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Abstract: This review is focused on different subsets of T cells: CD4 and CD8, memory and effector
functions, and their role in CAR-T therapy—-a cellular adoptive immunotherapy with T cells
expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic
activities against tumor cells. Recently, differences in T cell functions and the role of memory and
effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1,
Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8+ memory and effector subsets differ in extra-cellular
(CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic
and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be
modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T
cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus,
next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets
functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells
against tumors.
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1. Introduction

Cellular immunotherapy, such as CAR-T, a therapy with T cells expressing antibody-based
chimeric antigen receptor targeting tumor antigen, is an effective therapy against different types of
hematological malignancies and also against solid cancers [1,2]. CAR-T (initially called a T body),
meaning a T cell expressing an antigen-specific or antibody-based chimeric receptor with antibody
specificity and T-cell effector or regulatory function, was first described in the 1980s by Eshhar and his
colleagues at the Weizmann Institute of Science in Israel [3].

CAR combines a single chain variable fragment (scFv) of antibody that drives specificity against
tumor antigens [4]. The scFv consists of variable light (VL) and heavy (VH) chains of antibody fused
in frame with the linker. The CAR has a hinge, and transmembrane domains, co-stimulatory domains
(CD28, CD137 (4-1BB), or other), and activation domain CD-3 zeta (Figure 1). The first generation
of CAR had one CD3 domain; the second generation of CAR had an activation domain and one
co-stimulatory domain; and the third generation of CAR had one activation and two co-stimulatory
domains, as shown in Figure 1. Once CAR-T binds tumor antigen, the T cell proliferation and expansion
are activated, with T cell cytotoxic functions causing tumor cell death [1].
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stemness of anti-tumor T cells can increase the high potential of immunotherapy [7]. The detailed 

mechanisms of T cell subset differentiation, T cell stem-like, memory, and effector functions is 

important for increasing the efficacy of CAR-T anti-cancer therapy. The comparison of CD4+CAR-T 

and CD8+CAR-T cells and their anti-tumor activities, as shown by [8] may improve the design and 

manufacture of a next-generation CAR-T cell with higher anti-cancer efficacy. Another report 

demonstrated that combining the most effective subsets of CD8+ and CD4+ CD19-expressing CAR-T 

cells resulted in a synergistic anti-tumor effect in vivo [9]. 

Thus, the present review highlights data on the role of different subsets of T cells: CD4+ and CD8+ 

cell subsets and differentiation; memory and effector T cell functions; extracellular T cell markers; 

genetic, epigenetic, and metabolic signaling pathways of T cells and focuses on their role in CAR-T 

cellular immunotherapy and provides perspectives on improving CAR-T immunotherapy. 

 

Figure 1. The structure of chimeric antigen receptor construct. The first, second, and third generation 

of CAR constructs are shown. The first generation of CAR has only an activation domain; the second 

generation of CAR has one activation domain and one co-stimulatory domain; and the third 

generation of CAR has one activation domain and two co-stimulatory domains. The ectodomain 

consists of antibody-derived antigen binding scFv (single chain variable fragment) with the variable 

fragment of heavy chain, VH, and the variable fragment of light chain VL, which are connected with 

a linker. The hinge region connects ScFv with the transmembrane domain. The endodomain consists 

of the co-stimulatory domains (CD28; CD137 or 4-1BB) and the activating domain: CD3 zeta. 

