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Abstract: Prostate cancer (PCa) is one of the most common cancers and among the leading causes
of cancer deaths for men in industrialized countries. It has long been recognized that the prostate
is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is
mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard
treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant
prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from
androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear
as to when and how castration resistance arises within prostate tumors. In addition, AR signaling
may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs.
The WNTs are capable of signaling through several pathways, the best-characterized being the
canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing
PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the
WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR
suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways.
In this review, we discuss the current knowledge of both AR and WNT pathways in prostate
development and tumorigenesis, and their interaction during development of CRPC. We also review
the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways.
Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast
cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these
two hormone-related cancer types are highly context-dependent.
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1. Introduction

For the men in the United States, prostate cancer (PCa) is not only one of the most commonly
diagnosed cancers, but also one of the most predominant causes of death from cancer [1,2].
The American Cancer Society estimates that in 2016, there will be 180,890 newly diagnosed cases and
26,120 deaths due to PCa in the United States, making it the second leading cause of cancer death in
men [3]. Since the prostate gland development depends on androgens and androgen receptor (AR)
signaling [4,5], human PCa initially responds to androgen-deprivation therapy (ADT) [6,7]. However,
the cancer often reappears, and is accompanied by rising levels of serum prostate-specific antigen
(PSA) [8,9]. PSA (KLK3) is encoded by an androgen-dependent gene, and increased expression of PSA
in an environment of castrate levels of circulating androgens indicates that adaptive androgen signaling
has emerged in the tumor [10,11]. Accordingly, in the majority of cases, an initially hormone-sensitive
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PCa will evolve to a lethal castration-resistant prostate cancer (CRPC) [12–15]. The underlying
molecular basis for how PCa cells escape from the growth control by exogenous androgens remains
poorly understood. Recent studies, however, pointed to the AR and its actions as a key factor in many
CRPCs, despite the reduction in circulating testosterone. The mechanisms involved in this change
include increased expression and stability of the AR protein, activating mutations in this receptor
that alter its ligand specificity, and changes in the expression of transcriptional co-regulators of the
AR [16,17]. In addition, AR and its cognate ligands interact with potent oncogenic systems, such as
WNT signaling, to elicit changes in cellular adhesion and oncogenesis [18–21].

WNT signaling is an evolutionary highly conserved signaling system throughout the eukaryotic
kingdom. During embryonic and postnatal development, WNT signaling controls many cellular
processes, including proliferation, survival and differentiation [22–26]. Deregulation in WNT signaling
leads to an imbalance of such processes, often resulting in aberrant development or disease [27,28];
in particular, deregulated WNT signaling is common in human cancers, including malignancies of the
intestine [29–31], liver [32–35], skin [36,37], breast [38–41] and prostate [42,43].

The term Wnt is an amalgam of Wg and Int [44], as the genes Wingless (Wg) and integration 1 (Int1)
are homologues in Drosophila and mouse, respectively [45,46]. Wg was genetically characterized
as a segment polarity gene in Drosophila in 1980 by Nüsslein-Volhard and Wieschaus [47].
The proto-oncogene Int1 was first identified in 1982 by Nusse and Varmus as a preferential site for
proviral integration of the mouse mammary tumor virus (MMTV) in a mouse mammary cancer
model [48]. Since the identification of Wnt1, genome sequencing has revealed the existence of
19 Wnt genes in mammals. All WNT proteins share common features that are essential for their
function, including a signal peptide for secretion, many potential glycosylation sites, and WNT
ligands interact with seven-pass transmembrane receptors of the Frizzled (FZD) family and/or
single-pass transmembrane co-receptors, such as lipoprotein receptor-related protein 5/6 (LRP5/6),
ROR2, and RYK [49–54]. Co-factors such as R-spondin and Wise also take part in WNT-receptor
complex activity [55–57]. R-spondin/LGR (leucine-rich repeat-containing G-protein coupled-like
receptor) complexes and WNT ligands directly interact with FZD-LRP-receptor complexes on target
cells to activate downstream signaling. This leads to the activation of various intracellular signaling
cascades that can be cross-connected or act independently. The intracellular signaling activated
by WNT proteins is organized into two categories: canonical and non-canonical. Canonical WNT
signaling is often referred to as the WNT/β-catenin pathway, as it relies on β-catenin-dependent
transcriptional activation triggered by WNT-stimulated signals. In contrast, non-canonical WNT
pathways, including the WNT/Ca2+ (calcium) and WNT/JNK (c-Jun N-terminal kinase), WNT/Rho
pathways, are β-catenin-independent and activate a variety of downstream intracellular signaling
cascades [26,58–60]. These mechanisms have been the subject of numerous reviews [22–26], and
therefore will only be briefly described here.

In this review, we will discuss the multifaceted manner with which both the canonical and
non-canonical WNT pathways influence and modulate AR signaling in CRPC development. We will
consider the possible therapeutic application of drugs that target both pathways. We will also discuss
these under the context of recurrent mutations in both pathways identified from PCa genomes. Finally,
we will extend our review of these two pathways to the mammary gland system and breast cancer.

2. An Overview of the Canonical and Non-Canonical WNT Signaling Pathways

The known molecular components and the cascade of the canonical WNT signaling pathway are
summarized in Figure 1. Canonical WNT signaling strictly controls the level of the cytoplasmic protein
β-catenin. β-Catenin, encoded by the CTNNB1 gene [61], is a member of the armadillo family of
proteins. β-Catenin consists of an N-terminal region of 149 amino acids, followed by a central domain
of 515 residues composed of 12 armadillo repeats, and a C-terminal region of 108 residues [62].
The N-terminal region contains phosphorylation sites recognized by GSK3β and CK1α and an
α-catenin binding site, whereas the C-terminal region works as a transcriptional co-activator-binding
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domain (CBD) that interacts with histone modifiers such as histone acetyltransferases CBP/P300 [63].
β-Catenin has dual functions. It acts as a transcription cofactor with the T cell factor/lymphoid
enhancer factor (TCF/LEF) in the WNT pathway [64–67]. It is also a structural adaptor protein that
binds E-cadherin and α-catenin through its Armadillo repeats and N-terminal domain, respectively
(E-cadherin is a core transmembrane adhesion protein, and α-catenin is a protein that binds actin
and other actin-regulators) [68–72]. The multifaceted functions of β-catenin are regulated by three
cellular pools of this molecule that are under strict regulation: a membrane pool of cadherin-associated
β-catenin, a cytoplasmic pool, and a nuclear pool [73]. Canonical WNT signaling works in the
following fashion: in the absence of WNT signals, β-catenin is efficiently captured by scaffold proteins,
the AXINs, which are present within a destruction complex containing glycogen synthase kinase
(GSK3β), adenomatous polyposis coli (APC) and the casein kinase-1 (CK1). The resident CK1
and GSK3β protein kinases sequentially phosphorylate conserved serine and threonine residues
in the N-terminus of the captured β-catenin, generating a binding site for an E3 ubiquitin ligase.
Ubiquitination targets β-catenin into proteasomes for rapid degradation [74–77]. Therefore, in the
absence of WNT, cytoplasmic β-catenin levels remain low, and the transcription factors LEF1 and
TCF interact with Grouchos in the nucleus to repress WNT pathway-specific target genes [78,79].
In contrast, upon the interaction of canonical WNT ligands to its receptors, FZD, and co-receptor,
LRP5/6, the destruction complex is disassembled through phosphorylation of LRP5/6 by CK1γ
and binding of AXIN to LRP, which prevents β-catenin degradation [80,81]. The inactivation of the
destruction complex allows cytoplasmic stabilization and translocation of β-catenin to the nucleus,
where it interacts with members of the TCF/LEF family [64–66] and converts the TCF/LEF proteins
into potent transcriptional activators. It achieves this by displacing Grouchos [82] and by recruiting
other co-activators such as B-cell lymphoma 9 (BCL9) [83,84], Pygopus [85,86], CREB-binding protein
(CBP) [87,88] or Hyrax [89], ensuring efficient activation of WNT target genes encoding c-Myc [90],
Cyclin D1 [91,92], urokinase-type plasminogen activator (uPA) [93], CD44 [94], Cox-2 and Cox-9 [95],
and the AR gene [96,97], as well as genes that encode key components of the WNT pathway (e.g., FZDs,
DKKs (Dickkopf), LRPs, AXIN2, β-TrCP and TCF/LEF) (Figure 1). These WNT target genes then
influence cell cycle regulation, stem cell function and development, as well as invasion and metastasis
of cancer cells. For an updated overview of the WNT pathway and its target genes, see the WNT
homepage at http://www.stanford.edu/group/nusselab/cgi-bin/wnt/.

