–77] VEGFB [55,65–72] PDGFA X [35] 

IGF1 [43–51] VEGFC [55,65–72] VCP X [78] 

IGF2 [43–51] WIF1 [79]    

IGF1R [43–51] YYI [80]    

X denotes genes not present in the expression profiling microarrays used in this study. 

Table 3. Differentially activated networks containing genes previously implicated in  

OS metastasis. 

Query Node Score Psample FDRsample Pgene FDRgene 

CDH2 CDH2 3.89 0 0.0017 0.037 0.019 

S100A6 CACYBP 3.94 0 0.00096 0.007 0.18 

TIMP1 ECH1 3.28 0 0.00096 0.003 0.17 

PLAUR PGAP1 2.54 0 0.0019 0.003 0.19 

IVD MECR 3.94 0.001 0.01 0.046 0.0076 

―Node‖ is the central gene exhibiting differential network activity. 

Table 4. Differentially organized networks containing genes previously implicated in  

OS metastasis. 

Query Node ΔPCCTotal Psample Query Node ΔPCCTotal Psample 

S100A6 S100A6 0.41 0 TIMP1 LRP1 0.32 0 

KIT KIT 0.34 0 PLAUR LRP1 0.32 0 

YY1 YY1 0.32 0.001 BIRC5 PAFAH1B1 0.34 0 

BIRC5 BIRC5 0.35 0.001 NOV GIA1 0.3 0 

MMP2 MMP2 0.35 0.001 VEGFA SPARC 0.34 0 

SPARC SPARC 0.34 0 YY1 HDAC 0.33 0 

IGF1R CAMK2B 0.37 0 IGF1 PRKCD 0.36 0 

IGF2 CAMK2B 0.37 0 PDGFRA JAK1 0.33 0 

EGFR CAMK2B 0.37 0 CXCR4 JAK1 0.33 0 

KIT CAMK2B 0.37 0 FAS BTK 0.35 0 

CDH2 CAMK2B 0.37 0 VEGFB RASA1 0.32 0 

EZR CAMK2B 0.37 0 MMP2 ITGB2 0.37 0 

CD44 CAMK2B 0.37 0 LRP5 FZD8 0.48 0 

SPARC CAMK2B 0.37 0 SERPINF1 CSNK2A1 0.33 0.001 

CYR61 ATP2A2 0.33 0 COL18A1 CTSL1 0.33 0.001 

CAV1 ATP2A2 0.33 0 WIF1 FZD1 0.37 0.001 

S100A6 ACTN1 0.32 0 IVD MCCC1 0.37 0 

―Node‖ is the central gene exhibiting differential network organization. 
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2.4. The PRKCε-RASGRP3-GNB2 Network Is Differentially Activated, and May Interact with the 

Disorganized DLG2 Hub 

In order to identify drivers of the metastatic phenotype, the lists of significant networks discovered 

to be differentially activated and organized in expression profiles of MD-OS samples were further 

refined by focusing on a manageable number of each type of network that exhibited the greatest 

change between LD-OS and MD-OS samples. Twelve differentially organized networks were identified 

that exhibited the greatest change in organization between LD-OS and MD-OS samples, and that were 

also ―genetic hubs‖ (having more interactors than the median), as it has been shown that these genes 

may be particularly important to cellular processes (Figure 3) [81]. Forty-three networks were 

identified that exhibited the greatest change in activity between LD-OS and MD-OS expression 

profiles, and their interactions with some of the most disorganized hubs were visualized (Figure 4). 

This analysis allowed the identification of the networks exhibiting the greatest change among MD-OS 

expression profiles, and also the observation that many differentially activated networks also interact 

with significantly disorganized hubs, e.g., the differentially activated network containing protein 

kinase C epsilon (PRKCε), RAS guanyl releasing protein 3 (RASGRP3), and guanine nucleotide 

binding protein 2 (GNB2), also interacts with the disorganized network of discs large homolog 2 

(DLG2) (Figure 4).  

Figure 3. Labeled black squares show 12 differentially organized hubs (ΔPCC ≥ 0.4, p = 0, 

interactors ≥ 7). Nodes are genes and their colour reflects fold change in expression in the 

metastatic samples, only for significantly differentially expressed genes (t-test p ≤ 0.001). 

Only interactors of a significant hub whose expression is significantly correlated (PCC  

p ≤ 0.001) with expression of that hub in either the localized or metastatic samples are 

included. Edges depict interactions, and their colour reflects change in co-expression 

between metastatic samples and localized samples (green: correlation increased in 

metastatic samples, purple: correlation decreased in metastatic samples). Asterisks denote  

co-expressions that are significant (PCC p ≤ 0.001) in both localized and metastatic samples. 

 
 

Nodes:  genes  Edges: 

interactions  

Colour: expression Colour: Δ 

: interactions that are 

 significant in both 

localized 

 and metastatic tumours 

* 
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Figure 4. Genes comprising 43 differentially activated networks that meet stringent cut-offs 

(detailed at the top of the figure) were visualized with Cytoscape, as well as their 

interactions with 11 differentially organized networks (that also met stringent cut-offs 

which are detailed at the top of the figure). Coloured nodes represent relative abundance in 

metastatic samples vs. localized samples (red = more abundant, blue = less abundant). 

