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Abstract: Osteosarcoma (OS) is the most common primary maligonambr of the bone,

and pulmonary metastasis is the most frequentecalu®S mortality. The aim of this study

was to discover and characterize genetic networks differentially expressed in metastatic

OS. Expression profiling of Ofaimors, and subsequent supervised network analysis, was
performed to discover genetic netwowkifferentially activated or organized in metastatic

OS compared to localized OS. Broad trends among the profiles of metastatic tumors include
aberrant activity of intracellular organization and translation networks, as well as
disorganization of metabolite t wor ks. The di f f RARGRP3GNB2] v act |
network, which interacts with the disorganized DLG2 hub, was also found to be
differentially expressed amor@S cell lines with differing metastatic capacity in xenograft

modelsP RK CU t r asmmre abungant innsame metastatict@8ors; however the

difference was not significant overall,.n f unct i onal studi es, PRKC
involved in migration of M132 OS cells, but its protein expression was induced in M112

OS cells following IGFL stimulation.
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1. Introduction

OsteosarcomdOS) is the most commorprimary malignant cancer of the bone, with nearly
1,000 diagmses annuall in North America [1,2]. High-grade intramedullary osteosarcoma
(Aiconventionad) constitutes the majority of cases, and is an aggressive disease that typically
metastasizes to the lund4,2]. Approximately 1020% of patients preserib the clinic with
discernable metastasis, andfiather 2G30% develop metastasis despite aggressive treatident
Currently neoadjuvant chemotherapy combination with surgical resection of osteosarcomas can
achieve 5year overall survival rates approximately 65%4,5]. However, delineation of the molecular
mechanisms contributing to osteosarcom&tastasis has the possibility of identifying specific
therapeutic targets that improve prognosis of patients with metastatic osteosarcoma.

Expression profiling is arflomicd-level discovery technique that allows the quantification of
thousands of different transcripts simultaneously between different diseas¢6jtaiéss technology
has many applications in the cancer field including distinguishing subtypes of a particuar, can
identifying transcripts differentially expressed between those types, and predicting the subtype of a
cancer based on the expression of identified transdBpts In recent years it has been shown that
analysis of expression profiles at the levekets of transcripts rather than individual transcripts has
more statistical power, is more reproducible between studies, and provides informative context to the
results [719]. There are many algorithms for geset or networkbased analytical algorithms,
including the popular gerget enrichment analysis (GSEA) and the proprietary ingenuity pathway
analysis (IPA)[10]. Additionally dozens of other netwoblased analytical algorithms have been
published that either utilize different statistical methodthat interrogate a unique cellular application
(reviews: [8,9]). Two such algorithms are the methods of Chuengal. that aims to discover
differentially flactivated genetic network§l1], andiiDynema published by Tayloet al that aims to
discover diferentially organized genetic networks2]. These algorithms have successfully been
applied to uncover molecular alterations in expression profiles ofqadoome breast cancers, and
have achieved over 70% predictive accuracyclassifying thoseumor samples utilizing a fiveold
crossvalidation strategy11,12].

The aim of the present study was to identify differentially activated and organized networks in
expression profiles of metastatitdiagnosis osteosarcomas (MIB) compared to expression phes
of localizedat-diagnosis osteosarcomas (I@5). This analysis would assist in the prioritization of
candidate networks fan vitro characterization in osteosarcoma cell lines, including cellsffefridg
metastatic capability.
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2. Results

2.1.UnaupervisedHierarchical Clusteringof Expression Profiles Reveals Distinct Subtypies
Osteosarcomas

Expression profiling was performed on 46 4@5 tumor samples and 17 MDS tumor samples
using UHNA h u nmakicDNA microarrayy H 1 9 K) containtappeoknately 19000 cDNAspots
mapped to approximately®)0 unique transcripts. Unsupervised gene discovery techniques were used
to identify a subset of 596 genes that exhibitetbast sixfold change in expression in-l@ast four
tumors (p ©0.001), anchierarchical clustering aumors according to the expression pattern of these
genes demonstrated two broad grouptiofors. One group (FiguréB, red dendrogram) contained all
but two of the MDOStumors, and the other group (Figure , Xeen and blue denajrams) contained
all but one of the LBOS tumors. This analysis supports the notion that osteosarcomas of varying
metastatic status at the time of diagnosis exhibit distinct expression patterns, and that division of
tumors into these categories (localizeat diagnosis or metastatic at diagnosis) is appropriate for
subsequent supervised analysis.

Figure 1. (A) Unsupervised hierarchical clustering of 596 highly variable genes.
(B) Dendrogram depicting separation of MRS tumors (green bars) and {05 tumos

based on expression of highly variable gei@&$.Unsupervised hierarchical clustering of
OStumorsamples (Partek Genomics Suite) was performed on a subset of 596 genes found
to be significantly differentially expressed within the dataset (expressi@s\ay at least

6 fold, in at least 4 patientp,00.001),according to methods previously descrilje8,14].

(B) The dendrogram reveals two clusters, one with red dendrogram lines that contains
mostly metastatiat-diagnosistumors (green rectanglesh second cluster, which can be
subdivided further (blue and green dendrogram lines) contains mostly loegtidiagnosis

tumors (purple rectangles).
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2.2. Differentially Activated and Organized Networks in Metastatic Osteosarcomas

The expressiomnformation was integrated with the Pathway Commons database of physical and
genetic interactiongl5], yielding a dataset of 855 genetic networks. Supervised analysis was
performed on these data in a manner similar to previous publications to iddsetifiifterentially
activated and organized networks in MZB expression profiles. To describe broad trends in human
metastatic OS, inclusive coff levels were identified to delineate as many networks as possible that
were significantly differentially actated or organized in the metastatic samgtes.this analysisour
hundred and ninety seved9) of the 5855 geneticnetworks were identified as differentially
activated andix hundred and eighty thre683 networkswere significantly differentiallyorganized.
Networks annotated to transport, translation, organization and protein modification were more
commonly differentially activated than expected by chance (Tghteldmn §. Networks annotated
to the processes of organization, transport andglaaon were more commonly differentially organized
than expected by chance, as were metabolic networks (Tatéuinn 1). Three hundred thirty eight
(338) differentially activatedandone hundred and sixty twd62) differentially organizednetworks
were visualized and clustered according to their Gene Ontology Process annotation (Figure 2). This
visualization allowed the observation that clusters of differentially activated networks interact with large
significantly disorganized hubse.g, Figure 2 fiprotein modificatiod process: cluster of
differentially activated networks interacting with the disorganized hrgakpoint cluster region
(BCR). This pattern is also observed in fieanslatio® andfitranspord processes.

