Supplementary Materials: Integrative bioinformatic analysis of transcriptomic data identifies conserved molecular pathways underlying ionizing radiationinduced bystander effects (RIBE)

Constantinos Yeles, Efstathios-Iason Vlachavas, Olga Papadodima, Eleftherios Pilalis, Constantinos E. Vorgias, Alexandros G. Georgakilas, and Aristotelis Chatziioannou

Figure S1. Bar plot of the top 16 Gene Ontology terms, resulting from functional enrichment analysis of gene list comparison irradiated vs control samples of GSE55869 with BioInfoMiner, ranked according to the number of associated genes. Green color illustrates the down-regulation and red the up-regulation of a gene. As it is represented the vast majority of the genes are down-regulated. The cell-line which used in GSE55869 was H1299 non-small cell lung carcinoma.

Heatmap of scaled intensities of 26 common "bystander" genes GSE12435

Figure S2. Heatmap of the 26 common DE genes resulting from comparing gene lists of GSE12435, GSE21059 and GSE18760 for the comparison bystander vs control samples. Hierarchical clustering method: ward, distance: Euclidean. The gene expressions have been scaled so as to have mean expression of zero and standard deviation of one.

Figure S3. Illustrative example of NF-kappaB signaling pathway found significantly enriched after pathway analysis with Enrichr and illustrated with Pathview, using as an input the DE gene list from 0.5h Bystander versus control comparison.

Table S1. Common Mouse Genome Informatics (MGI) terms resulting from functional enrichment analysis for bystander vs control and irradiated vs control comparisons of datasets with a-particles irradiation. Enrichment scores are given as a fraction value.

	Datasets / Enrichments					
	GSE	12435	GSE18760		GSE21059	
MGI	Bystander 4 h	Irradiated 4 h	Bystander 0.5 h	Irradiated 0.5 h	Bystander Time- series	Irradiated Time- series
small kidney	-	7/167	13/167	13/167	24/167	-
abnormal macrophage physiology	8/337	10/337	25/337	24/337	-	-
abnormal cytokine secretion	13/529	13/529	34/529	32/529	-	-
abnormal incidence of induced tumors	6/181	8/181	14/181	14/181	_	_

increased fibroblast proliferation	-	4/37	6/37	5/37	-	-
increased sensitivity to induced morbidity/mortality	-	8/274	-	19/274	-	-
increased tumor growth/size	-	-	7/38	7/38	8/38	-
abnormal innate immunity	10/503	-	32/503	30/503	-	-
decreased interleukin-6 secretion	4/78	-	8/78	8/78	_	-

Table S2. Common MGI terms resulted from functional enrichment analysis for bystander vs control and irradiated vs control comparisons of dataset GSE8993 with carbon-ion irradiation. Enrichment scores are given as a fraction value.

	Dataset / Enrichments						
МСІ	GSE8983						
WIGI	Bystander	Irradiated	Bystander	Irradiated			
	2 h	2 h	6 h	6 h			
increased							
urine glucose	6/20	-	5/20	-			
level							
neoplasm	55/542	-	38/542	-			
abnormal							
kidney	6/29		E /29				
mesenchyme	0/20	-	5/28	-			
morphology							
prenatal		220/1004		776/1994			
lethality	-	220/1004	-	276/1884			
ventricular		7 9/165		22/165			
septal defect	-	20/103	-	32/103			
embryonic		25/241		45/241			
growth arrest	-	33/241	-	43/241			

Table S3. Evaluation of differences in MGI terms resulting from functional enrichment analysis of datasets GSE12435 and GSE18760 from unique DE genes between comparisons bystander vs control and irradiated vs control.

Unique MGI terms a-particles IR (GSE12435, GSE18760)				
Bystander	Irradiated			
enhanced wound healing	increased anti-histone antibody level			
decreased susceptibility to type IV	increased anti-single stranded DNA			
hypersensitivity reaction	antibody level			
abnormal angiogenesis	decreased immature B cell number			
abnormal thymus involution	abnormal T cell proliferation			
increased hepatoma incidence	decreased mature B cell number			
abnormal T cell physiology	increased T cell proliferation			
prenatal lethality prior to heart atrial	do more and P. 1. P. coll mumber			
septation	decreased D-1 D cell number			
abnormal chondrocyte morphology	increased inguinal fat pad weight			

increased myeloid cell number in bone	increased autoantibody level		
marrow	increased autoantibody level		
osteoarthritis	decreased sensitivity to skin irradiation		

Table S4. Evaluation of differences in MGI terms resulted from functional enrichment analysis of dataset GSE8993 from unique DE genes between comparisons bystander vs control and irradiated vs control.

Unique MGI terms carbon-ion IR (GSE8993)				
Bystander	Irradiated			
peritoneal inflammation	heart inflammation			
increased circulating tumor necrosis factor	norinatal lathality incomplete penetrones			
level	permatai ieutanty, incomplete penetrance			
decreased cytotoxic T cell cytolysis	dystrophic muscle			
decreased double-positive T cell number	decreased fibroblast cell migration			
increased circulating interleukin-17 level	abnormal vascular development			
decreased T cell proliferation	skeletal muscle fiber necrosis			
increased pre-B cell number	abnormal liver development			

Table S5. Common Reactome pathways terms resulting from functional enrichment analysis for bystander vs control and irradiated vs control comparisons of datasets with a-particles irradiation. Enrichment scores are given as a fraction value.