Coloured edges represent correlations between genes in metastatic samples vs. localized 

samples (green = more correlated, purple = less correlated).The number of included interactors 

of each gene in this study is proportional to the size of the node depicting the gene. 

 

Literature searches of the genes contained in the highly significant network results showed that 

PRKCε has been characterized in progression of prostate [82–87], breast [88,89], and renal cancers [90], as 

well as tumorigenesis of squamous cell carcinoma (non-melanoma skin [91–95], and head and  

neck [96–99]), as well as non-small cell lung cancer [100–103]. Additionally high expression of GNB2 

is associated with an aggressive form of pulmonary adenocarcinoma (mixed adenocarcinoma with 

bronchioalveolar features), and shorter overall survival for patients with these tumors [104]. RASGRP3 

has been shown to promote androgen independence and progression of prostate cancer [105]. These 

reports of the involvement of these genes in the progression of other cancers led to the selection of the 

differentially activated PRKCε-RASGRP3-GNB2 network as a lead candidate for further characterization 

in osteosarcoma cells and tumors (Figure 5). 
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Figure 5. (A) The PRKCε-RASGRP3-GNB2 Network is Differentially Activated in 

Expression Profiles of Metastatic Osteosarcomas. (B) Differential Activity Score of 

PRKCε-RASGRP3-GNB2 Network. (A) Shown is the network of PRKCε-RASGRP3-GNB2 

that is differentially activated in metastatic OS samples of the expression profiling screen. 

Red nodes are transcripts that are more abundant in metastatic samples, and blue  

nodes are less abundant in metastatic samples. Within each circle is the %-fold change in 

expression of metastatic samples vs. localized samples, and the order of magnitude of the 

p-value from the corresponding student’s t-test. (B) Shown are the relevant scores for the 

PRKCε-RASGRP3-GNB2 network, the results of the differential network activity analysis 

applied to expression profiles of MD-OS vs. LD-OS tumors. 

 

2.5. PRKCε-RASGRP3-GNB2 Network Is Differentially Activated in Vitro 

A panel of human osteosarcoma cell lines known to have differing metastatic potential when grown 

as murine xenografts was collected to investigate the role of PRKCε-RASGRP3-GNB2. This panel 

includes the parental Hu-09 cell line (included in Figure 6), and its highly metastatic derivatives M112 

and M132 (derived by in vivo metastatic selection), as well as the poorly metastatic sub-clones L06 and 

L13 (all generously provided by Dr. B. Fuchs, the University of Zurich, Zurich, Switzerland) [106,107]. 

Additionally the poorly metastatic SAOS2 and MG63 cell lines, as well as their highly metastatic 

derivatives LM7 and M8, were included (generously provided by Dr. E. Kleinerman, University of 

Texas MD Anderson Cancer Center, Houston, TX, USA) [108,109]. In this panel, it was observed that 

the PRKCε-RASGRP3-GNB2 network exhibited an mRNA expression pattern similar to that observed 

in the expression profiles of osteosarcoma tumors (Figure 6). Specifically, it was observed that PRKCε 

mRNA was significantly more abundant in some highly metastatic lines (M112 and M132 vs. L06 and 

L13), and that RASGRP3 was significantly less abundant in some highly metastatic lines (LM7 vs. 

SAOS2 and M8 vs. MG63). Additionally, mRNA levels of myosin chain heavy 9 (MYH9), which has 

been shown to interact with PRKCε at stress fibers in mice [110], was also observed to be more 

abundant in some highly metastatic lines (LM7 vs. SAOS2 and M8 vs. MG63). The protein expression 

of PRKCε was also investigated in this panel, and it was found that the highly metastatic lines M112 

and M132 expressed PRKCε protein at higher levels than observed in either the less metastatic 

parental Hu09 line, or in the poorly metastatic L13 derivative (Figure 7). 
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Figure 6. The PRKCε-RASGRP3-GNB2 network is differentially activated in vitro.  

Quantitative PCR was performed on cDNA synthesized from the human OS cell lines 

shown. Purple bars denote cell lines that are poorly metastatic in mouse models, and green 

bars denote cell lines that are strongly metastatic as murine xenografts. Arrows denote 

relationships between cell lines. Student’s t-test: * p ≤ 0.05 ** p ≤ 0.001. Multiple 

independent experiments are shown for each gene: GNB2 (n = 2), PRKCε and RASGRP3 

(n = 3), and MYH9 (n = 5). ** p ≤ 0.001, * p ≤ 0.05. 

 
 

 

Figure 7. PRKCε Protein is more abundant in some highly metastatic cell line models of 

osteosarcoma metastasis. Western blots of whole cell lysates from human OS cell lines 

probed with anti-PRKCε and anti-β-actin antibodies. Purple bars denote cell lines that are 

poorly metastatic in mouse models, and green bars denote cell lines that are strongly 

metastatic in cell lines. Arrows denote relationships between cell lines. Shown is a 

representative western blot of two independent experiments. 