In addition to promoting the WNT activity, a series of biochemical experiments indicated that
R-spondins (RSPOs) are able to synergize with the WNT pathway in the presence of canonical WNT
ligands [98]. Similar to the WNT proteins, RSPOs are also cysteine-rich. However, unlike WNTs, the
cysteine residues found in RSPOs are organized into two adjacent furin-like domains, which have
been suggested to be sufficient for inducing β-catenin stabilization [98]. Recently, LGR4, LGR5 and
LGR6, three closely related LGR proteins, have been identified as receptors for RSPOs. LGR5 is a
WNT target gene and although originally discovered as an intestinal stem cell marker [99], it has also
become an ideal candidate marker for understanding stem cell and cancer biology of other epithelial
cell types in mice and human [56,99–101]. The LGR5 protein had previously been identified as an
orphan receptor, among LGRs. The LGR family is defined by a large extracellular N-terminal domain
composed of a string of leucine-rich repeat units, a 7-transmembrane domains (7TM) and a cytoplasmic
region. Specifically, LGR5, together with LGR4 and LGR6, belong to the B-class LGRs [100,102]. Close
relatives are the LGRs for the follicle stimulating hormone (FSH), the luteinizing hormone (LH) and
the thyroid-stimulating hormone (TSH), which are true G-protein coupled receptors. Recently, it was
found that instead of binding hormones, the LGR4/5/6 receptors interact with RSPOs and do not
activate G-proteins; instead, they promote WNT/β-catenin signaling. Specifically, the interaction of
RSPOs and LGR5 has been assessed in cell surface binding assays, cell-free co-immunoprecipitation
and tandem affinity purification mass spectrometry [55,102,103]. As their potentiating ability depends
on the presence of a WNT ligand, the WNT secretion machinery can thus indirectly affect their role on
WNT signaling.
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Figure 1. Schematic diagram of the canonical WNT signaling pathway. (left panel) the “WNT-Off” 
state: In the absence of a WNT signal, β-catenin levels in the cytoplasm are kept low through 
proteosomal degradation induced by the β-catenin destruction complex. Grouchos (transcriptional 
co-repressors) interact with TCF/LEF proteins and prevent the expression of WNT target genes. 
(right panel) the “WNT-On” state: When WNT ligands bind to their receptors Frizzled (FZD) and 
LRP5/6, the receptor complex can recruit components of the β-catenin destruction complex, resulting 
in accumulation of β-catenin in the cytoplasm. β-catenin will then translocate into the nucleus, 
replace Grouchos and recruit transcriptional co-activators to form the transcription complex with 
TCF/LEF proteins, which eventually promote expression of the WNT target genes. 

Figure 1. Schematic diagram of the canonical WNT signaling pathway. (left panel) the “WNT-Off” state:
In the absence of a WNT signal, β-catenin levels in the cytoplasm are kept low through proteosomal
degradation induced by the β-catenin destruction complex. Grouchos (transcriptional co-repressors)
interact with TCF/LEF proteins and prevent the expression of WNT target genes. (right panel) the
“WNT-On” state: When WNT ligands bind to their receptors Frizzled (FZD) and LRP5/6, the receptor
complex can recruit components of the β-catenin destruction complex, resulting in accumulation of
β-catenin in the cytoplasm. β-catenin will then translocate into the nucleus, replace Grouchos and
recruit transcriptional co-activators to form the transcription complex with TCF/LEF proteins, which
eventually promote expression of the WNT target genes.

The activation of canonical WNT signaling can also be blocked by extracellular proteins.
These include the sFRP family (secreted frizzled related protein; sFRP1, 2, 4, and 5) [104], WIF
(Wnt inhibitory factor) [105], the DKK family of proteins (DKK1–4 and DKKL1) [106], and the cysteine
knot family proteins SOST [107] and WISE [108]. These soluble inhibitors bind to WNT, the FZD
receptor in the case of sFRP, or to the co-receptor LRP5/6 in the case of DKK1 and SOST/WISE, thereby
interfering with ligand–receptor complex formation and blocking WNT signaling [109].

While the canonical WNT signaling pathway has been extensively dissected biochemically
and at the molecular level, non-canonical WNT signaling has been less focused on. The best
characterized non-canonical WNT pathways include the WNT/Ca2+ pathway, which was first
described in vertebrates [58], and the planar polarity pathway (PCP), which was first identified
in Drosophila [110]. Other non-canonical pathways include WNT/JNK and WNT/Rho signaling [111].

In the WNT/Ca2+ pathway, the interaction of non-canonical WNT ligands and receptors
recruits Dishevelled (DVL) and G protein, which activates phospholipase C (PLC), leading to
production of 1,2-diacylglycerol (DAG); 1,2-DAG then activates protein kinase C (PKC), and inositol
1,4,5-triphosphate (IP3), thereby triggering intracellular calcium release from the endoplasmic
reticulum [112,113]. Calcium release activates calcineurin (CNA) and Ca2+/calmodulin-dependent
protein kinase II (CAMKII), which increase expression of nuclear factor of activated T cells
(NFAT)-dependent genes and inhibit canonical WNT signaling through nemo-like kinase (NLK),
respectively [114,115]. Activated NFAT may boost the expression of several genes in neurons,
cardiac and skeletal muscle cells, prostate, and pro-inflammatory genes in lymphocytes [116–118].
In the WNT-PCP pathway, FZD receptors activate a signaling cascade that involves the small
GTPases Rho and Rac and c-Jun N-terminal kinase (JNK) [119]. In contrast to calcium-regulated
non-canonical signaling, WNT/JNK signaling uses ROR2-dependent circuitry to activate downstream
effectors of the activating protein-1 (AP-1) family of transcription factors [59,60]. In addition, a
new β-catenin-independent aspect of WNT signaling was recently reported in proliferating cells:
WNT signaling was found to peak at the G2/M phase of the cell cycle to produce the so-called
WNT-dependent stabilization of proteins (WNT/STOP) [120,121]. This appears to be a dominant mode
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of WNT signaling in several cancer cell lines, where it is required for cell growth. Of note, boundaries
of both canonical and non-canonical WNT pathways are not stringent and there are considerable
degrees of overlapping between them [122].

3. WNT Signaling in Prostate Development and Stem Cells

In both human and rodents, the prostate gland surrounds the urethra at the base of the bladder
and functions by contributing secretory proteins to the seminal fluid. In men, the prostate gland is a
walnut-sized tissue with a zonal architecture, corresponding to central, periurethral transition, and
peripheral zones, together with an anterior fibromuscular stroma [123]. Importantly, the outermost
peripheral zone occupies the most volume, and harbors the majority of prostate carcinomas. In contrast,
benign prostatic hyperplasia (BPH), a common nonmalignant condition found in older men, arises
from the transition zone [124]. Unlike the human prostate that is a compact gland, the mouse prostate
includes four paired lobes situated circumferentially around the urethra: anterior (AP), dorsal (DP),
lateral (LP), and ventral (VP) prostate. The DP and LP are sometimes collectively referred to as the
dorsolateral lobes of the prostate (DLP). At birth, each lobe of the VP consists of 1–3 main ducts
with secondary and tertiary branches, whereas the more complex DLP initially has 9–12 unbranched
proximal main ducts on each side [125,126].