	Datasets / Enrichments					
	GSE	12435	GSE	18760	GSE	21059
Reactome pathways	Bystander 4 h	Irradiated 4 h	Bystander 0.5 h	Irradiated 0.5 h	Bystander Time- series	Irradiated Time- series
Stabilization of p53	-	-	10/55	10/55	11/55	18/55
G1/S DNA Damage Checkpoints	-	-	10/66	10/66	11/66	19/66
Hh mutants that don't undergo autocatalytic processing are degraded by ERAD	-	-	9/56	9/56	10/56	16/56
Cyclin E associated events during G1/S transition	-	-	10/69	10/69	13/69	19/69
Cyclin A:Cdk2- associated events at S phase entry	-	-	10/70	10/70	13/70	20/70
Crosslinking of collagen fibrils	-	-	4/11	5/11	6/11	6/11
PCP/CE pathway	-	-	11/91	11/91	16/91	25/91
TP53 Regulates Transcription of Death Receptors and Ligands	-	3/12	-	-	-	6/12

Extracellular matrix	< / 2 00				20/200	
organization	6/289	-	-	-	38/289	-

Table S6. Common Reactome pathways terms resulted from functional enrichment analysis for bystander vs control and irradiated vs control comparisons of dataset GSE8993 with carbon-ion irradiation. Enrichment scores are given as a fraction value.

	Dataset / Enrichments						
Doostomo notherese	GSE8983						
Reactome pathways	Bystander	Irradiated	Bystander	Irradiated			
	2 h	2 h	6 h	6 h			
Circadian Clock	9/62	14/62	-	16/62			
BMAL1:CLOCK,NPAS2							
activates circadian gene	8/42	8/42	-	11/42			
expression							
Laminin interactions	-	9/30	-	10/30			
Pre-NOTCH Expression		0/45		12/45			
and Processing	-	9/43	-	12/45			
Activation,							
translocation and	2/2	_	2/2				
oligomerization of BAX			<i><i>L</i>/<i>L</i></i>				
RHO GTPases Activate ROCKs	4/17	-	3/17	-			
Signaling by ERBB4	27/319	-	23/319	-			

Table S7. Evaluation of differences in Reactome pathways terms resulted from functional enrichment analysis of datasets GSE12435 and GSE18760 from unique DE genes between comparisons bystander vs control and irradiated vs control.

Unique Reactome terms a-particles IR (GSE12435, GSE18760)				
Bystander	Irradiated			
PHO CTPassa activate PKNs	TP53 Regulates Transcription of Cell Death			
	Genes			
RHO GTPases Activate ROCKs	PI3K/AKT Signaling in Cancer			
PHO CTPassa activate PAVa	Downstream signaling events of B Cell			
KIIO GII ases activate l'AKS	Receptor (BCR)			
O linked always violation	Constitutive Signaling by AKT1 E17K in			
O-linked glycosylation	Cancer			
Defective TBXAS1 causes Ghosal	Death Receptor Signalling			
hematodiaphyseal dysplasia (GHDD)				
PPC2 methylates histories and DNA	Transcription from mitochondrial			
	promoters			
Synthesis and interconversion of nucleotide	Role of LAT2/NTAL/LAB on calcium			
di- and triphosphates	mobilization			
RMTs methylate histone arginines	AKT phosphorylates targets in the cytosol			
Interlevilin 7 signaling	TP53 Regulates Transcription of Death			
interieukin-7 signaling	Receptors and Ligands			
EDUA modiated growth cone collapse	TP53 Regulates Transcription of Genes			
Er HA-medialed growth cone collapse	Involved in G1 Cell Cycle Arrest			

Table S8. Evaluation of differences in Reactome pathways terms resulted from functional enrichment analysis of dataset GSE8993 from unique DE genes between comparisons bystander vs control and irradiated vs control.

Unique Reactome terms carbon-ion IR (GSE8993)			
Bystander	Irradiated		
BH3-only proteins associate with and	Lominin interactions		
inactivate anti-apoptotic BCL-2 members	Lammin interactions		
Activation, translocation and	Circadian Clock		
oligomerization of BAX	Circadian Clock		
Nef Mediated CD4 Down-regulation	Pre-NOTCH Transcription and Translation		
Cytosolic sensors of pathogen-associated	DDADA activates cons supression		
DNA	TTAKA activates gene expression		
Signaling by ECEP2	BMAL1:CLOCK,NPAS2 activates circadian		
Signaling by FGFK2	gene expression		
	Regulation of lipid metabolism by		
Fc epsilon receptor (FCERI) signaling	Peroxisome proliferator-activated receptor		
	alpha (PPARalpha)		
CLEC7A/inflammasome pathway	Signaling by TGF-beta Receptor Complex		

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/)