2. CD4 Cell Subsets 

T cells mature in the thymus, express TCR (T cell receptor), and can express either CD8 

glycoprotein on their surface and are called CD8+ T cells (cytotoxic) or CD4 glycoprotein and are then 

called CD4 cells (helper T cells). CD4+ cells differentiate into different subsets: Th (T helper)1, Th2, 

Th9,Th17, Th22, Treg (regulatory T cells), and Tfh (follicular helper T cells), which are characterized 

by different cytokine profiles (Figure 2) [10]. These different CD4+ subsets play a critical role in the 

immune and effector response functions of T cells [10]. All CD4+ Th subsets are differentiated from 

naive CD4+ T cells by specific cytokines: Th1 by IL-12 and IFN-(pro-inflammatory cytokine, with 

multiple roles such as increase of TLR (Toll-like receptor), induction of cytokine secretion or 

macrophage activation); Th-2 by IL-4; Treg by IL-2 and TGF-beta (Figure 2). And each Th subset 

releases specific cytokines that can have either pro- or anti-inflammatory functions, survival or 

protective functions. For example, Th1 releases IFN- and TNF; Th2 releases IL-4 (an important 

survival factor for B-type lymphocytes), IL-5 and IL-13; Th9 produces IL-9; Treg secretes IL-10  

(a cytokine with an immunosuppressive function, maintaining expression of FOXP3 transcription 

Figure 1. The structure of chimeric antigen receptor construct. The first, second, and third generation
of CAR constructs are shown. The first generation of CAR has only an activation domain; the second
generation of CAR has one activation domain and one co-stimulatory domain; and the third generation
of CAR has one activation domain and two co-stimulatory domains. The ectodomain consists of
antibody-derived antigen binding scFv (single chain variable fragment) with the variable fragment
of heavy chain, VH, and the variable fragment of light chain VL, which are connected with a linker.
The hinge region connects ScFv with the transmembrane domain. The endodomain consists of the
co-stimulatory domains (CD28; CD137 or 4-1BB) and the activating domain: CD3 zeta.

Recent reports highlighted the importance of an analysis of the variations between a T cell subset’s
functions (memory and effector) and the individual patient’s T cell profile in the efficacy of CAR-T
cell immunotherapy [5,6]. For example, recently T memory stem cells (T SCM) from a CD45RA+ T
population with a high expression of CD62L, CD95, and CCR-7 were shown to be more persistent and
more effective against tumors than T central memory cells [7]. The authors suggest that the stemness
of anti-tumor T cells can increase the high potential of immunotherapy [7]. The detailed mechanisms
of T cell subset differentiation, T cell stem-like, memory, and effector functions is important for
increasing the efficacy of CAR-T anti-cancer therapy. The comparison of CD4+CAR-T and CD8+CAR-T
cells and their anti-tumor activities, as shown by [8] may improve the design and manufacture of
a next-generation CAR-T cell with higher anti-cancer efficacy. Another report demonstrated that
combining the most effective subsets of CD8+ and CD4+ CD19-expressing CAR-T cells resulted in a
synergistic anti-tumor effect in vivo [9].

Thus, the present review highlights data on the role of different subsets of T cells: CD4+ and CD8+

cell subsets and differentiation; memory and effector T cell functions; extracellular T cell markers;
genetic, epigenetic, and metabolic signaling pathways of T cells and focuses on their role in CAR-T
cellular immunotherapy and provides perspectives on improving CAR-T immunotherapy.

2. CD4 Cell Subsets

T cells mature in the thymus, express TCR (T cell receptor), and can express either CD8
glycoprotein on their surface and are called CD8+ T cells (cytotoxic) or CD4 glycoprotein and are then
called CD4 cells (helper T cells). CD4+ cells differentiate into different subsets: Th (T helper)1, Th2,
Th9, Th17, Th22, Treg (regulatory T cells), and Tfh (follicular helper T cells), which are characterized
by different cytokine profiles (Figure 2) [10]. These different CD4+ subsets play a critical role in
the immune and effector response functions of T cells [10]. All CD4+ Th subsets are differentiated
from naive CD4+ T cells by specific cytokines: Th1 by IL-12 and IFN-γ (pro-inflammatory cytokine,
with multiple roles such as increase of TLR (Toll-like receptor), induction of cytokine secretion or
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macrophage activation); Th-2 by IL-4; Treg by IL-2 and TGF-beta (Figure 2). And each Th subset releases
specific cytokines that can have either pro- or anti-inflammatory functions, survival or protective
functions. For example, Th1 releases IFN-γ and TNF; Th2 releases IL-4 (an important survival factor
for B-type lymphocytes), IL-5 and IL-13; Th9 produces IL-9; Treg secretes IL-10 (a cytokine with
an immunosuppressive function, maintaining expression of FOXP3 transcription factor needed for
suppressive function of Treg on other cells [11]) and TGF-β; Th17 produces IL-17 (a cytokine playing
an important role in host defense against bacteria, and fungi) [10] (Figure 2).
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Figure 2. Different CD4+ T cell subsets. The different CD4+ subsets are generated from the naive T cells
by the different cytokines. Each CD4+ subset produces a different type of interleukins.