In all species, formation of the prostate gland initiates during embryogenesis. During
mid-gestation, the primitive urogenital sinus (UGS) is separated from the terminal region of the hindgut
through division of the cloaca by the urorectal septum. The most rostral region (vesiculo-urethral part)
of the primitive UGS forms the urinary bladder, whereas the most caudal region (phallic part) forms
the penile urethra. The prostate gland originates from a sub-compartment of the lower urogenital
tract (LUT), known as the definitive UGS [127,128]. The endodermal UGS is surrounded by embryonic
connective tissue called urogenital sinus mesenchyme (UGM). Prostate development, growth and
function is androgen dependent; however, other steroid receptors, such as estrogen receptors (ER) and
retinoid receptors (RARs and RXRs), also contribute to prostate morphogenesis and differentiation.
Prior to sexual differentiation of the UGS, UGM expresses AR in both sexes and thus acquires the
capacity to undergo masculine development [129–131]. Over 30-year of research by Cunha and
colleagues has shown that an AR-dependent signal from the urogenital mesenchyme is required for
prostate formation, while AR is not initially required in the urogenital epithelium (UGE) for prostate
organogenesis, but is subsequently necessary for epithelial differentiation and secretory protein
expression [124,132–134]. In mouse, the prostatic ducts start to form after embryonic day 17 (E17) as
solid epithelial buds formed from the UGE that invades the surrounding UGM [126]. During perinatal
and neonatal development, prostatic buds undergo primary, secondary, and tertiary branching
morphogenesis in a pattern unique to each pair of the DP, VP, LP, and AP lobes in rodents [125]. The rate
of new VP ductal tip formation in Balb/c mice, a hallmark of branching morphogenesis, peaks at about
postnatal day 5 (P5). Concurrent with branching morphogenesis, epithelial buds canalize in a proximal
to distal direction along the developing ducts, giving rise to two distinct cell layers: a superficial
layer of secretory columnar luminal epithelium lining prostatic ducts and a deep layer of basal
epithelium including the rare neuroendocrine cells [135,136]. Basic prostatic architecture is established
during puberty, upon an androgen-driven increase in prostate gland size. After that the prostatic
epithelium reorganizes into a layer of outer cuboidal basal cells and inner tall columnar luminal cells.
Human prostate development proceeds by a similar series of morphogenetic events, but gives rise
to a mature prostate that contains a single capsulated structure divided into peripheral, central, and
transitional zones. The basal cells express cytokeratins 5 and 14, and p63 and are localized along the
basement membrane, but express AR at low or undetectable levels [137]. The luminal cells express
cytokeratins 8 and 18 as well as high levels of AR [138]. In humans, mature luminal cells constitute
the exocrine part of the prostate and secrete PSA and PAP (prostate acid phosphatase) [139,140].
The third epithelial cell type in the prostate is the androgen-independent neuroendocrine cell, which
makes up only a small proportion of the prostate epithelial cells and is characterized by expression of
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functional markers such as chromogranin A and synaptophysin [141,142]. In addition, intermediate or
transit-amplifying cells that express both the basal and luminal lineage markers are detectable during
the developmental stage, under pathological conditions in adults, or when prostate epithelial cells are
cultured in vitro [137,143–146].

The use of transgenic mice combined with molecular analyses have demonstrated the importance
of several developmental signaling pathways during prostate organogenesis, including bone
morphogenetic protein (BMP), transforming growth factor beta (TGFβ), Notch, sonic hedgehog
(SHH), and WNT pathways [147]. Evidence that WNT signaling is involved in prostate morphogenesis
comes from studies by Zhang et al. [148]. By creating six LongSAGE libraries at three key stages
of prostate organogenesis: E16.5 UGS (i.e., a stage just before the first prostate buds are formed),
P0 prostates (i.e., a stage when branching morphogenesis has begun), and 12-week adult prostates
(i.e., a time of relative growth quiescence), Zhang and colleagues evaluated sex and cell-type specific
genes associated with prostate induction and found expression changes of multiple WNT-related
genes, such as Sfrp2, Wnt4, Wnt5a, Wnt11, Fzd1, Fzd7, Fzd10, Lrp5, Axin1, Lef1, Nkd1, and RhoA [148,149].
Accordingly, in vivo studies using Sfrp1-overexpressing transgenic mice and Sfrp1-null mice confirmed
that this WNT modulator stimulates prostate branching morphogenesis, epithelial cell proliferation and
secretory gene expression [150]. Additionally, in vitro studies by Prins and colleagues showed that the
WNT signaling inhibitor DKK1 also stimulated growth and branching of cultured newborn rat VP lobes
over a four-day period, suggesting that canonical WNT signaling suppresses prostate growth [147].
This was supported by another recent study where WNT3A, a canonical WNT ligand, reduced ductal
branching of cultured neonatal rodent (rat) prostates and active canonical WNT signaling in epithelial
progenitor cells maintaining their undifferentiated state [151]. In addition, Wnt5a was found to be
indispensable during the UGS development. High levels of Wnt5a expression has been observed at the
distal tips and along the centro-distal periductal mesenchyme during the period of postnatal branching
morphogenesis, with a rapid decline thereafter in the VP but not the DP and LP [152]. Another study
further demonstrated that loss of Wnt5a impeded buds branching during morphogenesis [153].

β-Catenin has been identified in both epithelial and mesenchymal structures that undergo
a budding program; its activation is necessary and/or sufficient for specification of hair follicle,
mammary gland and tooth buds [154–156]. Of note, an absolute requirement for this protein has
been shown in prostatic induction. While conditional expression of a constitutively active form of
β-catenin in developing prostate epithelium prevents epithelial differentiation [136,157], conditional
deletion of the β-catenin gene (Ctnnb1) in the mouse prostate during embryonic stages results in
significantly decreased prostatic budding and abrogates prostatic development [158]. Furthermore,
a recent study by Mehta et al. demonstrated the importance of WNT-activators RSPOs in murine
prostatic bud formation [136]. By in situ hybridization (ISH), Mehta et al. unveiled the expression
pattern of R-spondin1-4 (Rspo1-4) in developing and neonatal mouse LUT. They found that Rspo3,
together with Wnt4, Wnt10b, Wnt11 and Wnt16, appear to be more abundant in male versus female
UGS and they stimulate prostatic development [136].