Table 1 Enrichmentof genetc networks in metastatic osteosarcomas according to cellular
processes at the glob@ermissivesignificance level

Cellular Processes All Networks in Study Significant Networks: Permissive Cutoffs
Subsets Entire Networks Differentially Activated Differentially Organized
1 2 3 4 5 6 7 8 9 10 11

# %ofal # %ofall # %ofall p-value # %ofall p-value
protein modification 573 9.8 575 9.8 52 105* 5.3E02 49 7.2

transport 1002 17.1 869 148 194 39* 1.1E34 133 195* 9.0805
signaling 954 163 955 163 69 139 87 12.7
transcription 595 10.2 635 10.8 17 3.4 48 7
stress 247 42 257 4.4 15 3 9 1.3
metabolism 1340 229 1410 241 58 117 275 40.3* 5.7E24
cell cycle 65 11 68 1.2 6 12* 1601 7 1
reproduction 130 2.2 137 2.3 6 1.2 0 0
intracellular organizatic 195 3.3 201 3.4 27 5.4* 3.4E03 54 79* 9.1E10
development 338 58 357 6.1 0 0 0 0
translation 146 2.5 99 1.7 50 10.1* 4.4E19 17 25* 3.9E2°
death 31 0.5 36 0.6 0 0 3 0.4
cytoskeleton 57 1 59 1 0 0 0 0
ion transport 10 0.2 8 0.1 2 04* 1601 O 0
proliferation 3 0.1 2 0 1 02* 21E01 O 0
homeostasis 2 0 2 0 0 0 0 0
differentiation 6 0.1 6 0.1 0 0 0 0
NaN 161 2.7 179 3.1 0 0 1 0.1
Totals 58% 100 5855 99.8 497 100 683 99.9
*denotes an enrichment (increase in proportion) abov

category (e.g.columr} 7 is compared to column 3, and column 10 is compared to colummi&)oes a
significantp-value ¢ O0.05).
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Figure 2. Nodes representifterentially activated (red squares) and organized (blue

squares) networks in metastatic OS samples. Green edges represent genetic overlap

between networks. Genes in significant neksowere annotated with simplified Gene
Ontology Slim Generiterms (Tables), andnetworks were grouped into processes by the
most commonly occurring term in each network. Networks meeting theffcabnditions
detailed at the top of the figure were \amed with the Enrichment Map plugin for
Cytoscape. The size of each node reflects the number of genes included in the network.

[ ~berrantly Active Networks (Chuang, n=405) P<=0.05, FDR=0.1, NAS >1.65
- Aberrantly Coordinated Networks (Dynemo, n=169) P=0, PCC>04
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2.3. Genes Previously Implicated in Osteosarcoma MetastasigraomgSignificant Network Results

Next, it was examined if thgenetic networks discovered to be differentially activated or organized
in expression profiles of MEDS samples contained genes previously implicated in OS metastasis.
Extensive literature review led to the generation of a query list containing genss exression is
either correlated with outcome in human OS patients, or genes that have been shown to be involved ir
OS metastasis in xenograft studies or animal models of OS (Table 2)-fWorgenes from this list
were included in the present studye( present on the expression profiling microarrays), and it was
found that five such genes were among networks found to be significantly differentially activated in

MD-OS expression profiles, and twestight were among networks found to be significaditfferentially
organized in MDOS expression profiles (Tables 3 and 4).

Table 2.Genesreviously implicated in metastatic progressirOS

Gene Ref. Gene Ref. Gene Ref.
BIRC5 [16] IVD - CXCR3 X [17]
CAV1 [18] KIT [19] EGF X [20,21]
CCN1 [22] LRP5 [23] EGFR2 X [241 29]
CCN3 [30] MMP2 [31] FADD X [32]
CD44 [33] PDGFRA [34,35] HIF1 X [36]
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Table 2.Cont.
Gene Ref. Gene Ref. Gene Ref.
CDH11 [37] PEDF [38] IL12A X [39]
CDH2 [37] RECK [40] IL12B X [39]
COL18A1 [41] S100A6 [42] INS X [43i 51]
CXCR4 [52i 55] SPARC [56] MAML1 X [57]
DPF2 - TIMP1 [58] MIRK X [59]
EGFR [60] PLAUR [61] MMP14 X [62]
EZR [25,63,64] VEGFA [55,65i72] MMP9 X [58,73,74]
FAS [32,751 77] VEGFB [65,65172] PDGFA X [35]
IGF1 [43i 51] VEGFC [55,65i72] VCP X [78]
IGF2 [43i51] WIF1 [79]
IGF1R [43i 51] YVYI [80]

X denotes genes not present in the expression profiling microarrays used in this study

Table 3. Differentially activated networks containing genes previously implicated

OSmetastasis

Query Node Score Psample  FDRsanple Pgene FDRgene
CDH2 CDH2 3.89 0 0.0017 0.037 0.019
S100A6  CACYBP 3.94 0 0.00096 0.007 0.18
TIMP1 ECH1 3.28 0 0.00096 0.003 0.17
PLAUR PGAP1 2.54 0 0.0019 0.003 0.19
IVD MECR 3.94 0.001 0.01 0.046 0.0076

fiNoded is the central gene exhibiting diffartial network activity.

Table 4. Differentially organized networks containing genes previously imfaitan

OS metastasis

Query Node PP Ci Psample Query Node PP Cita Psample
S100A6 S100A6 0.41 0 TIMP1 LRP1 0.32 0
KIT KIT 0.34 0 PLAUR LRP1 0.32 0
YY1 YY1 0.32 0.001 BIRC5 PAFAH1B1 0.34 0
BIRC5 BIRC5 0.35 0.001 NOV GIAl 0.3 0
MMP2 MMP2 0.35 0.001 VEGFA SPARC 0.34 0
SPARC SPARC 0.34 0 YY1 HDAC 0.33 0
IGF1R CAMK2B 0.37 0 IGF1 PRKCD 0.36 0
IGF2 CAMK2B 0.37 0 PDGFRA JAK1 0.33 0
EGFR CAMK2B 0.37 0 CXCR4 JAK1 0.33 0
KIT CAMK2B 0.37 0 FAS BTK 0.35 0
CDH2 CAMK2B 0.37 0 VEGFB RASA1 0.32 0
EZR CAMK2B 0.37 0 MMP2 ITGB2 0.37 0
CD44 CAMK2B 0.37 0 LRP5 FzD8 0.48 0
SPARC CAMK2B 0.37 0 SERPINF1 CSNK2A1 0.33 0.001
CYR61 ATP2A2 0.33 0 COL18A1 CTSL1 0.33 0.001
CAV1 ATP2A2 0.33 0 WIF1 FzD1 0.37 0.001
S100A6 ACTN1 0.32 0 IVD MCCC1 0.37 0

fiNoda& is the central gene exhibiting differential network organization
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24.The P-RASGRP3NB2 Networks Differentially Activated, and May Interact with the
Disorganized DLG2 Hub