Several reports demonstrated differential roles of different types of cytokines released by
CD4+ subsets. Th1 and Th2 CD4+ T cell subset cytokines were shown to drive different types of
cytotoxicity generated by the second generation of CD28-containing CAR-T [12]. Short-term toxicity
was observed with high levels of Th1 cytokines, while high doses of Th2 type cytokines generated
chronic autocytotoxicity in animals that received second generation CD19-specific CAR-T that should
be considered during developing CAR-T therapy [12]. CAR-T cells engineered to deliver inducible
IL-12 modulated tumor stroma to destroy cancer [13]. IL-12 release by engineered CAR-T cells
increased anti-cancer activity by recruiting macrophages [14]. IL-12 released by CAR-T also induced
reprogramming of suppressive cells, reversing their inhibitory functions [13] suggesting its evaluation
in clinical trials [15].

3. CD4 Cell Differentiation, Memory, Effector Cells

T cell differentiation and memory and effector T cells play a significant role in immunity against
pathogenic agents [16]. The differentiation of CD4+ cells from naive to effector or memory and central
memory cells is shown in Figure 3. The effector and memory cells were also demonstrated for Treg
cells [16]. Once an antigen-presenting cell presents to naive T cell pathogenic antigen, T cells become
activated, increase in cell number, and differentiate into effector cells which migrate to the site of
infection and eliminate the pathogen. The effector cells are short-lived cells, while the subset of
memory cells is formed with a potential of long-term survival-called memory cells (Figure 3). Memory
cells can be located in the secondary lymphoid organs (central memory cells, T CM) or in the recently
infected tissues—-effector memory cells, T EM cells (Figure 3). During re-exposure to antigen during
the second immune response, memory T cells undergo fast expansion and cause more effective and
faster immune response versus the primary immune response eliminating infection. The memory cells
generally have several features: 1. the presence of previous expansion and activation; 2. persistence
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in the absence of antigen; 3. increased activity upon re-exposure to antigen [16]. The persistence of
CAR-T therapy was shown to be dependent on the number of CD4+ cells and the number of central
memory cells (CD45RO(+)CD62L(+)) in the infused product [5].
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and genetic markers, transcription factors, and metabolic pathways (discussed below) (Figure 3). 
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T EFF, effector T cells; T EM, effector memory cells; Treg, regulatory T cells. 

4. CD8 Cell Subsets and Cell Differentiation 

The different subsets of CD8+ T cells are shown in Figure 4. Naive T cells differentiate into stem 

cell memory cells, T SCM; T Central Memory cells, T CM; T effector memory cells, T EM; and T effector 

cells, T EFF. The different CD8+ markers upon cell differentiation––L-Selectin, CD45RO, CD45RA and 

CCR-7––are shown in Figure 4. The effector function is increased upon CD8+ T cell differentiation, 

while memory function and proliferation are decreased (Figure 4). 

 

Figure 4. The differentiation of CD8+ T cells and different CD8+ subsets. TN, naive T cells; T SCM, stem 

cell memory T cells; T CM, central memory T cells; T EFF, effector T cells; T EM, effector memory cells. 