Although development of the adult prostate is largely completed at puberty, it must possess
a mechanism to assure the homeostasis of its epithelium. To achieve this, prostate, similar to
other epithelial organs, sets aside a life-long reservoir of somatic stem cells that retain self-renewal.
The regenerative capacity of prostate epithelial stem cells (PSCs) has been shown in the experiment
with repeated rounds of androgen ablation and restoration; thus PSCs are androgen-sensitive but not
dependent, are capable of self-regeneration, and give rise to transit-amplifying cells that differentiate
into various specialized epithelial cells of the prostate [159]. To date, the best approach to identify and
characterize murine and human PSCs is to combine flow cytometry with functional assays, such as
genetic lineage tracing experiments, tissue culture and renal capsule implantation. Specifically, first
prostate epithelial cells are fractionated based on their surface antigenic profiles and then functional
assays are used to determine whether different subpopulations possess stem cell activity or not. Based
on this approach, the basal cell subpopulation appeared to be bipotent, i.e., capable of generating
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both luminal and basal lineages, thus indicating that basal cells have stem cell-like potential [160–162].
Independent studies by the two laboratories of Witte and Wilson showed that makers such as CD49f,
Trop2 and CD166 could enrich prostate cells for the PSC activity among the Sca-1+ cells [145,163–167].
Similarly, Richardson et al. isolated human prostate cells expressing a stem cell marker CD133
and showed that α2β1integrin+CD133+ basal cells also correspond to an enriched stem cell fraction
in the human prostate epithelium [168]. Finally, Leong et al. reported successful regeneration
of prostatic tissues from single Lin−Sca-1+CD133+CD44+CD117+ cells, which are predominantly
basal in mice and are exclusively basal in humans [169]. In addition to the cellular hierarchy of the
prostatic epithelium in mice, Wang et al. showed in the lineage tracing experiments that rare luminal
cells (i.e., castration-resistant Nkx3-1 expressing cells (CARNs)) are bipotential and can self-renew
in vivo [170]. Nevertheless, a full understanding the properties of prostate luminal epithelial cells has
been hampered by the lack of suitable in vitro model systems. In comparison to the basal epithelial cells,
luminal epithelial cells are indeed more sensitive for tissue dissociation, after which they fail to survive
in explant culture or grafts [170,171]. To circumvent this technical difficulty, three-dimensional (3D)
organoid culture was developed recently [172]. By using testosterone-responsive culture conditions,
Karthaus et al. confirmed that human prostate luminal cells have potential to generate both basal and
luminal lineages. Moreover, they showed that basal and luminal cells can each generate a complete
multilayer prostate organoids, suggesting that both lineages have stem cell-like potentials [173].
Of note, the 3D organoid system, although mimicking a testosterone-naïve environment for the single
stem cells, relies also on the addition of LGR4/5 ligand R-spondin1, a potent WNT/β-catenin agonist.
This might shed a new light on the role of WNT activity in the maintenance and expansion of PSCs
and their progeny. In fact, evidence of the importance of WNT activity in the maintenance of PSCs
and their progeny was provided in two consecutive studies by the laboratory of Wilson; in one study,
Blum et al. determined the transcriptional profiles of four populations of prostate cells: (i) urogenital
epithelium from 16-day embryos, that represent fetal PSCs; (ii) Sca-1High cells, enriched in adult PSCs;
(iii) Sca-1Low cells, that represent transit-amplifying cells; and (iv) Sca-1Negative cells representing
terminally differentiated population with no regenerative potential [174]. Upregulation of WNT
signaling was observed in both fetal and adult PSCs. However, WNT signaling acts differently in
these two populations, as the fetal PSC population is highly proliferating, whereas the adult PSC
population is quiescent [174]. In another work, the same group reported that WNT receptors such as
FZD6 and ligands such as WNT2 and WNT4 also control the stem cell niche activity [175]. Similarly,
other WNT ligand has been shown to be critical in controlling self-renewal of PSCs in a prostasphere
culture system [94]. Interestingly, activation of canonical WNT pathway through WNT3A results in a
significant increase of the expression of nuclear β-catenin [94]. This is consistent with other reports
showing that WNT3A signaling can preserve an undifferentiated phenotype in CD133+ human cord
blood-derived cells [176] and it supports embryonic stem cell self-renewal [177]. Furthermore, the
importance of β-catenin in the self-renewal of Lin−Sca−CD49fhigh mouse prostate stem and progenitor
cells has been provided in the study by Lukacs et al. [178]. This group reported that cells expressing
the BMI-1 (polycomb group) protein require constitutively active β-catenin for increased self-renewal.
This suggests that BMI-1 may be a mediator of WNT/FZD signaling in normal PSCs [178].

4. An Overview of AR and AR Signaling

The most critical molecular component of the androgen signaling pathway is the AR protein.
Upon activation by androgens, AR mediates transcription of target genes that modulate growth and
differentiation of prostate epithelial cells. AR plays a vital role in the development of male reproductive
organs. Of note, its dysregulation contributes to the male pattern of baldness, development of prostatic
hyperplasia, and later in life to PCa.

The AR gene is located on chromosome Xq11-12. It consists eight exons that encode an 110 kDa
nuclear receptor that is a unique member of the nuclear steroid receptor gene family (Figure 2) [179,180].
The AR protein has four functional domains (Figure 2). The N-terminal domain (NTD) is the most
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variable and least conserved domain; it is needed to form a transcriptionally active molecule. Precisely,
the NTD contains the activation function 1 (AF-1) domain that includes two overlapping transcription
activation units (TAUs): TAU-1 (amino acids 1–370), which supports AR transcriptional activity
upon stimulation by full agonist, and TAU-5 (amino acids 360–528), which confers a constitutive
activity to the AR in the absence of its ligand-binding domain (LBD) (Figure 2) [181–183]. Next to
the NTD lies the DNA-binding domain (DBD), which is the most conserved region in this protein.
This DBD consists of two zinc finger modules that are responsible for binding to the hormone response
elements [184,185]. The carboxy-terminal end of AR contains the LBD and the activation function 2
(AF-2) domain [183]. Lastly, the region between the DBD and LBD of AR is termed the hinge region
(HR) (Figure 2). It provides the main portion of the nuclear translocation signal and regulates the
transactivation potential as a result of posttranslational modifications. Interestingly, it serves as an
integrator for signals coming from different pathways [185].
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Figure 2. Schematic representation of the androgen receptor (AR) gene and protein, with indications of
its specific motifs and domains. The AR gene is located on human X chromosome and is composed
of 8 exons. The domains and motifs in the AR protein include: the N-terminal domain (NTD), the
DNA-binding domain (DBD), the hinge region, and the ligand-binding domain (LBD), as well as the
activation function 1 (AF-1) domain and the activation function 2 (AF-2) domain, and two transcription
activation units (TAUs): TAU-1 and TAU-5.

In mammalian cells, AR is sequestered in the cytoplasm and is bound to heat shock protein
complex consisting of Hsp70 (hsc70), Hsp40 (Ydj1), Hop (p60), Hsp90 and p23. The main role of
this complex is to maintain AR in a conformation capable of ligand binding and to protect it from
proteolysis [182,186–188]. Upon binding to testosterone or dihydrotestosterone (DHT), the chaperone
heterocomplex mediates AR translocation to the nucleus (Figure 3). In the canonical genomic pathway,
once in the nucleus, AR, as a homodimer, interacts with androgen response elements (ARE); by
recruiting co-regulators to form a pre-initiation complex and together with the basal transcriptional
machinery, it initiates transcription of its target genes (Figure 3A) [189–191]. Of note, nuclear targeting
of AR is influenced by its HR, where a deletion markedly reduces ligand-induced nuclear translocation,
but does not totally block signaling [192–194]. Subsequently, loss of bound ligand allows the nuclear
export signal (NES) to coordinate AR shuttling to the cytoplasm where AR can be tethered again to
cytoskeletal proteins in preparation for ligand binding [195,196].
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Figure 3. Schematic representation of AR signaling in normal prostate tissue and prostate cancer.
(A) The AR is complexed to heat shock proteins (HSPs), principally HSP90, in the absence of steroid
hormones. Upon binding to dihydrotestosterone (DHT), AR dimerizes and translocates to the nucleus.
In the nucleus, AR binds to DNA via the androgen-responsive element (ARE). This occurs both by
direct binding to DNA and by association with other transcription factors and co-regulators, leading to
expression of its target genes that control growth and differentiation of prostate cells; (B) In PCa cells,
AR signaling is maintained through other mechanisms such as AR amplification, AR mutations, or AR
alternative splicing. AR can also be transactivated in the absence or under very low levels of androgens.
In the nucleus, AR can drive expression of oncogenes such as those encoding the ETS transcription
factors (e.g., ERG, ETV1), as a consequence of gene rearrangements (e.g., TMPRSS2-ERG gene fusion);
it also controls expression of its target genes that support proliferation and survival of PCa cells.

Regulation of the AR activity occurs, in part, by posttranslational modifications, such as
phosphorylation at several serine residues with or without a bound ligand [197]. Precisely, AR is
phosphorylated at serine residues (Ser80, Ser93 and Ser641) that are believed to function by protecting
AR from proteolytic degradation [196,198]. Degradation of AR plays a pivotal role in the regulation
of AR function. AR is a direct target for MDM2-mediated ubiquitylation and proteolysis [199].
The NEDD4 ubiquitin ligase recruiting protein PMEPA1 may also play important roles in this
pathway [200,201].