 

** 
** 

* 

    **      ** 

  **       ** 

RASGRP3 (N = 3) 
MYH9 (N = 5) 

PRKCε (N = 3) GNB2 (N = 2) 
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2.6. Human Osteosarcomas That Are Metastatic-at-Diagnosis Are More Likely to Exhibit High Levels 

of PRKCε mRNA 

The amount of PRKCε mRNA was assayed in 17 LD-OS and 14 MD-OS tumors that were used in 

the expression profiling screen (Figure 8). It was found that MD-OS tumors do not have a higher 

average expression of PRKCε than LD-OS tumors (Welch two sample t-test p = 0.1873), however 

MD-OS tumors were more likely to exhibit high expression of the PRKCε transcript (five of fourteen 

MD-OS tumors: Figure 8). 

Figure 8. Metastatic-at-Diagnosis human osteosarcomas are more likely to have high 

PRKCε expression. Quantitative PCR was performed on cDNA synthesized from tumor 

samples from the original expression profiling cohort. PRKCε expression was normalized to 

STAM2, and is depicted as fold-change. The purple bar denotes localized tumors at 

diagnosis (LD-OS), and the green bar denotes metastatic tumors at diagnosis (MD-OS). 

The dotted red line depicts the average PRKCε expression in localized tumors. The number 

of replicates for each sample is shown below each bar.  

 

2.7. PRKCε Is Not Required for Migration of Highly Metastatic M132 Cells 

Since PRKCε promotes the in vitro migration of other cell lines [89], and the in vitro migration rate 

of the Hu09-derived cell lines correlates with their ability to form metastatic colonies in mice [107], 

experiments were undertaken to determine whether PRKCε promotes migration of osteosarcoma cells. 

The highly metastatic M132 cell line was selected for PRKCε-knockdown studies, as this line 

expressed PRKCε protein at a high level (Figure 7). However, it was observed that knockdown of 

PRKCε protein using siRNA did not affect the in vitro migration rates of M132 cells as observed 

during a scratch assay (Figure 9). 

2.8. IGF-1 Stimulation Induces Protein Expression of PRKCε in M112 Osteosarcoma Cells 

It is well known that the insulin/insulin-like growth factor (IGF) pathway plays an important  

role in osteosarcoma tumor growth. Osteosarcoma tumors and cell lines express components of the 



Cancers 2013, 5 

 

 

383 

pathway (including insulin, IGF-I and -II, as well as pathway receptors) that are capable of autocrine  

signaling [44,45,51]. Additionally, inhibition of the pathway through various means is effective at 

inhibiting osteosarcoma growth in xenograft models [43,46–50]. IGF-I signaling is also known to lead 

to increased cellular levels of diacylglycerol, which can then activate PRKCε (and other proteins 

containing C1 domains) [111–113], by a mechanism involving membrane tethering of PRKCε and 

conformational change [114]. Specifically PRKCε is activated following IGF-1 treatment in vascular 

smooth muscle cells, and may be involved in IGF-I-mediated proliferation and migration of these  

cells [112,113].  

Figure 9. (a) PRKCε is not required for in vitro migration of highly metastatic M132 

osteosarcoma cells. (b) Confirmation of PRKCε knockdown. (c) Quantification of migration 

by M132 cells. (a) Upper panel: photographs of M132 cells immediately after scratching, 

two days following transfection with PRKCε siRNA. Lower panel: matched photographs 

of M132 cells two days following scratching and four days following transfection with 

PRKCε siRNA. (b) Western blot verification of PRKCε knock-down two, three and four 

days following transfection with siRNA. (c) Quantification of migrated distance by M132 

cells transfected with PRKCε siRNA and appropriate controls. Values are average ± standard 

error of three independent experiments.  

 

(a) 

 

(b) 

 

(c) 
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The effect of IGF-1 stimulation on PRKCε protein in highly metastatic osteosarcoma cells was 

investigated. Highly metastatic M112 osteosarcoma cells were serum starved for at least 24 h, followed by 

the addition of either fresh serum-free media or media containing 50 ng/mL IGF-1. It was observed 

that following IGF-1 stimulation, the protein expression of PRKCε increased in a time-dependent 

manner, with a peak occurring approximately 30 min following stimulation (Figure 10). 

Figure 10. Protein expression of PRKCε is induced by IGF-1 treatment. Western blots 

were performed on whole cell lysates of M112 cells incubated in 1% FBS (low serum) 

medium or in 1% FBS medium supplemented with 50 ng/mL IGF-1 for the time periods 

described. Membranes were probed with anti-PRKCε antibody and anti-β-actin antibody as 

a loading control. The experiment was performed three independent times. 

 

3. Discussion 

This work demonstrates that expression profiles of metastatic-at-diagnosis osteosarcomas (MD-OS) 

are quite distinct from expression profiles of localized-at-diagnosis osteosarcomas (LD-OS), possibly 

indicating a distinct disease etiology for the more severe MD-OS. Supervised network analysis 

discovered hundreds of networks that exhibited both differential activity and differential organization 

in the MD-OS expression profiles, at permissive cut-off levels. This indicates that either heterogeneous 

differences are observed in the MD-OS tumor group, or that changes to the transcriptome observed in 

MD-OS are potentially associated with many bystander events (i.e., aberrations in expression pattern 

not functionally relevant to osteosarcoma metastasis), or possibly both. 