Figure 3. The differentiation of CD4+ T naive and Treg cells. The markers of each T cell type are shown
during T cell differentiation. The abbreviations: TN, naive T cells; T CM, central memory T cells; T EFF,
effector T cells; T EM, effector memory cells; Treg, regulatory T cells.

T regulatory cells differentiate into effector and memory cells. Naive conventional T cells and
regulatory T cells (effector and memory subtypes) differ in their extracellular, intracellular, epigenetic,
and genetic markers, transcription factors, and metabolic pathways (discussed below) (Figure 3).

4. CD8 Cell Subsets and Cell Differentiation

The different subsets of CD8+ T cells are shown in Figure 4. Naive T cells differentiate into stem
cell memory cells, T SCM; T Central Memory cells, T CM; T effector memory cells, T EM; and T effector
cells, T EFF. The different CD8+ markers upon cell differentiation—L-Selectin, CD45RO, CD45RA and
CCR-7—are shown in Figure 4. The effector function is increased upon CD8+ T cell differentiation,
while memory function and proliferation are decreased (Figure 4).
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CD8+ clones isolated from central memory T cells but not from CD8+ effector cells persisted
long-term in vivo during adoptive T cell transfer in a nonhuman primate model, indicating the
importance of specific T cell subset functions for effective adoptive immunotherapy [17]. Another
group showed that the combination of CD8+ subset with CD4+ subset significantly enhanced T cell
adoptive transfer [18]. CD4+ cells were shown to support development of CD8+ memory functions [19],
demonstrating the importance of both subsets and combinations in immunotherapy trials.

5. Extracellular T Cell Markers

The most common phenotypic extracellular markers of naive cells are CD45RA+, CD45RO´;
CD25+ (for Treg cells), CD62L+ (L-Selectin+), CCR-7+ (Figures 3 and 4). These markers change to
CD45RA´; CD62L´, CCR-7´ in CD8+ TEM cells (Figure 4). CD45RO´ CD8+ naive cells transform into
CD45RO+ T EM cells. Thus, based on these and other phenotypic markers these cell subsets can be
sorted, expanded and analyzed for functional activities during immune responses against pathogenic
agents or cancer cells.

6. Epigenetic and Genetic Profiles

Epigenetic and genetic profiles of different subsets of T cells can be used as specific markers of
each cell subtype. For example, a high level of FOXP3 transcription factor is a marker of Treg cells.
For FOXP3 maintenance, the demethylation of the intronic conserved non-coding sequence 2, CNS2 is
required, regulating Treg stability upon cytokine re-exposure [20]. The intronic CNS2 has been shown
to be a sensor for IL-2 in Tregs and downstream target STAT-5 [20]. Key transcription factors and
genetic signatures of CD8+ T cells during the infection were identified [21], and several clusters of
key gene signatures were discovered that can predict the memory potential of CD8+ effector cells [21].
For example, Bcl-2 and Cdh-1 (encoding E-cadherin) were increased in the memory subset of cells.

The effector and memory T cell functions are regulated by genetic profiles of key effector genes,
and also by epigenetic mechanisms such as chromatin state [22]. For example, murine memory CD8+

T cells are characterized by more rapid effector function upon lymphocytic choriomeningitis virus
(LCMV) infection versus naïve T cells that are dependent on specific transcriptional profiles of the key
effector genes Ifng, Gzmb, and Prf1 [22]. The primary infection caused decreased nucleosomal density
and less methylation of H3K27 in interferon-gamma and granzyme B chromatin that persisted in the
memory stages [22] The authors proposed that these chromatin changes induced effector genes for
rapid up-regulation and controlled memory functions of T cells.