In order to identify drivers of the metastatic phenotype, the lists of significant networks discovered
to be differentially activated and organized in expression profiles ofQ%Dsamples were further
refined by focusing on a manageable bemof each type of network that exhibited the greatest
change between DS and MDBOS samples. Twelve differentially organized networks were identified
that exhibited the greatest change in organization betwee@&@and MDOS samples, and that were
alsofgenetic hubg (having more interactors than the median), as it has been shown that these genes
may be particularly important to cellular processes (Figurd83). Forty-three networks were
identified that exhibited the greatest change in activity betwd@rOS and MDOS expression
profiles, and their interactions with some of the most disorganized hubs were visualized (Figure 4).
This analysis allowed the identification of the networks exhibiting the greatest change ame@§ MD
expression profiles, andsal the observation that many differentially activated networks also interact
with significantly disorganized hub®.g, the differentially activatechetwork containing protein
kinase C epsilon (PRKcCUO), RAS guanyl nucleotide asi
binding protein 2 (GNB2)also interacts with the disorganized network of discs large homolog 2
(DLG2) (Figure 4).

Figure3.Label ed bl ack squares show 1Q04pE® ferent
interactorsO7). Nodes are genes atitkir colour reflects fold change in expression in the
metastatic samples, only for significantly differentially expressed gettestft O0.001).

Only interactors of a significant hub whose expression is significantly correlated (PCC

p 00.001) with epression of that hub in either the localized or metastatic samples are
included. Edges depict interactions, and their colour reflects change-erpoession

between metastatic samples and localized samples (green: correlation increased in
metastatic sames, purple: correlation decreased in metastatic samples). Asterisks denote
co-expressions that are significant (PE00.001) in both localized and metastatic samples.
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Figure 4. Genes comprising 43 differentially activated networks that meet stringeotfgut
(detailed at the top of the figure) were visualized with Cytoscape, as well as their
interactions with 11 diffrentially organized networks (that also met stringentotfst

which are detailed at the top of the figure). Coloured nodes represent relative abundance in
metastatic samplegs. localized samples (red = more abundant, blue = less abundant).
Coloured edge represent correlations between genes in metastatic savsplesalized
samples (green = more correlated, purple = less correlated). The number of included interactors
of each gene in this study is proportional to the size of the node depicting the gene.

* 43 most differentially active Chuang Networks P’s< 0.01, FDR's< 0.1, ANAS >1.65
* [ ]11 most differentially organized Dynemo Hubs P =0, APCC > 0.4, interactors> 6 (2 sources)

- X3 » IKBKE -

PRKCE

RASGRP3

GNB2
A
J‘“_u . :
Nodes:  genes Edges: interactions Representative Sizes
Colour: expression Colour:  correlation . °
L e} ——————] X 5
Loc > Mets Loc < Mets Loc > Mets Loc < Mets 10interactors 500 interactors

Literature searches of the genes contained in the highly significant network results showed that
PRKCU has be e rprogrdssion af prdstef82i87], érdas{88i89], and renal cancefg0], as
well as tumorigenesis ofquamous cell carcinom@onmelanoma skin[91i 95], and head and
neck[961 99]), as well as norsmall cell lung cancdd 00 103]. Additionally high expression of GNB2
is associated with an aggressive form of pulmonary adenocarcinoma (mixed adenocarcinoma with
bronchioalveolar fatures), and shorter overall survival for patients with these tui@4s RASGRP3
has been shown to promote androgen independence and progression of prostatdfgnddrese
reports of the involvement of these genes in the progression of othersckaacey the selection of the
di fferenti al -RASGRPIGNB2 adiverit asR R&dCandidate for further characterization
in osteosarcoma cells atuimors (Figure 5).
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Figure 5. (A) The P RKSGHP3GNB2 Network is Differentially Activated in
Expression Profiles of Metastatic Osteosarcam@) Differential Activity Score of

P R K RASGRP3GNB2 Network.(A) Shown is the network of PRKIRASGRP3GNB2

that is differentially activated in metastatic OS samples of the expression profiling screen.
Red rodes are transcripts that are more abundant in metastatic samples, and blue
nodes are less abundant in metastatic samples. Within each circle isfdlte change in
expression of metastatic sampleslocalized samples, and the order of magnitude of the
pval ue from t he c otest.(B)SSpowmatd timegelegwant scédriomtied st
P R K RASGRP3GNB2 network, the results of the differential network activity analysis
applied to expression profiles of MDSvs.LD-OS tumors.

SA.
GNB2 PRKCe
78% RASGRP3 31%
E-6 ' E-3
14%
E-2
5B.
Network P1 FDR1 P2 FDR2
Activity
Score (NAS) (sample (sample (gene (gene
permutations) permutations) permutations) permutations)
Value 331 0 0.0011 0.008 0.0878