5. The Emergence of Castration Resistance

Although the preferred ligand for AR is DHT (Figure 3A), it has been reported that mutations
frequently detected in both human PCa and in PCa cell lines may alter the ligand specificity of
AR, leading to its promiscuous activity in the presence of alternative steroid ligands that do not
bind to the wild-type AR [202,203]. In addition to mutations of AR found in PCa, important recent
studies have shown that AR can drive expression of oncogenes such as those encoding the ETS
transcription factors (e.g., ERG, ETV1) as a consequence of gene rearrangements [204]. The most
common form of these rearrangements creates a TMPRSS2-ERG gene fusion, resulting in expression
of an N-terminally truncated ERG protein under the control of the androgen-responsive promoter of
TMPRSS2 (Figure 3B) [204,205]. Furthermore, a recent whole-genome chromatin immunoprecipitation
(ChIP) analysis showed that ERG could bind to AR downstream target genes and disturb AR signaling
in PCa cells through epigenetic silencing [206]. By characterizing human PCa cell lines and knockin
mouse models ectopically expressing ERG or ETV1, we demonstrated that ERG negatively regulates
the AR transcriptional program, whereas ETV1 cooperates with AR signaling by favoring activation of
the AR transcriptional program [207].

Prostate gland development and PCa are critically dependent on AR signaling. The ADT remains
the most widely used treatment for patients with advanced PCa. In fact, androgen deprivation causes
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reduced AR expression, apoptosis and decreased tumor cell volume; however most PCas eventually
develop the capacity for recurrent growth in the absence of testicular androgen (i.e., CRPC) [208–210].
The postulated mechanisms to explain the emergence of CRPC can be separated into three general
categories, most of which center on AR signaling, including AR amplification, AR mutation, and
overexpression of AR splice isoforms (Figure 3B). Another mechanism for increased AR signaling
activity is the endogenous expression of androgen synthetic enzymes by tumor tissues, which leads
to de novo androgen synthesis or conversion of weaker adrenal androgens into testosterone and
DHT [124,211–214]. Up to 80% of CRPCs display a marked increase in AR mRNA and protein [215–218].
Studies by Kim et al. have shown that AR protein expression is increased in recurrent tumor samples
compared to paired androgen-sensitive samples in tumor xenograft models [210]. Specifically, in
CWR22 xenograft tumors, castration initially induced growth arrest in tumor cells. However, foci
of Ki-67 immunopositive cells were detected by 120 days after castration [210]. In nearly one-third
of patients progressing after castration or antiandrogen treatments, the mechanism for increased AR
expression is through amplification of the AR gene at Xq11-12 [183,215,216,219–221]. Additionally, the
most recent analysis of whole-exome sequencing of 150 metastatic CRPC (mCRPC) biopsies revealed
63% of AR gene amplification and mutation in comparison to that of 440 primary PCa tissues [222].
This amplification leads to an increase in AR gene expression and enhances AR activation by low levels
of androgens. It remains unclear, however, whether amplification of the AR gene in hormone-refractory
tumors results in an increase in AR protein levels. In fact, contradicting results have been obtained.
Studies by Koivisto et al. have shown that hormone-refractory prostate tumors carrying an amplified
AR express a higher level of AR mRNA compared to untreated primary tumors with a single copy of
AR per cell [220]. In contrast, studies by Linja et al. have revealed that hormone-refractory tumors
carrying AR amplification were not found to express a higher level of AR mRNA than those with a
normal AR copy number [217]. Therefore, the significance of AR amplification in PCa remains unclear.
In addition, alternative splicing of AR mRNA is another mechanism implicated in progression to
CRPC. Multiple aberrantly spliced AR variants (ARV) that miss the C-terminal LBD were detected in
CRPCs [222–224]. Importantly, all ARVs retain the amino-terminal transactivation and DNA-binding
domains. AR-V7 (AR1/2/3/CE3 variant) is constitutively active and the most abundant variant
detected to date in CRPC [225]. Interestingly, elevated AR-V7 induces expression of a unique set of
target genes [225]. Furthermore, recent findings suggested that AR-V7 could have value as a predictive
biomarker in CRPC. Antonarakis et al. showed that AR-V7 mRNA in circulating tumor cells (CTCs)
might be enhanced by AR-directed therapies including abiraterone acetate and enzalutamide, and its
expression was associated with poor prognosis [226]. Of note, the full-length AR and AR-Vs appear to
almost always coexist in PCa cells; thus, it remains highly challenging to dissect their corresponding
roles in driving AR signaling in translational studies of clinical specimens [183].

6. Interaction between AR and WNT Signaling in Prostate Cancer

The paradigm that PCa development and emergence of therapy resistance are a consequence of
the restoration of embryonic developmental programs (e.g., WNT signaling) has shed a new light on
understanding the molecular mechanisms underlying epithelial invasion in prostate development and
development of CRPC. While the (aberrant) AR signaling pathway is considered as the most critical
player in CRPCs, as intracellular signaling pathways are often interconnected, other pathways, in
particular, the WNT pathway, can also play key roles. As noted in the previous section, considerable
evidence indicates that the WNT pathway plays a central role in the development of prostate tissues, by
providing developmental growth inductive signals during embryonic/neonatal organogenesis. In PCa,
studies by Schaeffer et al. have reported that androgen exposure regulates genes previously implicated
in prostate carcinogenesis; these genes included those related to developmental pathways, such as
WNT signaling, along with cellular programs regulating such “hallmarks” of cancer as angiogenesis,
apoptosis, migration and proliferation [227]. This observation was in line with the previously published
data showing that aberrant activation of the WNT/β-catenin pathway contributes to progression
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of several other major human cancer types [27,30,35,56,90,100,228]. The prime example is colorectal
cancer, in which approximately 85% of cases display loss-of-function mutations in the tumor suppressor
APC gene [229–232]. APC protein recruits β-catenin to the degradation complex and its loss leads to
upregulation of β-catenin signaling (Figure 1). In addition, mutations of serine/threonine residues
within the N-terminal domain of β-catenin suppress β-catenin degradation, leading to constitutive
activation of WNT signaling even in the absence of WNT ligands. In PCa, mutations in the APC or
CTNNB1 (β-catenin) genes, which lead to constitutive activation of WNT signaling, similar to those
found in colon cancer, have also been identified [202,233–236].