7. Metabolic Pathways of T Cells

The naive and effector T cells differ in metabolic pathways. The quiescent naive T or memory cells
have catabolic metabolism when nutrients are broken down to generate energy, while activated T cells
have anabolic metabolism when nutrients are used to build molecular complexes and blocks to support
cellular proliferation. During differentiation and activation, the metabolism is changed from oxidative
phosphorylation (OXPHOS) to glycolysis [23]. The main player in anabolic pathways in activated cells
is mammalian target of rapamycin (mTOR). The IL-2 and co-stimulatory CD28 signaling in activated
T cells induce a switch to glycolysis with activation of PI3 kinase and downstream AKT (Figure 5).
Activated AKT induces the mTOR pathway and increases utilization of glucose and amino-acids to
support activated T cell proliferation. Recently, isolated metabolically active subsets of CD4+ and
CD8+ T cells based on their mitochondrial membrane demonstrated increased in vivo persistence
and anti-tumor activity [24]. In contrast to actively proliferating effector CD4+ and CD8+ T cells that
depend on aerobic glycolysis with production of lactate from glucose-derived pyruvate, memory
T cells have distinct metabolic pathways that depend on fatty acid oxidation [25].
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players of anabolic metabolism of T effector cells.

Metabolic signaling varies depending on the state of T cell differentiation [26]. Th1, Th2, and Th17
CD4+ cells were shown to be primarily glycolytic and expressed high levels of the glucose transporter
Glut1 and active mTOR, while Treg cells were dependent on lipid metabolism and had a low level
of Glut1 and a high level of AMP-activated protein kinase (AMPK) [25]. Thus, the modulation of
metabolic pathways is important for regulation of T cell and T cell subsets functions.

8. Role of Different T Cell Subsets, Treg Cells, Immune Checkpoints, Metabolic Pathways,
Cytokines and T Cell Profiling in Potential Improvement of CAR-T Immunotherapy

CAR-T therapy is very effective immunotherapy against hematological malignancies [1], although
many challenges exist to effectively target solid tumors [2,27–31]. One of the challenges is to engineer
T cells to be resistant to Treg cells with suppressive signaling against tumors and to increase T cell
effector and memory functions for enhanced immune response against tumors [32]. The individual
patient’s T cell profile with CD4/CD8 ratio and its subsets should be analyzed and studied with the
goal to improve effector and memory functions and increase the persistence of T cells for efficient
CAR-T cell therapy.

Several preclinical models demonstrated the advantage of different T cell subsets for effective
CAR-T therapy: CD8(+)CD45RA(+)CCR7(+) CAR-T cells with closest to the T-memory stem cells
phenotype cells produced greater anti-tumor activity of CAR-T cells [6]; both CD8+ and CD4+ subsets
expressed synergistic anti-tumor CAR-T activities [9]. Recent clinical trial data on patients with
B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia demonstrated the high anti-cancer
activity of CD19-CAR-T cells generated from a composition of CD8+ and CD4+ T cell subsets that
were separately expanded in vitro and infused at a ratio of 1:1 [33]. The same result was obtained
in clinical trials on patients with B cell acute lymphoblastic leukemia [34]. These data are consistent
with pre-clinical data on a combination of CD4+ and CD8+ subsets in mouse experiments [18],
and CD4+ T cells’ role in supporting and inducing CD8+ T cell memory functions [19]. Another
clinical study on patients with high-risk intermediate grade B-lineage non-Hodgkin lymphoma treated
either with first generation CD19-CAR-T using isolated CD8+ T CM subset or with second generation
CD19-CAR-T using both CD8+ and CD4+ T CM subsets demonstrated the feasibility and safety of both
approaches [35], although the group of CAR-T with CD4+ and CD8+ T CM and second generation
CAR-T cells demonstrated better persistence. Future clinical trials using CAR-T isolated from different
T cell subsets will be important for understanding the detailed mechanisms of T cell functions in
CAR-T immunotherapy.