Investigation of the cellular processes of networks within the permissive significant results showed 

differentially activated networks were strongly enriched for transport and translation networks, and 

slightly enriched for intracellular organization networks. Differentially organized networks were 

strongly enriched for metabolic networks, as well as intracellular organization and transport networks. 

Increased or over-active translation is known to support an aggressive phenotype of many cancers [115], 

and the analysis presented here implies it is a characteristic of MD-OS tumors as well. The enrichment 

of disorganized metabolic networks in MD-OS expression profiles may indicate that altered cellular 

metabolism plays a role in osteosarcoma metastasis, a notion supported by a recent study by Hua  

et al. [116]. By studying serum metabolite profiles of mice injected with OS cells, Hua et al observed a 

metabolic shift coincident with the onset of pulmonary metastasis [116]. 

Examination of the most stringently differentially activated and organized networks in MD-OS led 

to the selection of the PRKCε-RASGRP3-GNB2 network for follow-up characterization. This network 

was subsequently found to be differentially activated at the transcript level among a panel of in vitro 
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models of OS metastasis. PRKCε was also found to be more abundant in some highly metastatic OS 

cells at the protein level, and in some MD-OS tumors at the transcript level. Although PRKCε is 

known to support migration of other cell types [89,96,98,117,118], there was no evidence to support a 

role for PRKCε in the migration of M132 osteosarcoma cells in this study. This may indicate that the 

aberrant expression of PRKCε and its network in vitro and in vivo is related to a bystander effect, or 

that the functional relevance of this aberrant expression has not yet been elucidated. The effect of high 

PRKCε expression may be related to the proliferation effects of the IGF-1 pathway, as this study 

provides evidence for the IGF-1 dependent induction of PRKCε protein expression. PRKCε may 

support other cellular processes entirely, as it is known to promote pro-metastatic phenotypes of many 

other cancers [82–87,91–103]. 

In addition to the PRKCε-RASGRP3-GNB2 and MYH9 network; this article describes several 

networks exhibiting significant differential activity, organization, or some combination of the two in 

MD-OS expression profiles. The integration of the results of this study with other datasets of osteosarcoma 

expression profiles, as they become available, will help to distinguish the drivers and genuine 

characteristics of metastatic osteosarcoma from the passengers, as would a limited high-throughput 

functional screen of the significant networks described in this study. 

4. Experimental Section  

4.1. Patient Follow-Up 

Overall survival data was available for all 46 patients in the group presenting without metastasis at 

diagnosis. Of these, 17 died of disease (DOD) with a median follow-up of 41 months (minimum 

follow-up = 6 month, maximum follow-up = 157, SD = 39.2 months), 28 are alive with no evidence of 

disease (ANED), with a median follow-up of 101 months (minimum follow-up = 35 month, maximum 

follow-up = 269, SD = 62.1 months) and one subject is alive with evidence of disease (AWED) with a 

follow-up of 12 months. 

Out of 17 patients presenting with metastases, overall survival data was available for only 14 

patients. Out these 14, 13 died of disease (DOD) with a median follow-up of 10 months (minimum 

follow-up = 1 month, maximum follow-up = 49, SD = 12.5 months) and the other patient is alive with 

no evidence of disease (ANED) with a follow-up of 178 months. 

4.2. Tumor Samples 

Primary high-grade intramedullary osteosarcoma tumors were selected for expression profiling by 

sarcoma pathologists on the basis of tumor homogeneity. The OS tumor cohort consisted of 63 tumors 

which were grouped into those that were localized (n = 46) or metastatic (n = 17) at the time of initial 

diagnosis. Samples were collected by open biopsies prior to administration of any chemotherapy, and 

stored in liquid nitrogen until time of RNA isolation. Total RNA was extracted using Trizol reagent 

(Invitrogen, Carlsbad, CA, USA). The amount and quality of RNA was assessed using both Ultrospec 

2100 pro (GE Healthcare Bio-Sciences, Piscataway, NJ, USA) and 1% agarose gels. 

  



Cancers 2013, 5 

 

 

386 

4.3. Gene Expression Profiling 

5 μg of tumor and ―reference‖ (pooled from cell lines) cDNA was indirectly labeled using 

aminoallyl nucleotide analogues with Cy3 and Cy5 fluorescent tags, respectively. The labeled cDNA 

was competitively hybridized to University Health Network 19 k cDNA arrays (UHN19k) containing 

18,981 ―spots‖ (mapped to 8,998 known unique genes). This process was repeated with reciprocal 

fluorescent tagging. Data normalization, imputation (K10 Nearest Neighbours algorithm), and analysis 

were performed in collaboration with Drs. Shelley Bull, Dushanthi Pinnaduwage, and Robert Parkes. 

Supervised statistical analysis (random variance T-test) was performed by Robert Parkes using  

BRB-Array Tools software [119].  