Accumulating evidence has supported that the WNT/β-catenin pathway plays an important role
in CRPC, by interacting with AR signaling [234,237–239]. Several groups have focused on studying the
role of β-catenin in CRPC compared to hormone-naïve PCa. Findings of a protein-protein interaction
between AR and β-catenin have supported the biological significance of β-catenin in PCa cells. In 2000,
Truica et al. showed that β-catenin could directly bind to AR to enhance its transcriptional activity
stimulated by androgen, androstenedione, or estradiol, in LNCaP cells [240]. In 2002, Yang et al.
demonstrated that β-catenin preferentially and directly bound to the LBD of AR in the presence of
DHT over several other steroid hormone receptors [241]. Further studies revealed that β-catenin
bound to the AF-2 region of the AR LBD, and modulated the transcriptional effects of the AR NTD
as well as the p160 coactivator transcriptional intermediary factor 2 (TIF2); importantly, a single
AR lysine residue (K720) has been shown to be necessary for the AR/β-catenin and TIF2/β-catenin
interactions [242,243]. In β-catenin, early mapping experiments suggested that the NH2 terminus
and the first six armadillo repeats of β-catenin were involved in its interaction with AR. In particular,
deletion of repeat 6 fully abolished the physical interaction between AR and β-catenin, suggesting a
key role of this repeat in the interaction [241]. Phenotypically, transient over-expression of β-catenin in
AR+ PCa cell lines CWR22-Rv1 and LAPC-4 enhanced AR-mediated transcription of its target genes,
in an androgen-dependent manner [244]. Hence, β-catenin (wild-type or mutated) is considered as
a ligand-dependent co-activator of the AR-driven transcription (Figure 4). Binding of β-catenin to
ligand-engaged AR also facilitates the movement of β-catenin into the nucleus [245]. Furthermore,
it was shown that WNT/β-catenin signaling could increase AR gene expression via the TCF/LEF-1
binding sites in the AR promoter [246]. Thus, in hormone-naïve PCa, WNT/β-catenin signaling serves
as a positive regulator of AR signaling in an androgen-dependent manner (Figure 4A).Cancers 2017, 9, 14 13 of 32 
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Figure 4. A simplified model of interaction between WNT and AR signaling during PCa development
and progression. (A) In hormone naïve PCa cells, AR signaling inhibits the transcription of
WNT/β-catenin target genes, while WNT/β-catenin signaling promotes transcription of AR target
genes. Relative levels (i.e., anti-correlation but may reach to an equilibrium) of WNT (blue) and AR
(red) signaling are indicated; (B) In CRPCs, AR and WNT/β-catenin signaling pathways stimulate each
other to activate specific target genes for promoting androgen-independent growth and progression of
PCa cells. Relative levels (i.e., positive correlation) of WNT (blue) and AR (red) signaling are indicated.
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In the other hand, the effect of AR signaling on WNT/β-catenin signaling is more complicated.
Early studies in gonadotropin-releasing hormone neuronal cells showed that in the presence of DHT,
liganded AR repressed β-catenin/TCF-responsive reporter gene activity [247]. In androgen-dependent
LNCaP PCa cells, androgen treatment repressed target genes of WNT/β-catenin, whereas inhibition
of AR activity enhanced WNT/β-catenin-responsive transcription; this data suggested that under the
hormone-naïve condition, AR signaling could repress β-catenin/TCF-mediated transcription induced
by androgen [96] (Figure 4A). Mechanistically, as β-catenin interacts with TCF4 to control transcription
of WNT/β-catenin target genes, this could be due to preferential interaction of β-catenin with AR rather
than TCF4 in hormone-naïve PCa cells. While WNT/β-catenin pathway is repressed by AR in the
androgen-dependent LNCaP cell line, upon repression of AR activity or in the androgen-independent
subline of LNCaP cells (LNCaP-abl), the WNT/β-catenin responsive transcription appeared to be
largely activated, suggesting a likely role of WNT signaling in PCa progression to CRPC [96] (Figure 4B).
This could be due to an increased interaction of β-catenin with TCF4 (rather than AR), which could
promote WNT/β-catenin-target gene expression [96]. Therapeutically, pharmacological and genetic
inhibition of the WNT/β-catenin pathway (using siRNA against β-catenin or a small molecule
β-catenin inhibitor) in LNCaP-abl cells re-established their sensitivity to enzalutamide, a synthetic
non-steroidal antiandrogen [96]. Thus, this study implies that inhibition of the WNT/β-catenin
pathway may be translated into an effective therapeutic approach to treat enzalutamide-resistant CRPC.

To add another layer of the complexity of interaction between AR and WNT/β-catenin signaling,
it was shown that when PCa cells had been adapted to the low androgen environment (e.g., upon ADT),
β-catenin could act as a co-activator of AR as well to enhance AR transcriptional activity in the presence
of androstenedione, a weaker adrenal androgen remaining present in CRPC patients [239,241–243].
This direct interaction between AR and β-catenin seemed to elicit a specific expression of a set of target
genes in low androgen conditions in CRPC, which is consistent with the previous finding that target
genes regulated by AR signaling are different in CRPC cells compared to those in hormone-naïve
PCa cells [248]. Thus, it seems the effect of AR signaling on WNT/β-catenin signaling is PCa
stage-dependent: it suppresses WNT/β-catenin signaling in hormone-naïve PCa, but in CRPC, both
AR signaling and WNT/β-catenin signaling work together to positively support each other and to
control a unique set of genes for sustaining CRPC cells (Figure 4). Lastly and most importantly, the
significance of WNT/β-catenin and AR pathways in CRPCs was further demonstrated in studies by
Robinson et al [222]. Their clinical sequencing analysis of PCa genomes has revealed that the majority
of individuals with CRPCs harbor molecular alternations in the AR gene, as well as in genes encoding
the main components of the WNT/β-catenin pathway, such as APC, β-catenin and R-spondins, leading
to overactivation of WNT/β-catenin signaling [222].

As described in the previous section, WNT ligands are highly conserved secreted molecules that
play critical but pleiotropic roles in cell-cell signaling during embryogenesis. Interestingly, expression
levels of several WNT ligands were found to be up- or down-regulated in advanced PCa. For instance,
Chen et al. demonstrated that high levels of WNT1 and β-catenin expression were associated with
advanced, metastatic, hormone-refractory prostate carcinoma, in which they could serve as markers for
disease progression [236]. In two independent studies, another WNT ligand, WNT3A, has been shown
to modulate growth of PCa cells [20,249]. Importantly, the activity of AR signaling in the presence
of low concentrations of androgens was increased by application of purified WNT3A, suggesting an
important role of the canonical WNT3A signaling on the AR program [20]. As to the non-canonical
WNT pathways, elevated levels of WNT5A have been found to increase free intracellular calcium and
CaMKII in PCa cell lines, indicating that the WNT/Ca2+ pathway operates via CaMKII in PCa [250].
Yamamoto et al. showed that WNT5A overexpression enhanced invasion of the PC3 PCa cell line, and
the invasion activity required the expression of WNT receptors FZD2 and ROR2 [251]. Interestingly,
the very recent clinical studies by Miyamoto et al. have shown the importance of non-canonical
WNT in the maintenance of metastatic CRPC [252]. In details, they used RNA-in-situ hybridization
(RNA-ISH) to identify the source of WNT production in tumor specimens and CTCs. Metastatic tumor
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biopsies from patients with CRPC had readily detectable WNT5A and WNT7B. Similarly, WNT5A
or WNT7B mRNA was detected by RNA-ISH in a subset of CTCs from patients with CRPC [252].
This demonstrates that a subset of PCa cells express non-canonical WNT ligands, which may provide
survival signals in the context of AR inhibition. Furthermore, elevated expression of another WNT
ligand, WNT11, has also been detected in PCa tissues versus normal samples [21]. Interestingly,
WNT11 induced expression of neuroendocrine differentiation (NED) markers NSE and ASCL1, while
silencing of WNT11 in androgen-depleted LNCaP and androgen-independent PC3 cells prevented
NED and resulted in apoptosis [19].

Secreted WNT antagonists, including the sFRP family, DKK family, and Wnt inhibitory factor-1
(WIF1), are negative modulators of WNT signaling [239,253–255]. Thus, their expression is expected to
be downregulated in advanced PCa. Indeed, a recent study reported downregulation of sFRP2
in PCa [256]. WIF1 mRNA appears to be downregulated in a considerable percentage of PCa
samples [257]. Interestingly, laboratories of Zi and Hoang have demonstrated that ectopic expression
of sFRP3 (FRZB) or WIF1 in a CRPC cell line PC3 caused a reversal of epithelial-to-mesenchymal
transition and inhibition of tumor growth by inhibition of the canonical WNT pathway [258,259].
The role of the DKK family of WNT antagonist (e.g., DKK1) in PCa is arguably even more complex
than that of the sFRP family or WIF1. DKK1 inhibits WNT signaling by disrupting the binding of LRP6
to the WNT/FZD ligand-receptor complex [239,255]. Although DKK1 is upregulated in early PCa,
it is downregulated during progression from primary tumor to metastasis; however, its expression
can also inhibit WNT-induced osteoblastic activity and thus reduces bone metastases [260,261].
Altogether, these results suggest that WNT ligands and antagonists may play different roles during
PCa progression in a context-dependent manner.