Another aspect to consider is that the patient’s T cell profile is different from that of a healthy
person and varies between the patients, suggesting that individualized T cell subset profiling
and personalized immunotherapy are needed to effectively treat cancers. The development of
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next-generation sequencing, proteomics and metabolomics allow to create individualized immune
profiles of patients and detect important T cell players that can improve CAR-T therapy (Figure 6).
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Figure 6. Different potential approaches to increase the efficacy of CAR-T cell therapy. The inhibition
of Treg cells; inhibition of immune checkpoints such as PD-1 and CTLA-4; different T cell subsets,
individualized T cell profiling; targeting T cell metabolism; combination of different cytokines and
co-stimulatory CAR domains can be used to increase the efficacy of CAR-T cell therapy. Blocking PD-1
or CTLA-4 can increase efficacy of CAR-T therapy. Activation of glycolysis stimulates TEFF cells, while
activation of fatty acid oxidation induces TEM cells. Different CAR co-stimulatory domain structure can
affect T cell memory and effector functions with distinct metabolism (CAR-T cells with CD28 induce
effector memory functions and glycolytic metabolism, and CAR-T with 4-1BB induce central memory
and oxidative metabolism [46]) that can be applied to improve CAR-T immunotherapy.

It has been shown that CD4+ Treg cells infiltrated into solid tumors and decreased the efficacy of
CAR-T therapy [36]. The authors demonstrated that anti-tumor activity of CD28-CD3ζ CAR-T cells in
the presence of Treg cells was less than that of CD3ζ-CAR-T cells against tumor CEA-overexpressing
tumors [36]. The CD28-CD3ζ-CAR-T cells induced infiltration of Treg cells into tumors more effectively
than CD3ζ -CAR-T cells, and deletion of lck binding region inside CD28 endodomain linked to IL-2
production reversed the induction of Treg’s tumor infiltration, and increased the anti-tumor activity
of CAR-T cells [36]. The administration of a high dose of Interleukin-2 was shown to increase the
number of circulating CD4+CD25+Foxp3+ Treg cells in melanoma cancer patients [37]. The levels of
CD4+Foxp3+ cells had a negative impact on adoptive immunotherapy and immune responses [38] that
is consistent with the increased anti-tumor effect of CAR-T with deleted lck domain of CD28 linked to
IL-2 production [36]. The result of the above study shows the IL-2-dependent antagonistic effect of Treg
cells [36] versus the agonistic IL-2-dependent effect of proliferative CD8+ T cells on anti-tumor activity
of CD28-CD3ζ-CAR-T cells demonstrated by other groups [39–41], and demonstrates that the balance
of Treg cells to effector cells ratio is an important marker of effective immunotherapy [40]. The data
with inducible T cell costimulator, ICOS-based CAR-T cells expressing Th17 profile demonstrated IL-2
independent increased persistence of these CAR-T cells in vivo [40]. Thus, genetic modification and
structure of co-stimulatory domains of CAR-T that decreases Treg’s suppressive activity and increases
the persistence and resistance of CAR-T cells can be one of the potential approaches to increase the
anti-tumor efficacy of CAR-T immunotherapy (Figure 6).
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Another suppressing marker that is expressed in effector Treg cells is CTLA-4 (cytotoxic
T-lymphocyte-associated protein 4), which is known to block immune response and decrease the
efficacy of CAR-T in pre-clinical studies [42]. To block immune checkpoints such as CTLA-4 or PD-1
(programmed cell death protein 1) with antibodies [43], or small molecules is another potential
approach to increase the efficacy of CAR-T immunotherapy (Figure 6). The blockade of PD-1
immunosuppression has been shown recently to enhance CAR-T immunotherapy and to increase
tumor elimination [44].

Before starting CAR-T therapy, lymphodepletion in patients using fludarabine and/or
cyclophosphamide decreases the number of circulating T cells and also Treg T cells [45]. The
lymphodepletion induces proliferation of transferred T cells by decreasing competition for
interleukins-7 and 15 which support proliferation of pre-existing T cells. Thus, more efficient
expansion of transferred T cells rather than preexisting T cells enhances CAR-T immunotherapy.
Recent clinical trials demonstrated the efficacy of lymphodepletion approaches in improving CAR-T
immunotherapy [34,35].