25.P R K RBSGRP3GNB2 Networks Differentially Activatedn Vitro

A panel ofhuman osteosarcomeltlines known to have differing @etastatic potential when grown
as murine xenografts was collected to investigatt e r o | e-RASGRPBGRIRZC This panel
includes the parental HO cell line(included inFigure6), and its highly metastatic derivagéis M112
and M132 (derived bin vivo metastatic selectignas well as the poorly metastatic stibnes L06 and
L13 (all generously provided by DB. Fuchs the University of Zurich, Zurich, SwitzerlapfL06,107].
Additionally the poorly metastaticSAOS2and MG63 cell linesas well as theihighly metastatic
derivatives LM7 and MB8were includedgenerously provided by DE. Kleinerman University of
Texas MD Anderson Cancer Center, Housox®, USA) [108,109]. In this panel, it was observed that
the PRK C-BRASGRP3GNB2 network exhibited an mRNA expressijpaitternsimilar to that observed
in the expression profiles of osteosarcaomaors (Figure6). Specifically 1t was observe
MRNA was significantly more abundant in some highly metastats [{M112 and M132s.L06 and
L13), and that RASGRP3 was significantly less abundant in some highly metastatic lines¥gLM7
SAOS2 and M&s.MG63). Additionally, mRNA levels of myosin chain heavy 9 (MYH9), which has
been shown to i nttessdiwets inwnicdlh0] WaR KD bbservied ts be more
abundant in some highly metastatic lines (LM7SAOS2 and M&s.MG63). The protein expression
of PRKCU was also investigated in this panel,
and M132 expressed PRKCU protein at hi gher | €
parental HuO9 line, or in the poorly metastatic IdEBivative (Figurer).
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Figure 6. The P R K GRIBSGRP3GNB2 network is differentially activatedn vitro.
Quantitdive PCR was performed on cDNA synthesized from the human OS cell lines
shown. Purple bars denote cell lines that are poorly metastatic in mouse models, and green
bars denote cell lines that are strongly metastdimurine xenograftsArrows denote
relaionships between cell lineSt u d e-test: & O 0.05 ** p O 0.001. Multiple
independent experiments are shown for each gene: GNB2 (n = 2),sPRIIARASGRP3

(n = 3), and MYH9 (n = 5}* p ©0.001, *p O0.05.

PRKCUO (N = 3 | GNB2 (N = 2)

05

RASGRP3 (N = 3) . MYHD (N =5)

: _I** ** I L1

anll . 11 ““ " I'
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Lo6 L13 M112 M132 SAOSZPLW MG L06 L13 M112M132 SAOSZPLM7 MGG3P M8
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Figure 7. P R K (tbtein is more abundant in some highly asédticcell line models of
osteosarcoma metastasWestern blots of whole cell lysates from human OS cell lines
probed with antPRKQJand antib-actin antibodiesPurple bars denote cell lines that are
poorly metastatic in mouse models, and green bamotd cell lines that are strongly
metastatic in cell lines. Arrows denote relationships between cell IBleswn is a
representative western blot of two independent experiments.
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2.6. Human Osteosarcomd$atAre Metastaticat-DiagnosisAre MoreLikely to ExhibitHigh Levels
of P RIRNAJ

The amount of PRKCUI17mB-AAandvid BPOS sumarshat werei used in
the expression profiling screen (Figug It was found that MBOS tumors do not have a higher
average expressi 08 tumdrs \(\RBKnosaniple-testp =LOC1873), however
MD-OS tumors were more | ikely to exhi bifourtdem gh
MD-OS tumors: Figur8).

Figure 8. MetastatieatDiagnosishuman osteosarcomas are mdikely to have high

PRKQU expression Quantitative PCR waperformed on cDNA synthesized from tumor
samples from the origin@d x pr essi on profiling cohort. PRKC
STAM2, and is depicted as fetdhange The purple bar denotes localizédmors at

diagnoss (LD-OS), and the green bar denotes metastatic tumors at diagnosi©gyID

The dotted red line depicts the average PREXpression in localized tumors. The number

of replicates for each sample is shown below each bar.
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2.7. P R K @&®lot Required for NMgration of Highly Metastatic M132 Cells

Si nce PRKCU inpitroonmyeatior of othehcell linef89], and then vitro migration rate
of the HuO9derived cell linescorrelates with their ability to form metastatic colonies in nild&7],
experimen s wer e undertaken to determine whether P
The highly metastatic M132 e | | |l i ne was -&knedkdownt studies,fas this IM& K C |
expressed PREKIGgh leyelr(Bigure?). Mowaver it was observedhat knockdown of
PRKCU pusimgtsi@NAndid not affecthe in vitro migration rates of M132 cells as observed
during a scratch assay (Fig@e

28.IGF-1St i mul ati on I nduces Protein Expression of

It is well known tha the insulin/insulinlike growth factor (IGF) pathway plays an important
role in osteosarcoma tumor growth. Osteosarcoma tumors and cell lines express components of th
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pathway (including insulin, IGIF and-Il, as well as pathway receptors) that areatdg of autocrine
signaling [44,45,51]. Additionally, inhibition of the pathway through various means is effective at
inhibiting osteosarcoma growth in xenognadbdels[43,46i 50]. IGFI signaling is also known to lead

to increased cellular levels of diad gl ycer ol , which can then act
containing C1 domaing)111i 113], by a mechanism involving meml
conformational changgL14]. Specifically PRKCU-1 ireatmenatdn vaseuat e d
smodh muscle cells, and may be involved in KGhediated proliferation and migration of these
cells[112,113]

Figure 9. (@) P R K C Unot iregjuiredfor in vitro migration of highly metastatiav132
osteosarcoma cellp) Confir mati on o £) QEaRtific&ith oknmigoatok d o wn .
by M132 cells.(a) Upper panel: potographs of M132 cells immediately after scratching,

two days following transfection with PRKC s i RoWér panel:matched photographs

of M132 cells two days following scratching and four sldgllowing transfection with

PRKCU s(M)RMéAt ern bl ot ver i f-downawoj tbree amffourP RK CU
days following transfection with siRNAc) Quantification of migrated distance by M132

cells transfected with PRPRK&USasciaRibgsstaadard appr C
error of three independent experiments.

Post-Transfection Day 2

‘.

Post-Transfection Day 4

Day 2 Day 3

B-actin w=pp 1 ~ -
42 kDa

045 Legend
I PRKCe siRNA #2

= ‘ Il PRKCe siRNA #3
O:Z ' I Il Scramble
015 - IV Mock
o‘)o: 7 .I. V Cells
(o]

Ly vy vy

Distance
Migrated (mm)

1 2
Days Following Scratch

(©)
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The effect of IGFL st i mul ati on on PRKCU protein in hi
investigated. Highly metastatic M112 osteosarcoma welie £rum starved for at least 24 followed by
the addition of either fresh serdimee media or media containing 50 ng/mL K&FIt was observed
that following IGF1 st i mul ati on, the protein e>xgpendentsi on
manner, with a péaoccurring approximately 30 mifollowing stimulation (FigureL0).

Figure 10. Protein expressiono f P R Ki@llicedbysIGF1 treatment Western blots

were performed on whole cell lysates of M112 cells incubated in 1% FBS (low serum)
medium or in 1% FBS edium supplemented with 50 ng/mL 1&@Ffor the time periods
described. Membranes were probed with-BnRK CU ant i bbsadtipantibodgasa n t i
a loading control. The experiment was performed three independent times.