4.4. Unsupervised Hierarchical Clustering 

The most differentially expressed single genes within the expression profiling experiment were 

identified according to methods previously described [13,14]. In this study, a subset was examined that 

exhibited at least six-fold change in expression in at-least four tumors with a maximum p-value  

of 0.001 (student’s t-test). Unsupervised hierarchical clustering of the tumors according to their 

expression of these genes was performed with Partek Genomics Suite. 

4.5. Supervised Network Analysis 

The entire database of interactions for human genes and proteins was downloaded from the Pathway 

Commons website (as an adjacency list and the interactions were converted to Entrez GeneIDs [15]. 

This dataset comprised physical and genetic interactions, as well as pathway and disease associations 

(which were either translated by Pathway Commons to binary interactions or were lost), from both 

curated and non-curated sources [15]. A subset of 5,855 genes was common to both this interaction 

database and the expression profiling experiment. There were 176,121 interactions among these genes, 

with six interactions being the median number per gene. 

4.5.1. Differentially Activated Networks 

Genetic networks demonstrating significant differential ―activity‖ in MD-OS tumors were discovered 

in a manner similar, with some changes, to that previously described by Chuang et al. [11]. Briefly 

each network was restricted to those genes that met some cut-off of significant expression between 

localized and metastatic tumors (Table 5).  

Table 5. Cut-Off conditions for gene inclusion to ―differential activity‖ analysis. 

Trial 1 2 3 4 5 6 7 8 9 10 

Differential 

Expression (%) 
0 0 10 20 30 40 50 60 70 80 

P Value Maximum None (i.e., all genes included) 0.001 

For each gene in the remaining network a ―class difference score‖ (CDS) was calculated as the 

difference in median expression between classes (i.e., between metastatic tumors and localized 

tumors), and normalized to the variation within the localized samples [Equation (1)]. A ―network 
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activity score‖ (NAS) was calculated by determining the average of the absolute CDS for each gene in 

the network [Equation (2)]. In these equations, g1, g2 … gn are all genes in network J, which has NG 

members.GA and GB are the median expression of gene G among localized (A) and metastatic (B) 

tumors. SGA is the standard deviation of expression values of gene G among the localized tumors: 

 
(1) 

 

(2) 

To determine statistical significance, the NAS was compared to the corresponding NAS generated 

from 1,000 permutations of both sample and gene labels to determine two empirical p-values  

[Equation (3)]. In these equations J1 … ɸ − 1, ɸ, ɸ + 1 … Ĵ are all networks in the study, and i … ɫ - 1, 

ɫ, ɫ + 1 … Ni are the repetitions of gene and label permutations (in this study Ni = 1,000). 

 

(3) 

The significance of the randomly generated NAS scores was also determined in a similar fashion 

[Equation (4)]; this was done for false-discovery rate (FDR) calculation.  

 

(4) 

Two FDRs were calculated for each network by determining the average number of  

randomly-generated networks with a p value equal to or lower than a nominal p value threshold [pɸ in 

Equation (5) below], equal to the p-value of the network being considered. The number of randomly 

generated p-values falling below this nominal threshold was then divided by the number of real 

networks also falling below this nominal threshold [Equation (5)]. This was done for both p-values 

(from sample and gene permutations) to yield two empirical FDR values for each network. The entire 

process was repeated for different cut-off conditions (Table 5), and was stopped when more stringent 

cutoffs failed to produce any additional significant networks: 

 

(5)  
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4.5.2. Differentially Organized Network—Dynemo 

Genetic networks exhibiting significant differential organization in MD-OS samples relative to 

localized samples were discovered as previously described [12]. Briefly, for each network the Pearson 

Correlation Coefficient (PCC) was used to determine the overall correlation in gene expression 

between the network hub and each of its interactors in both the localized and metastatic samples 

[Equation (6)]. The difference in this hub-interactor correlation between localized and metastatic 

samples was then calculated for each interaction in the network [Equation (7)], and the average 

difference in correlation across the entire network was also calculated: ―AvgΔPCC‖ [Equation (8)]. In 

these equations J1 … ɸ − 1, ɸ, ɸ + 1 … Ĵ are all the networks in the study. H is the hub (central node) 

of network J, which has NG members, and g1, g2 … gn are all interactors of H, and therefore all other 

genes in network J. SG and SH are the standard deviations of gene G and hub H among the indicated 

tumor class. t1, t2 … T are all the tumors in each class, and NT is the total number of tumors in the 

localized (NT = 46) and metastatic (NT = 17) classes: 

 

(6) 

 (7) 

 

(8) 

The AvgΔPCC value was compared to the corresponding scores generated from the same network 

following 1,000 permutations of the class labels to generate a non-parametric p-value to assess the 

significance of the change in internal correlation of each network [Equation (9)]. Let i … ɫ − 1, ɫ,  

ɫ + 1 … Ni be the number of repetitions of gene and label permutations (in this study Ni = 1,000). 