An alternative potential approach is to target T and CAR-T cell metabolism and thus increase
effector cell functions, for example, by switching from catabolic to anabolic metabolism (Figure 6).
In the murine asthma model, stimulation of Treg metabolic player, AMP-activated protein kinase,
was sufficient to decrease Glut1 and increase Treg generation [25]. Targeting T cell metabolism
may stimulate immunity by promoting the glycolytic metabolism pathway characteristic of T EFF

cells or suppress immunity and inflammation by promoting the lipid oxidation characteristic of
Treg cell subsets [26]. Recently, a different role of co-stimulatory CAR domains 4-1BB or CD28
has been demonstrated in regulation of specific metabolism pathways and memory functions of
CAR-T [46]. The 4-1BB domain inside CAR stimulated growth of CD8(+) central memory T cells with
elevated respiratory capacity, increased fatty acid oxidation, and enhanced mitochondrial biogenesis,
while CD28 domain inside CAR induced effector memory cells with molecular profile of enhanced
glycolysis [46]. Thus, modulation of metabolism pathways by either metabolic inhibitors or by using
a different structure of co-stimulatory domains and receptors can modulate immune response with
desired balance of short-lived effector and long-lived memory cells to improve CAR-T immunotherapy
(Figure 6).

The modulation of cytokine cocktails can change the differentiation status of T cells [47].
For example, a combination of IL-12 plus IL-7 or IL-21 for 3 days with withdrawal of IL-12 led to a less
differentiated T cell phenotype (CD62L+, CD28+,CD27+, CD127+, CCR-7+) and to up-regulation to
stem cell markers such as Nanog, SOX-2, Oct-4, and LIN28A [47]. Pre-treatment of T cells with IL-7
and IL-15 or IL-15 and IL-21 was shown to increase T memory cell functions and anti-tumor activity of
CAR-T cells [6,48]. IL-15 has been shown to increase CD8+ T memory cell function and increase T cell
anti-tumor activity [49]. CAR-T cells expanded with IL-7+IL-15 had higher survival in vivo compared
with CAR-T expanded with IL-2 [6]. Culturing CD3/CD28-CAR-T in the presence of IL-7 and IL-15
gave the best effector activity while retaining a stem/memory against GD2 tumor antigen [50]. Thus,
modulation of interleukin cocktails can affect the memory functions of T cells that can be used as an
alternative potential approach to increase the efficacy of CAR-T immunotherapy (Figure 6).

9. Conclusions and Perspectives

This report shows the complexity of T cell differentiation, stem cell memory, memory and
effector functions, their regulatory, intracellular, extracellular markers, cellular signaling, metabolism,
cytokine-directed regulation of T cell differentiation and function that should be considered during
cellular immunotherapy, including CAR-T therapy. Since CAR-T therapy includes withdrawal of
T cells from cancer patients used for expansion, the ratio of CD4/CD8, and memory markers such as
CD45RA, CD45RO and other markers such as CD26, CD95, CCR-7, and CD62L should be analyzed for
a selection of different T cell subsets at different ratios to be studied in clinical trials for more effective
and personalized therapy. The sorted CD4 or CD8 cell populations and T cell subsets with specific
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memory or stem cell memory markers and genetic, epigenetic, and metabolic profiles in combination
with immune checkpoint inhibitors should be analyzed and used for regulating the efficacy of CAR-T
therapy. The modulation of metabolic pathways of different T cell subsets with metabolic inhibitors will
provide novel mechanisms of CAR-T immunotherapy. The genetic modifications of CAR constructs
and the effects of the modification of inhibitory and stimulatory pathways on the efficacy on CAR-T
cells can be studied further. Future studies with personalized T cell subsets patient profiles and the
above discussed approaches will illuminate the key mechanisms of efficient CAR-T therapy against
hematological malignancies and solid tumors.
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