M112 cell line (N =3)

PRKCe —3 [
— -
82kDa

B-actin -> i e
42 kDa

1% 18 30

FBS
50 ng/mL IGF-1 (minutes)

3. Discussion

This work demonstrat that expression profiles of metastaticliagnosis osteosarcomas (MD5)
are quite distinct from expression profiles of localizdliagnosis osteosarcomas ({M5), possibly
indicating a distinct disease etiology for the more severe-Q8D Supervisecetwork analysis
discovered hundreds of networks that exhibited both differential activity and differential organization
in the MD-OS expression profiles, at permissive-offtlevels. This indicates that either heterogeneous
differences are observed irettiD-OS tumor group, or that changes to the transcriptome observed in
MD-OS are potentially associated with many bystander eveaisaperrations in expression pattern
not functionally relevant to osteosarcomatastasis), or possibly both.

Investigation of the cellular processes of networks within the permissive significant results showed
differentially activated networks were strongly enriched for transport and translation networks, and
slightly enriched for intracellular organization networks. Difféiglly organized networks were
strongly enriched for metabolic networks, as well as intracellular organization and transport networks.
Increased or oveactive translation is known to support an aggressive phenotype of many ¢ah6grs
and the analysipresented here implies it is a characteristic of-Btumors as well. The enrichment
of disorganized metabolic networks in MDS expression profiles may indicate that altered cellular
metabolism plays a role in osteosarcoma metastasis, a notion supppréedecent study by Hua
et al [116]. By studying serum metabolite profiles of mice injected with OS cells, Hua et al observed a
metabolic shift coincident with the onset of pulmonary metasthsg.

Examination of the most stringently differentialigtivated and organized networks in ME5 led
to the sel ectRAIGRP3GNB2 hetwerk BrRoKo@up characterization. This network
was subsequently found to be differentially activated at the transcript level among a panatrof
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models ofOS met ast asi s. PRKCU was also found to be
cells at the protein level, and in some M5 tumors a't the transcript | e\
known to support migration of other cell tyd89,96,98,117,118], there wa no evidence to support a
role for PRKCU in the migration of ilditakethatthes t e 0o
aberrant expressi on inoifro aRdkigols redated to a hystandereetfeatoor k
that the functional rel@ance of this aberrant expression has not yet been elucidated. The effect of high
PRKCU expression may be rel at edl pathwaytab this gtudy | i f
provides evidence for the IGEF dependent inductionnof PRREROU m
support other cellular processes entirely, as it is known to promoctaqiastatic phenotypes of many

other cancerf82i 87,91i 103].

I n additi on-RASGRPBGNB2 aRdRWYEQ networkthis article describes several
networks exhibiting sigificant differential activity organization or some combination of the two in
MD-OS expression profile$he integration of the results of this study with other datasets of osteosarcoma
expression profilesas they become availablevill help to distingush the drivers and genuine
characteristics of metastatic osteosarcoma from the passeagesduld a limited higihroughput
functional screen of the significant networks described in this study.

4. Experimental Section
4.1. Patient FollowUp

Overall suvival data was available for all 46 patients in the group presenting without metastasis at
diagnosis. Of these, 17 died of disease (DOD) with a median foippwf 41 months (minimum
follow-up = 6 month, maximum followp = 157, SD= 39.2 months), 28 ar@ive with no evidence of
disease (ANED)with a median followup of 101 months (minimum followp = 35 month, maximum
follow-up = 269, SD= 62.1 monthspand one subject is alive with evidence of disease (AWED) with a
follow-up of 12 months.

Out of 17 patnts presenting with metastases, overall survival data was available for only 14
patients. Out these 14, 13 died of disease (DOD) with a median fopo#f 10 months (minimum
follow-up = 1 month, maximum followup = 49, SD= 12.5 months) and the other jeat is alive with
no evidence of disease (ANED) with a follay of 178 months.

4.2. Tumor Samples

Primary highgrade intramedullary osteosarcomaors were selected for expression profiling by
sarcomagpathologists on the basis mimorhomogeneity. Th®©Stumor cohort consisted of 68imors
which were grouped into those that were localized 4%) or metastatic (& 17) at the time of initial
diagnosis. Samples were collected by open biopsies prior to administration of any chemotherapy, anc
stored in lquid nitrogen until time of RNA isolation. Total RNA was extracted using Trizol reagent
(Invitrogen Carlsbad, @, USA). Theamount and quality of RNA was assessed using both Ultrospec
2100pro (GE Healthcare BisciencesPiscataway, NJ, USAand 1% agase gels.
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4.3. Gene Expression Profiling

5 ¢€g of freferenc® (pa@oled from cell lines) cDNA was indirectly labeled using
aminoallyl nucleotide analogues with Cy3 and Cy5 fluorescent tags, respectively. The labeled cDNA
was competitively hybridizto University Health Network 1B cDNA arays (UHN19k) containing
18981 fispot® ( ma p p98@&knowm uni§ue genes). This process was repeated with reciprocal
fluorescent tagging. Data normalization, imputation (K10 Nearest Neighbours algorithmhadygisa
were performed in collaboration with Drs. Shelley Bull, Dushanthi Pinnaduwage, and Robert Parkes.
Supervised statistical analysis (random varianegest) was performed by Robert Parkes using
BRB-Array Tools softwarg¢119].

4.4. Unsupervised Hiarchical Clustering

The most differentially expressed single genes within the expression profiling experiment were
identified according to methods previously descridei14]. In this study, a subset was examined that
exhibited at least s#old change inexpression in aleast fourtumors with a maximump-value
of 0. 001 -téesy.tUnmsipenvised sieratchical clustering of thenors according to their
expression of these genes was performed with Partek Genomics Suite.

4.5. Supervised Network Analg

The entire database of interactions for human genes and proteins was downloaded from the Pathwa
Commons websit¢éas an adjacendyst and the interactions were converted to Entrez Genglbls
This dataset comprised physi@ald genetic interactionas well as pathway and disease associations
(which were either translated by Pathway Commons to binary interactions or were lost), from both
curated and nonourated sourcefl5]. A subset of B55 genes was common to both this interaction
database and thexpression profihg experiment. There wefe/6,12linteractions among these genes,
with six interactions being the median number per gene.