 

(9) 

4.5.3. Visualization of Network Results 

Two statistical confidence levels were investigated in this study, a permissive cut-off level to 

discover broad (or ―global‖) trends among metastatic tumors, and a stringent cut-off to delineate  

high-confidence networks for follow-up. The permissive cut-off for differentially activated networks 

was chosen to be p’s ≤ 0.05 and FDR’s ≤ 0.2, and for the differentially organized levels the permissive 

cut-off was p ≤ 0.001. These cut-offs were used to assess the significance of cellular process 

enrichment at the global level (Table 1) and for discovery of networks containing genes previously 

implicated in OS metastasis (Tables 3 and 4). Visualization of these global trends (Figure 1) was 

limited to computer processing power, and thus were further refined for the differentially activated 



Cancers 2013, 5 

 

 

389 

networks to be p’s = 0.05, FDR’s = 0.1 and NAS ≥ 1.65, and for differentially organized networks to 

be p ≤ 0.001 and |ΔPCC| ≥ 0.4. Visualization of the global trends was performed with the Enrichment 

Map plugin for Cytoscape [120]. The stringent cut-off levels for differentially activated networks were 

set to p’s ≤ 0.01, FDR’s ≤ 0.1, NAS ≥ 1.65, and for differentially organized networks were set to p = 0, 

|ΔPCC| ≥ 0.4, and having at least seven interactors. Visualization of these high-confidence networks 

was conducted using Cytoscape [121] (Figures 3 and 4). 

4.5.4. Cellular Process Annotation  

Gene Ontology annotations (which relate genes to cellular processes) from the ―Generic Slim‖ 

database were downloaded [122]. The database was further simplified to focus on interesting processes 

according to Table 6. Networks were assigned to processes by determining the most commonly 

occurring term among genes within the network. In this manner all 5,855 networks in the study could 

be assigned to a process (Figure 11a—the ―study process composition‖, or Table 1, column 4). Since 

analysis of ―differential activated‖ networks requires identification of significant subsets, all networks 

which were eventually found to be significantly differentially activated were re-annotated using only 

the genes within the network’s significant subset (Table 1, column 2). This resulted in discordant 

annotations between the network and the significant subset for only 6% of all networks, and thus the 

annotations of the network subsets (Figure 11b—―subsets process composition‖, or Table 1, column 2) 

and overall ―study process composition‖ (Figure 11a, or Table 1, column 4) are overwhelmingly similar. 

As the methods of Taylor et al. do not identify significant subsets within networks, this consideration was 

not necessary for differentially organized networks. 

Table 6. Simplification of the gene ontology slim generic database. 

Original Terms Further Simplified Terms 

cell death, death death 

multicellular organismal development, embryonic  

development, anatomical structure morphogenesis 
development 

cell differentiation, differentiation differentiation 

regulation of gene expression, epigenetic epigenetics 

cell growth, growth growth 

cellular component organization, organelle organization, mitochondrion 

organization, cytoplasm organization 
intracellular organization 

metabolic process, cellular amino acid and derivative metabolic process, 

secondary metabolic process, lipid metabolic process, biosynthetic process, 

catabolic process, carbohydrate metabolic process, protein metabolic process, 

nucleobase nucleoside nucleotide and nucleic acid metabolic process, DNA 

metabolic process, generation of precursor metabolites and energy  

metabolism 

signal transduction, response to biotic stimulus, response to external stimulus, 

response to abiotic stimulus, cell-cell signaling, cell communication, response 

to endogenous stimulus, cell recognition  
signaling 

protein transport, transport transport 

regulation of biological process, biological process, behavior NaN 
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Figure 11. Distribution of cellular processes among networks and sub-networks investigated in 

this study. (a) ―Study‖ Process Composition (b) ―Subsets‖ Process Composition. (a) The 

Generic Slim database of gene-process associations was accessed from Gene Ontology and 

each network was annotated according to the most commonly occurring process term 

among genes within the network. (b) For all 497 networks found to be differentially 

activated in this study, the networks were re-annotated according to the most commonly 

occurring term among the significant sub-set (as the analysis of differential activity 

involves identification of a significant subset of genes within each network).  

 

4.5.5. Cellular Process Enrichment 

Enriched cellular processes were determined separately for differentially activated and organized 

networks. Enriched processes were first identified by determining those processing comprising a 

greater proportion within the significant results than in the entire study (i.e., differentially activated: 

Table 1 column 7 was compared to Table 1 column 3, differentially organized: Table 1 column 10 was 

compared to Table 1 column 5).  

Significance of cellular process enrichment (p-value) within the network results was determined 

using the hypergeometric distribution [Equation (10)], as described by Boyle et al. [123]. In this 

equation, N is the total number of networks in the study (5,855). M is the number of networks in the 

entire study annotated to a process of interest (differentially activated: Table 1 column 2, differentially 

organized: Table 1 column 4). i is the number of networks within the significant results annotated to 

the same process of interest (differentially activated: Table 1 column 6, differentially organized: Table 1, 

column 9), and n is the number of networks contained within that set of significant results (bottom of 

Table 1—differentially activated: 497, differentially organized: 683). This operation was performed 

with Matlab using the ―hygepdf‖ command. 