7. Therapeutic Applications for Targeting WNT/β-catenin-AR Interactions in CRPC

Cancer stem cells (CSCs) have been proposed to contribute to therapy resistance and cancer
recurrence [262]. In addition to its higher activity in CRPC, the WNT/β-catenin signaling pathway
has also been linked to prostate CSCs. For instance, Jiang et al. showed that activation of the WNT
pathway via inhibition of GSK3β promoted LNCaP C4-2B and DU145 cell-derived xenograft tumor
growth, as well as C4-2B cell-derived bone metastasis [263]. Interestingly, they reported an increase of
the ALDH+/CD133+ CSC-like subpopulation in these PCa cell lines. Previous studies have shown
that PCa cells with these markers exhibited tumor-initiating and metastasis-initiation cell properties,
although it was not absolutely clear whether the ALDH+/CD133+ subpopulation represented CSCs
definitively [263–265]. In a recent study [266], it was shown that knockdown of a prostate tumor
suppressor, DAB2IP, transformed normal prostate epithelial cells into CSCs, which exhibited enriched
CD44+/CD24− populations. Interestingly, they reported that it was the WNT/β-catenin signaling
pathway that mediated upregulation of CD44 by DAB2IP knockdown. In this setting, CD44 not
only served as a marker for CSCs, but also played a key role in facilitating the onset of prostate
CSCs and increasing their chemoresistance [266]. Importantly, combination therapy based on WNT
inhibitors (e.g., LGK974) and conventional drugs (e.g., docetaxel) synergistically enhanced their
efficacy and robustly inhibited growth of xenograft tumors [266]. In another study, Rajan et al.
reported a gene expression profiling study of seven patients with advanced PCa, with paired samples
before and after ADT [267]. By using RNA sequencing combined with bioinformatic approaches, the
authors identified alterations in the WNT/β-catenin signaling pathway following ADT. Additionally,
they showed that the tankyrase inhibitor XAV939 (which promotes β-catenin degradation) reduced
growth of the androgen-independent LNCaP-abl cell line, compared with the androgen-responsive
LNCaP cells [267]. Similarly, Lee et al. demonstrated that iCRT-3, a novel compound that disrupts
both β-catenin/TCF and β-catenin/AR protein-protein interactions, inhibited PCa growth in vivo and
blocked bicalutamide-resistant prostate sphere-forming cells [268]. Overall, it seems that targeting
CSCs via inhibition of WNT signaling may have the potential to reduce the self-renewal and aggressive
behavior of PCa [162].
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As to the non-canonical WNT pathway, the most recent clinical studies by Miyamoto et al.
have shown that activation of this pathway in CTCs from patients with metastatic CRPC correlates
with reduced effectiveness of antiandrogen treatment [252]. In particular, significant enrichment of
non-canonical WNT signaling was observed in CTCs from patients whose PCa progressed in the
presence of enzalutamide, particularly among CTCs with reduced glucocorticoid receptor expression.
To test whether activation of non-canonical WNT signaling modulates enzalutamide sensitivity, they
ectopically expressed the ligands for non-canonical WNT signaling, including WNT4, WNT5A,
WNT7B, or WNT11, in LNCaP PCa cells, which express these ligands at low endogenous levels.
They found that ectopic expression of a range of these WNT proteins in androgen-sensitive LNCaP
cells enhanced their survival in the presence of enzalutamide, with WNT5A to be particularly effective
in this regard [252]. Conversely, its knockdown resulted in reduced cell proliferation. This data
suggests that the non-canonical WNT signaling pathway may serve as a potential new therapeutic
target in PCa that is resistant to antiandrogen therapy.

Taken together, WNT signaling interacts with AR signaling using distinct mechanisms at
different stages of PCa progression. In hormone-naïve PCa cells, WNT/β-catenin signaling promotes
transcription of AR target genes, whereas AR signaling inhibits the transcription of WNT/β-catenin
target genes (Figure 4A). However, in CRPCs, the AR and WNT/β-catenin signaling pathways
stimulate each other to activate a unique set of target genes for promoting androgen-independent
growth and progression of PCa cells (Figure 4B). The interaction between AR and WNT signaling
provides a growth advantage to PCa cells at the castration level of androgens. Inhibition of the
WNT/β-catenin pathway would thus offer a novel therapeutic strategy to target CRPC cells and
CSCs [239].

8. AR and WNT Signaling in Mammary Gland Development and Breast Cancer

8.1. AR and WNT Signaling in Mammary Gland Development

WNT signaling plays key roles in both mammary gland development and breast cancer (BCa),
largely through regulating mammary stem cell maintenance and basal mammary epithelial cell fate
determination. An excellent review for this topic was published in this journal recently [41]. As to
the AR signaling pathway, AR-mediated androgen actions play a direct or indirect role in mammary
physiology (Figure 5). AR can interact with estrogen receptor alpha (ERα) and their interactions have
inhibitory effects on their transactivational properties [269]. AR can also compete with ERα for binding
to specific estrogen-responsive element (ERE) [270]. Thus, the effect of AR signaling in mammary gland
development may be largely related to its effect on estrogen signaling. In fact, androgen treatment
could inhibit estrogen-induced proliferation of mammary epithelial cells, particularly during puberty,
leading to retarded mammary ductal extension and reduced expression of ERα [271–273]. Conversely,
inactivation of AR resulted in accelerated mammary ductal growth and increased expression of ERα
during puberty [273]. However, in addition to its inhibitory role on the ERα pathway, the role of AR
signaling in mammary epithelial cells may be also mediated by inhibition of WNT/β-catenin signaling,
a mechanism similar to that in hormone-naïve prostate cells (Figure 4). This is supported by the finding
that loss of AR led to activation of the WNT/β-catenin pathway in the pubertal mammary gland [273].
In adult females, inhibition of AR signaling could also increase mammary ductal branching and
mammary epithelial cell proliferation; however, this phenotype was not due to changes in serum
estradiol levels or ERα expression, but was attributed to increased AR expression and consequently an
increase in the ratio of AR to ERα (as ERα level remained constant) [271]. Relating to BCa, disruption
of the inhibitory influence of androgen/AR signaling on mammary epithelial cells at either puberty or
adult stage, as well as the crosstalk between AR signaling and estrogen or WNT signaling, are likely to
have important implications for breast tumorigenesis [270,273].
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Figure 5. Proposed roles of AR and WNT signaling in mammary gland development and breast cancer.
In breast cells, activated androgen/AR binds to ARE or ERE in its target genes. In ERα+ cells, it largely
works as a tumor suppressor by inhibiting estrogen/ERα signaling and/or WNT signaling; in ERα−

cells or even in ERα+ cells that have become resistant to hormone therapy (targeting the estrogen/ER
pathway), AR may function as an oncoprotein by activating WNT signaling and/or other oncogenic
pathways. Under different cellular contexts, AR may utilize different co-regulators (e.g., LSD1, or other
co-regulators remain to be defined (X?, Y?, or Z?)) to control distinct downstream programs.

8.2. AR Signaling in Breast Cancer

Unlike PCa, our understanding of AR signaling in BCa is still at its infancy. Some studies
report that overexpression of AR is associated with better outcomes in BCa, while others illustrate a
positive correlation of circulating androgens with high risk, recurrence and metastasis of BCa [274–279].
Historically, therapeutics targeting AR were considered beneficial for women diagnosed with
advanced BCa [280]. In the “older generation” of androgen-related therapy for the treatment of BCa,
including DHT, testosterone, and fluoxymesterone, certain clinical efficacies were observed [281–283].
However, androgen-related therapy gradually lost its attraction for the treatment of BCa, due to
aromatization of androgens to estrogens, inconsistent clinical trials, undesirable virilizing side effects,
and the broad utilization of estrogen-targeted therapy such as tamoxifen [284–287]. With improved
preclinical interpretation of heterogeneity toward mammary epithelial cells and BCa subtypes, AR
signaling-directed therapies, and resistance mechanisms of anti-estrogen therapies, there have been
renewed enthusiasms in utilizing androgens and targeting AR for BCa [280,288].