4.5.1. Differentially Activated Networks

Genetic networks demonstrating significant differeriigadtivityo in MD-OS tumors were discovered
in a manner similarwith some changego that previously described by Chuagigal. [11]. Briefly
each network was restricted to those genes that met sorodf afitsignificant expression between
localized and metastatiumors (Table5).

Table 5. Cut-Off conditions for gene inclusion faifferential activityo analysis.
Trial 1 2 3 4 5 6 7 8 9 10
Differential 0O 10 20 30 40 50 60 70 80
Expression (%)
P Value Maximum None(i.e., all genes included’ 0.001

For each gene in theemaining network diclass difference scadbgCDS) was calculated as the
difference in median expression between classes between metastatitumors and localized
tumors), and normalized to the variation within the localized samjitgsiation(1)]. A finetwork
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activity scor® (NAS) was calculated by determining the average of the absolute CDS for each gene in
the networklEquation(2)]. In these equationsy, @ € gareall genes in network J, which hag N
membersG, and (g are the median expressioof gene G among lodaed (A) and metastatic (B)
tumors. Sga is the standard deviation of expression values of gene G among the lotahzes

CDSg = ég,—_aa
Son (1)
gn
NAS, = | CDS¢ |
: G:zgl ° )
Ng

To determine statistical significance, the NAS was compared to the corresponding NAS generated
from 1,000 permutations of both sample and gene labels to determine two empitialles
[Equation(3)]. In theseequations) 1 pé 1,p,p+ 1Dzéar e al | net wor K<, i n |
U U+ 1 ;are the repetitions of gene and label pertmna (in thisstudy N = 1,000).

0 if NAS,> NAS-R;;
1 if NAS,< NAS-R;
p, = 2 f(NAS,NAS-R;) ©)

1=1
i=1..MN

f =

N;

The significance of the randomly generated NAS scores was also determined in a similar fashion
[Equation(4)]; this was done for falsdiscovery rate (FDR) calculation.

{ 0 if NAS, > NAS-R;
by - 1 if NAS, < NAS-R;;
Pr = 2 h(NAS,, NASR)) (4)

1=]
i=1.t-1,+4+1..N

N; -1

Two FDRs were calculated for each netw by determining the average number of
randomlygenerated networks withap valueequalto or lowerthana nominalp valuethreshold[p, in
Equation(5) below], equal to the-value of the network being considered. The number of randomly
generatedp-values falling below this nominal threshold was then divitbgdthe number of real
networksalso falling below this nominal threshoJ&quatbon (5)]. This was done for botp-values
(from sample and gene permutations) to yield two empirical FDR values for each network. The entire
process was repeated for different-otftconditions (Tableéb), and was stopped when more stringent
cutoffs failedto produce any additional significant netwarks

1 ifP<Py { 1 ifPy< Py
k = { _ m = ‘
0 |f P, > P¢ 0 ]f PJ1> Po1
nReal = k(P, P nRandAvg = M (Py, Pes)
Z [“J o) Z ) @ (5)
1= d-1,d,d+1 ] 1=11..¢-1,¢,d+1..]
i=1..t-1,Ht+1 .0
nRandAvg
FORemp = nReal N
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4.5.2. Diferentially Organized Netwotk Dynemo

Genetic networks exhibiting significant differential organization in KB samples relative to
localized samples were discovered as previously desdi2édBriefly, for each network the Pearson
Correlation Coefficient (PCC) was used to determine the overall correlation in gene expression
between the network hub and each of its interactors in both the localized and metastatic samples
[Equation (6)]. The difference in this hulinteractor correlation between localized and metastatic
samples was then calculated for each interaction in the netiigpkation (7)], and the average
differenceinc or r el ati on across the entir elEquaionyd. ink wa
these equationy 1 pé 1,p,p+ 1 aée allllze networks in the studyH is the hub (central node)
of network J, which has Nmembersandg 1 , g 2aredl intgractors of H, and therefore all other
genes in network.Bs and $ arethe standard deviations of gene G and hub H among the indicated
tumorclasst 1 , t &2ealltheimors in each class, andrNk the total number otumors in the
localized (N = 46) and metastatic (N= 17) classes

pcc, = 2 (GeG)(HCH)

.:TINT_I}SGSH (6)
APCC; = PCCqperstatic — PCCqiocalizes ()

AvgapcC = 2 18PCG
e=elogn - )

TheAvgpPCC value was compared to the correspo
following 1,000 permutations of the class labels to generate gpa@metricp-value to assess the
significance of the change in internal correlation of each netffgkation(9)]. Let U1 18
U+ 1 ;Be thd number of repetitions of geneldabel permutations (in thigudy N = 1,000).

0 if AvgAPCC, > AvgAPCC-R;
9= { 1 if AvgAPCC, < AvgAPCC-R,
P, = ) a(AvgAPCC, AvgAPCC-R;) (9)

J=1
i=1.N

4.5.3. Visualization of Network Results

Two statistical confidence levels were investigated in this study, a perenisstoff level to
discover broad (ofiglobab) trends among metastatiomors, and a stringent cuiff to delineate
high-confidence networks for followp. The permissive cutff for differentially activated networks
was chosento bgd ©0 . 05 a 8@0.2FaldRad the differentially organized levels the permissive
cutoff was p O 0.001. These cutffs were used to assess the significance of cellular process
enrichment at the global level (Table 1) and for discovery of networks containing genesigyevi
implicated in OS metastasis (TablesaBd 4). Visualization of these global trends (Figure 1) was
limited to computer processing power, and thus were further refined for the differentially activated
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networkstobggbs = 0. 05, F D Rl $5, and for differeatiallg orgamz8d networks to
bepOO0. 001 a nGb.4.|VgRlaiidn of the global trends was performed with the Enrichment
Map plugin for CytoscapgL20]. The stringent cubff levels for differentially activated networks were
settopd ©0 . 01, 06.D RASO1.65, and for differentially organized networks were sgt+d0,

| P ©O0.4, and having at least seven interactors. Visualization of thesedndgldence networks
was conducted using Cytoscdpl] (Figures 3 and 4)

4.5.4. Cellular Process Annotation

Gene Ontology annotations (which relate genes to cellular processes) fragi@eheric Slind
database werdownloaded122]. The database was further simplified to focus on interesting processes
according to Tables. Networks were assigned to processes by determining the most commonly
occurring term among genes within the natwadn this manner all B55 networks in the study could
be assigned to a proce$3gure 11ad the fistudy process compositionor Table 1column4). Since
anal ysis of dAdifferential activatedodo networ ks
which were eventually found to be significantly differentially activated we@nretated using only
the genes wit hi fAcant duleset (Tabte i,ocolkmd 2). This gesuited in discordant
annotations between the network and the signifisabset for only 6% of all networks, and thus the
annotations of # network subset@-igure 1116 fisubsetgprocess compositian or Table 1 cdumn 2
and overalfistudy process compositio Figure 1la, or Tablel, column 4 are overwhelmingly similar.