 

(10) 

4.6. Cell Culture 

Hu09 and derivates (L06, L13, M112 and M132) were grown in RPMI 1640 supplemented with 

10% fetal bovine serum (FBS) and 1% L-glutamine. L06 and L13 are cell lines derived from Hu09 

human OS cell line by limited dilution plating, and M112 and M132 were derived from the Hu09 line 
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by in vivo selection of pulmonary metastatic nodules [106,107]. L06 and L13 both form fewer lung 

metastases at a decreased incidence in mice following tail-vein injection compared to the intermediate 

Hu09 line, while M112 and M132 result in greater numbers of pulmonary nodules at a higher 

incidence [107]. The differences in metastatic propensity correlate to different survival lengths for 

mice injected with the various cell lines [107]. M8 cells were derived from MG63 human OS cells 

(hereafter referred to as MG63-P), and have decreased latency until pulmonary metastasis [109]. Both 

were grown in Dulbecco’s Modified Eagle Medium supplemented with 10% FBS. LM7 cells were 

derived from SAOS2 human OS cells (hereafter referred to as SAOS2-P), and form pulmonary 

metastases at a greater incidence than SAOS2-P following tail-vein injection in mice [108]. LM7 and 

SAOS2-P were grown in McCoy’s 5A supplemented with 5% FBS. RNA was harvested from all cell 

lines using Trizol reagent followed by phenol/chloroform extraction. 

4.7. Quantitative Reverse-Transcription Polymerase Chain Reaction (rt-PCR) 

RNA was collected from OS tumor samples as previously described [124], and cDNA was 

synthesized from both tumor RNA and cell line RNA according to the manufacturer’s instructions  

(M-MLV Reverse Transcriptase—Invitrogen, Carlsbad, CA, USA). Quantitative rt-PCR was performed 

according to the manufacturer’s instructions (Sybr Green—Applied Biosystems, Life Technologies, 

Carlsbad, CA, USA) to quantify the abundance of target cDNA relative to that of a control gene, signal 

transducing adaptor molecule 2 (STAM2), using primer sequences according to Table 7. Dr. Dushanthi 

Pinnaduwage performed statistical analysis (Welch two-sample t-test on log2 transformed data) 

comparing expression levels of protein kinase C epsilon (PRKCε) transcript between localized and 

metastatic tumors. 

Table 7. Primer sequences used in this study. 

Gene Symbol Primer Pairs 

STAM2 Forward 5'-TGGATGACAGTGATGCCAATTG-3' 

 Reverse 5'-CGCTGCCTCAGTCTCTATGT-3' 

PRKCε Forward 5'-CACTGCAAGCTGGCTGACT-3' 

 Reverse 5'-TGCAGGATCTCAGGAGCTATG-3' 

RASGRP3 Forward 5'-GGATTTCTCTGGGGCATAATC-3' 

 Reverse 5'-AGGAGGTCTTTGCACTGTTTG-3' 

GNB2 Forward 5'-CTATCAAGCTGTGGGACGTG-3' 

 Reverse 5'-GTAGCCGTTGGGGAAGAAAG-3' 

MYH9 Forward 5'-GCCTACAGGAGTATGATGCAAG-3' 

 Reverse 5'-ACTGGATGACCTTCTTGGTGTT-3' 

4.8. Western Blots 

Cytosolic protein extracts were isolated from cell lines using NETN lysis buffer (150 mM NaCl,  

1 mM EDTA, 20 mM Tris pH 7.5, 0.5% NP40, 1 mM phenylmethylsulphonyl fluoride, and 1% each 

of protease inhibitor, phosphatase inhibitor I and phosphatase inhibitor II, all from Sigma-Aldrich,  

(St. Louis, MO, USA). Protein concentration was determined using the bicinchoninic acid (BCA) 

protein assay kit (Pierce, Thermo Scientific, Rockford, IL, USA). Proteins were separated using 10% 
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sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

nitrocellulose membranes at 30 V, overnight at 4 °C. Membranes were blocked for 1 h with Tris 

buffered saline with 0.1% Tween-20 (TBS-T) supplemented with 5% fat-free milk. Primary antibody 

incubation was performed in TBS-T supplemented with 5% bovine serum albumin (BSA) or fat-free 

milk, according to the manufacturer’s instructions. Secondary antibody incubation (donkey anti mouse, 

donkey anti rabbit) was performed at 1:5,000 concentration in TBS-T with 5% BSA for 50 min. 

Protein bands were visualized by chemiluminescence using ECL detection system (Amersham, GE 

Healthcare Bio-Sciences Corp, Piscataway, NJ, USA,). Primary antibodies used in this study are PKCε 

(1:1,000, Cell Signaling Technology, Danvers, MA, USA), and β-actin (1:5,000, Sigma-Aldrich,  

St. Louis, MO, USA). Analysis of PRKCε protein expression in the panel of OS cell lines was 

performed in triplicate. 

4.9. Knockdown of PRKCε 

Two different siRNAs were purchased from Ambion (Invitrogen, Carlsbad, CA, USA) targeting 

PRKCε: ―select s11102‖ and ―select s11103‖ (hereafter referred to as PRKCε siRNA #2 and #3, 

respectively). Ambion ―select negative control siRNA #1‖ was used as a negative control (hereafter 

referred to as ―scramble‖). Transfection reagents were purchased from Dharmacon Thermo Scientific 

(Rockford, IL, USA): ―DharmaFECT 2‖ was used for the M112 cell line, and ―DharmaFECT 4‖ was 

used for the M132 cell line. Transfections were performed in parallel with cell plating for experiments. 

20 μM siRNA and the appropriate transfection reagent were each diluted (1.5:100 and 1:100, 

respectively) in Opti-MEM medium (Invitrogen, Carlsbad, CA, USA) and left to incubate for 5 min at 

room temperature (RT). The siRNA and transfection reagents were then mixed together and incubated 

for 10 min at RT. 200 μL of the mixture was then applied to wells of 12-well plates, or 20 μL was 

applied to wells of 96-well plates. 800 μL (12-well plates) or 80 μL (96-well plates) of cells at an 

appropriate concentration were then plated evenly in the wells. The cells were washed with phosphate-

buffered saline (PBS) the following day and given fresh media. 

4.10. Scratch Assay 

Comparison of migration rate following knockdown of PRKCε in M132 cells was performed by 

plating 1.2 × 10
5
 cells in 12-well plates. All plates had grids drawn across them to allow repeated 

photographing of the same field. At least 12 fields were collected and analyzed for each sample on 

each day. Twenty four hours following plating, the cells were washed with PBS and given RPMI 1640 

supplemented with 1% each of FBS and L-glutamine (―low serum media‖). On the second day 

following plating, the confluent cells were ―scratched‖ using a 200 μL pipette tip. The cells were washed 

twice with PBS and fresh low serum media was added before immediately imaging the cells using an 

inverted microscope and camera. The average distance that the confluent edge of cells had travelled 

into the wound was measured for each time point. This experiment was performed in triplicate. 
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4.11. IGF-1 Induction Assay 

To determine if IGF-1 is able to induce the expression of PRKCε, 2 × 10
5
 M112 or M132 cells were 

plated in 12-well plates. After two days the cells were washed twice with PBS and were given low 

serum RPMI media (1% FBS, 1% L-glutamine), with the exception of some cells which were retained 

in complete media as a control. The following day the remaining cells were given fresh low  

serum RPMI supplemented either with nothing (―no treatment‖ control) or with 50 ng/mL of IGF-1 

(Sigma-Aldrich, St. Louis, MO, USA). After the appropriate length of incubation with IGF-1, the cells 

(4 wells) were washed with cold PBS, scraped, and then lysed in order to harvest cytosolic protein as 

described above. Trizol reagent was added to a fifth well of each sample for the extraction of RNA and 

evaluation of mRNA abundance as described above. This experiment was repeated in triplicate. 

5. Conclusions  

Supervised network analysis was used to discover differentially activated and organized genetic 

networks in expression profiles of metastatic-at-diagnosis osteosarcomas (MD-OS) compared to 

localized-at-diagnosis osteosarcomas (LD-OS). The PRKCε-RASGRP3-GNB2 network was found to 

be differentially activated among MD-OS expression profiles and among in vitro models of OS 

metastasis. It was found that MD-OS tumors do not express significantly higher levels of PRKCε 

overall (t-test p = 0.1873), but they were more likely to exhibit high expression of PRKCε transcript, 

compared to the LD-OS tumors (five of fourteen MD-OS tumors had PRKCε expression greater than 

the maximum of the LD-OS tumors). 

This result is consistent with the expression pattern observed in the panel of OS cell lines, where 

PRKCε was found to be more abundant at the RNA level in some of the in vitro models of OS 

metastasis. Specifically, PRKCε was more abundant in the M112 and M132 vs. Hu09, L06 and L13 

cell line model, but not in the LM7 vs. SAOS2 or M8 vs. MG63 models. The heterogeneity of PRKCε 

expression among MD-OS tumors may indicate heterogeneous networks are aberrant in  

MD-OS tumors, or that the PRKCε-RASGRP3-GNB2 network may be disrupted through alterations of 

other genes in the network. 

Despite reports by others of the involvement of PRKCε in cell migration [89,90,96,98,118], 

knockdown of PRKCε using siRNA was not found to affect migration of highly metastatic M132 

osteosarcoma cells. The effect of PRKCε on invasion of osteosarcoma cells was not investigated in 

this study, and may be a fruitful avenue of further research, as PRKCε is known to be involved in 

invasion of other cell systems in vitro, as well as to be involved in various other pro-metastatic 

pathways [125,126]. The absence of pro-metastatic effect of PRKCε protein in migration assays 

indicates that either the aberrant expression of the PRKCε-RASGRP3-GNB2 network may be related 

to a bystander effect, or that the pro-metastatic phenotype of PRKCε over-expression remains to  

be elucidated. 

PRKCε protein expression in highly metastatic M112 cells was found to be induced by IGF-1 

stimulation, and this may indicate that PRKCε is involved in IGF-1 dependent pathways. Beyond the 

PRKCε-RASGRP3-GNB2network, this article describes many aberrantly activated and organized 

networks among expression profiles of MD-OS tumors. A systematic functional screen of these 
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networks, and determination of the predictive accuracy of these network expression patterns in 

independent datasets, would help differentiate the bystanders from the drivers of OS metastasis.  
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