As the methods of Tayl@t al.do not identify significansubsets within networks, this consideration was
not necessary for differentially ongiaed networks.

Table 6. Simplificationof the gene ontology slim generic database

Original Terms Further Simplified Terms
cell death, death death
multicellular organismal development, embryonic
. . developmat
development, anatomical structure morphogenesis
cell differentiation, differentiation differentiation
regulation of gene expression, epigenetic epigenetics
cell growth, growth growth

cellular component organization, organelle organization, mitochondrion

L L intracellular organization
organization, cytoplasm organization

metabolic process, cellular amino acid and derivative metabolic process,

secondary metabolic process, lipid metabolic process, biosynthetic proce

catabolic process, carbohydrate metabolic process, protein metabolic pro metabolism
nucleolase nucleoside nucleotide and nucleic acid metabolic process, DN

metabolic process, generation of precursor metabolites and energy

signal transduction, response to biotic stimulus, response to external stim
response to abiotic stimulusgll-cell signaling, cell communication, respons signaling
to endogenous stimulus, cell recognition

protein transport, transport transport

regulation of biological process, biological process, behavior NaN
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Figure 11.Distribution of cellular process among networks and sabtworks investigateith

this study.(a) AiStudydo Process Compositiofb) iSubsetd Process Compositioria) The
Generic Slim database of gepecess associations was accessed from Gene Ontology and
each network was annotated acting to the most commonly occurring process term
among genes within the networf) For all 497 networks found to be differentially
activated in this study, the networks wereargotated according to the most commonly
occurring term among the signifidasubset (as the analysis of differential activity
involves identification of a significant subset of genes within each network).

A. Study B. Subsets
Process Composition Process Composition

H protein modification m development
M transport M translation
| signalling m death
M transcription M cytoskeleton
M stress ™ jon transport
® metabolism proliferation
| cell cycle ® homeostasis
= reproduction differentiation

M intracellular organization NaN

4.5.5. Cellular Process Enrichment

Enriched cellular processes were determined separately for differentially activatedgantzed
networks. Enriched processes were first identified by determining those processing comprising a
greater proportion within the significant results than in the entire siwglydifferentially activated:

Table 1 column 7 was compared to Tableolumn 3, differentially organized: Table 1 column 10 was
compared to Table 1 column 5).

Significance of cellular process enrichmeptvélue) within the network results was determined
using the hypergeometric distributigiquation (10)], as described boyle et al [123]. In this
equation, N is the total number of networks in the study (5,855). M is the number of networks in the
entire study annotated to a process of interest (differentially activated: Table 1 column 2, differentially
organized: Table tolumn 4).i is the number of networks within the significant results annotated to
the same process of interest (differentially activated: Table 1 column 6, differentially organized:; Table 1
column 9), and n is the number of networks contained withinstiaof significat results (bottom of
Table D differentially activated: 497, differentially organized: 683). This operation was performed
with Matlab using the Ahygepdf d command.

P=1- (10)

4.6. Cell Culture

Hu09 and derivates (LO6, L13, M112 and M132) wgrewn in RPMI 1640 supplemented with
10% fetal bovine serum (FBS) and 1%glutamine. LO6 and L13 are cell lines derived from Hu09
human OS cell line by limited dilution plating, and M112 and M&&®e derived from the Hu09 line
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by in vivo selection of plmonary metastatic nodul¢$06,107]. LO6 and L13 both form fewer lung
metastases at a decreased incidence in mice followingeiailinjection compared to the intermediate
HuO09 line, while M112 and M132 result in greater numbers of pulmonary noduleshigher
incidence[107]. The differences in metastatic propensity correlate to different survival lengths for
mice injected with the various cell lings07]. M8 cells were derived from MG63 human OS cells
(hereafter referred to as MG&3, and have decrsed latency until pulmonary metastgdi®9]. Both
were grown in Dul beccods Mo duthf 10% BBS.HMG teks wiMee d i u
derived from SAOS2 human OS cells (hereafter referred to as SRPSEd form pulmonary
metastases at a greateridance than SAOSP following tailvein injection in micg108]. LM7 and
SAOS2P were grown in McCoyo6s 3RNAwas lppdstechirem alleall wi
lines using Trizol reagent followed by phenol/chloroform extraction.

4.7. Quantitative Revee Transcription Polymerase Chain ReactionP€R)

RNA was collected from OS tumor samples as previously descfiti®tl, and cDNA was
synthesized from both tumor RNA and cell [ 1 ne
(M-MLV Reverse Transcrips@ Invitrogen Carlsbad CA, USA). Quantitative HPCR was performed
according to the manuf adtAppiied Bidésgstemshife fTechnaldgiesp n s
CarlsbadCA, USA) to quantify the abundance of target cDNA relative to that of a cayera, signal
transducing adaptor molecule 2 (STAM2), using primer sequences according to Table 7. Dr. Dushanthi
Pinnaduwage performed statistical analysis (Welch-gampe ttest on log2 transformed data)
comparing expression levels pfotein kinase C psilon (P R K Lttanscript betwee localized and
metastatic tumes.

Table 7.Primer sequences used in this study.

Gene Symbol Primer Pairs

STAM2 Forward 5TGGATGACAGTGATGCCAATTGS3
Reverse 5CGCTGCCTCAGTCTCTATGTS

PRKCU Forward 5CACTGCAAGCTGGCTGACT3
Reverse 5STGCAGGATCTCAGGAGCTATG3

RASGRP3 Forward 5GGATTTCTCTGGGGCATAATGC3'
Reverse SAGGAGGTCTTTGCACTGTTTG3

GNB2 Forward 5CTATCAAGCTGTGGGACGTG3'
Reverse 5GTAGCCGTTGGGGAAGAAAGS
MYH9 Forward 5GCCTACAGGAGTATGATGCAAGS

Revere 5-~ACTGGATGACCTTCTTGGTGTTF3

4.8. Western Blots

Cytosolic protein extracts were isolated from cell lines using NETN lysis buffer (150 mM NacCl,
1 mM EDTA, 20 mM Tris pH 7.5, 0.5% NP40,MM phenylmethylsulphonyl fluoride, and 1% each
of protease inhibitgrphosphatase inhibitor | and phosphatase inhibitor 1, all from Silairch,
(St. Louis, MO, USA).Protein concentration was determined using the bicinchoninic acid (BCA)
protein assay kit (Pierc&hermo ScientificRockford IL, USA). Proteins wereeparated using 10%
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sodium dodecyl sulfate polyacrylamide gel electrophoresis {8BSE) and transferred to
nitrocellulose membranes at 3Q overnight at 4°C. Membranes were blocked for 1with Tris
buffered saline with 0.1% Twee0 (TBST) supplementeavith 5% fatfree milk. Primary antibody
incubation was performed in TBB supplemented with 5% bovine serum albumin (BSA) oifri

milk, accordingtothenanuf act urer 6s i nstructions. Secondar
donkey anti rabbitwas performed at 1,800 concentration in TB$ with 5% BSA for50 min

Protein bands were visualized by chemiluminescence using ECL detection system (Am&gham
Healthcare BieSciences CorpRiscatawayNJ, USA,). Primary antibodies used in this sty e P K CU
(1:1,000, Cell SignalingTechnology Danvers MA, USA) , aactoh (15000, SigmaAldrich,

St. Louis, MO, USA . Anal ysis of PRKCU protein express
performed in tplicate.

4.9. Knockdown of PRKCU

Two differentsiRNAs were purchased fro’Ambion (Invitrogen, Carlsbad, £, USA) targeting
PRKCU: fAselect 1110206 and fAselect 51110306 ('t
respectively). Ambi on fAselect negati v hergaftent r o
referred to as fAscrambl eo) . Tr an s f Ehertna Szientific e a g
(Rockford, IL, USA) ADhar maFECT 20 was wused for the M11
used for the M132 cell line. Transfections were pentedt in parallel with cell plating for experiments.

20 ¢eM siRNA and the appropriate transfection reagent were each diluted (1.5:100 and 1:100,
respectively) in OptMEM medium(Invitrogen, Carlsbad, &£, USA) ard left to incubate for 5 miat

room temperat@r (RT). The siRNA and transfection reagents were then mixed together and incubated
for 10 minat RT. 200eL of the mixture was then applied to wells of-@2ll plates, or 2&L was

applied to wells of 9avell plates. 80CL (12-well plates) or 8L (96-well plates) of cells at an
appropriate concentration were then plated evenly in the wells. The cells were washed with phosphate
buffered saline (PBS) the following day and given fresh media.

4.10. Scratch Assay

Comparison of migration rate following knockdamm o f PRKCU in M132 cell
plating 12 x 10° cells in 12well plates. All plates had grids drawn across them to allow repeated
photographing of the same field. At least 12 fields were collected and analyzed for each sample on
each dayTwerty four hours following plating, the cells were washed with PBS and given RPMI 1640
supplemented with 1% each of FBS andglutamine flow serum medi@. On the second day
following plating, the confluent cells wefscratched using a 20&L pipette tip.The cells were washed
twice with PBS and fresh low serum media was added before immediately imaging the cells using an
inverted microscope and camera. The average distance that the confluent edge of cells had travelle
into the wound was measured for eéiofe point.This experiment was performed in triplicate.
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4.11. IGF-1 Induction Assay

TodetermineifIGFL i s abl e to i nduc @x10hdl12enVid2eetissvere n o
plated in 12well plates. After two days the cells were washed twice with PBS and were given low
serum RPMI media (1% FBS, 1feglutamine), with the exceptioof some cells which were retained
in complete media as a control. The following day the remaining cells were given fresh low
serum RPMI supplemented either with nothifigd treatmert control) or with 50 ng/mL of IGR
(SigmaAldrich, St. Louis, MO, USA. After the appropriate length of incubation with K&Fthe cells
(4 wells) were washed with cold PBS, scraped, and then lysed in order to harvest cytosolic protein as
described above. Trizol reagent was added to a fifth well of each sample for thecextbBRNA and
evaluation of MRNA abundance as described above. This experiment was repeated in triplicate.

5. Conclusions

Supervised network analysis was used to discover differentially activated and organized genetic
networks in expression profiles ahetastatieat-diagnosis osteosarcomas (MD5) compared to
localizedat-diagnosis osteosarcomas (IS ) . T h eRASGRIKBGNB2 network was found to
be differentially activated among MDS expression profiles and among vitro models of OS
metastasis. It as found that MBOS t umor s do not express signif
overall (t-testp=0. 187 3) , but they were more |ikely to
compared to the LEDS tumors (five of fourteen MDS t umor s h aedsiorPgrekt€r thane x p
the maximum of the LBOS tumors).

This result is consistent with the expression pattern observed in the panel of OS cell lines, where
PRKCU was found to be mor esonmedftheid sitrotmodals of O%h e R
metastasisSpeci fically, PRKCU was mor\s He9 L06dradin13 i n
cell line model, but not in the LMVs SAOS2 or MBvis MG63 model s. The heter
expression among MIDS tumors may indicate heterogeneous networks are abemant
MD-OS t umor s, o rRASGRRIGNB2metwoik Ray Gdldisrupted through alteratioh
other genes in the network.

Despite reports by others of t h €89,909698118}y e me n
knockdown usifiig siRfKvasthot bund to affect migration of highly metastati¢132
osteosarcoma cellf¥he effect of PRKCU on invasion of o0s
this study, and may be a fruitful avenue of f
invasion of other cell system# vitro, as well as to be involved in various other -pretastatic
pathways[125126] The absence of pomet ast ati c ef fect of PRKCU
indicates that either t h-RASGRPEENB2anativorkenaypbe elatedi o n
to a bystander effect, or that the priet ast at i ¢ p h e n o-éxprgssion mmain®t® K C U
be elucidated.

PRKCU pr ot e iinnhightyxmetastaicsM1t2ncellas found to be induced by IGF
stimulation and this may indet e t hat P RKCU -lidependentypaihway®egondthe | GF
P R K RASGRP3GNB2network this article describes many aberrantly activated and organized
networks among expression profiles of MES tumors. A systematic functional screen of these
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networks, and determination of the predictive accuracy of these network expression patterns in
independent datasets, would help differentiate the bystandersheodnivers of OS metastasis.
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