In breast tissues, androgen can be converted to DHT, which subsequently activates AR.
The liganded AR direct or indirectly (possibly together with distinct co-regulators under different
ERα settings) interacts with either ARE or ERE in its target genes (Figure 5). In the presence of
comparable levels of AR and ERα, AR competes with ERα, leading to inhibition of the estrogen/ER
pathway [270,274]. In the absence of ERα (or under the conditional of resistance to hormone therapy),
the ratio of AR to ERα increases and AR functions as an oncoprotein by recruiting different co-factors
(e.g., lysine-specific demethylase 1 (LSD1)), leading to regulation of a different set of target genes, which
may contribute to BCa cell proliferation and/or epithelial–mesenchymal transition (EMT) [270,289]
(Figure 5).

BCa is often classified clinically into four subtypes based on expression of ER, progesterone
receptor (PR), and human epidermal growth factor receptor 2 (HER2, also known as ERBB2):
ER+/PR+/HER2−, ER+/PR+/HER2+, ER−/PR−/HER2+, and ER−/PR−/HER2− (also known as
triple negative breast cancer, TNBC). Relating to the ER status, AR likely plays distinct roles in BCa in
a subtype-specific manner.

Positive expression of AR was clinically defined as immunohistochemical (IHC) nuclear staining
≥1% or ≥10% according to various studies [281,290–292]. AR is highly expressed in both primary
(~80%) and metastatic (~60%) breast tumors [280]. AR expression varies in BCa across different
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subtypes; the prevalence of AR is approximately 70%–95%, 50%−81%, and 10%–53%, in ER+,
ER−/HER2+, and TNBC subtypes, respectively [275,281,282,293–298].

Modulation of AR signaling, either inhibitory or stimulatory, exhibits somewhat contradictory
observations in different subtypes of BCa, particularly when interacting with ER signaling [283,299].
When prescribed to non-selected BCa patients, testosterone contributed to a response rate of about
20%–25%; due to broad side effects, this strategy has quickly been replaced by multiple ER-directed
therapies [300–303]. However, a retrospective study reported a promising tumor control rate of 58.5%
(tumor regression and stableness, n = 53) with testosterone therapy in patients with metastatic ER+

BCa [304]. Androgen, together with tamoxifen, synergically increased response rates when treating
advanced ER+ BCa, but this study is still at the beginning stage [280,305]. Recently developed
AR antagonists have demonstrated more potent and better clinical efficacies than those of the
early-generations, which have generally been disappointing for combating BCa [280,288,306,307]. Here
we will highlight the key AR-based therapeutics for treatment of BCa, in a subtype-specific manner.

8.2.1. AR in ER+ Breast Cancer

AR is highly expressed in ER+ BCa with a frequency of ~70%–95% [281,295,296,298,308].
In this BCa subtype, ER signaling functions as a dominant oncogenic driver; thus, clarifying its
functional relationship with AR signaling would be beneficial for exploring the role of anti-estrogen
therapies [309]. AR and ER can interact (and interfere) with each other functionally by sharing
(and competing for) similar cofactors and nuclear binding sites [274,310]. AR expression may have
contradicting functional consequences in ER+ BCa in a treatment-dependent manner: some studies
indicated that higher AR expression is associated with better therapy outcomes, whereas others have
reported that AR plays an oncogenic role in tamoxifen-resistant subjects [294,311–314]. Nevertheless,
AR signaling may mainly play an anti-proliferative effect in ER+ BCa initially, due to its ability to
antagonize the growth-promoting role of ER signaling [302]. Accordingly, androgens and androgen
agonists have been evaluated for the efficacies of treating ER+/AR+ BCas [302]. But combination
therapy based on enzalutamide (antiandrogen) and agents that target ER signaling (e.g., exemestane,
anastrozole, or fulvestrant) has also been tested in clinical trials for potentially overcoming resistance
to hormone therapy [294].

8.2.2. AR Signaling in ER−/HER2+ Breast Cancer

AR is highly expressed in ER− BCa and the functional crosstalk between AR and HER2 is critical
for the tumor cell survival and expansion [282,297,315]. In this subtype of BCa, the proliferative role of
AR signaling has been well investigated [275,280]. Mechanisms underlying this functional interplay
include direct transcriptional upregulation of HER2 signaling by AR via its heterodimer HER3, which
in turn activates AR transcription in a positive feedback loop [297,316,317]. AR signaling also induces
ligand-dependent stimulation of WNT signaling, via direct transcriptional upregulation of WNT7B,
which activates β-catenin, resulting in HER3 transcriptional activation [297]. HER2 signaling is the key
oncogenic driver in this subtype of BCa and effective HER2-targeted therapies are crucial for treating
patients with this BCa subtype. As AR antagonists can efficiently reduce cell proliferation [297,318],
clinical trials are ongoing to explore whether combination of AR and HER2-directed therapies could
result in any synergic outcomes [318].

8.2.3. AR Signaling in TNBC

The frequency of AR expression in TNBC is around 10% to 53% [281,296,298]. A molecular
subtype of BCa referred to as the molecular apocrine subtype, which included those non-basal-like
ER− breast tumors that were also AR+, was defined based on microarray expression profiling [319].
Later on, also based on gene expression profiling data, TNBCs were classified as six subtypes and those
with AR expression were defined as the luminal androgen receptor (LAR) subtype [298]. Differentially
expressed genes that characterize this subtype are heavily enriched in hormonally regulated pathways,
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including steroid synthesis, porphyrin metabolism, and androgen/estrogen metabolism [298,320]. AR
signaling in TNBC was reported to maintain cell proliferation and AR also acted as a biomarker for
sensitivity to both PI3K and ERK inhibition [318,321]. The functional role of AR in TNBC was further
established based on the finding that LAR BCa cells were sensitive to AR antagonists and Hsp90
inhibitors [322]. An encouraging case for using AR-targeted therapy for treatment of AR+ TNBC was
reported recently, in which a patient with this BCa subtype had progressive disease following six cycles
of cytotoxic chemotherapy, but attained a 100% response to bicalutamide (an antiandrogen) [323]. With
the development of potent AR-directed therapies and promising combined therapeutic approaches,
more clinical trials targeting AR+ TNBC are being developed [318,321].

8.3. Interaction between AR and WNT Signaling in Breast Cancer

Overexpression of WNT induces aberrant activities of the WNT signaling pathway, which is a
main driving force in BCa progression [297,324]. WNT ligands are associated with normal mammary
gland development and overexpression of WNT1 is oncogenic for BCa [325]. The interplay of AR and
WNT signaling has been mainly studied in the ER−/HER2+ BCa subtype. Using gene set enrichment
analysis (GSEA), Ni et al. observed that androgen (DHT)-stimulated genes in ER−/HER2+ BCa cells
were mainly those involved in WNT signaling [297]. Furthermore, they found that AR upregulated
WNT7B transcription in a ligand-dependent manner. WNT7B is a canonical WNT ligand and may
play roles in the normal mammary gland development during the stages of ductal formation and
involution [326,327]. Elevated expression of WNT7B has been found in ~10% of BCa cases [328].
In addition to activation of WNT signaling via the androgen/AR-WNT7B pathway, Ni et al. showed
that similar to PCa, AR and WNT/β-catenin signaling also cooperated functionally; in this case,
β-catenin cooperated with AR to promote the progression and maintenance of ER−/HER2+ BCa cells
by upregulating HER3, which encodes a key co-receptor of HER2 in HER2+ BCa [297]. Importantly,
by targeting the AR pathway using bicalutamide, the growth of DHT-stimulated ER−/HER2+ breast
tumor cells in vivo was inhibited [297].

Thus, in both PCa and BCa, AR signaling appears to regulate distinct sets of target genes in
hormone-dependent cancers (i.e., hormone-naïve PCa, ER+ BCa) and hormone-refractory cancers
(i.e., CRPC, ER− BCa, hormone therapy-resistant ER+ BCa). Accordingly, both AR agonists and AR
(and/or WNT) antagonists may be beneficial for BCa therapy, but in a BCa subtype and therapy
stage-dependent manner. In particular, as both the AR and WNT signaling pathways drive progression
and maintenance of AR+ TNBCs, inhibitors for these two pathways may prove to be useful for
targeting this TNBC subtype. In addition, AR antagonists and anti-HER2 agents may also be used in
combination to treat ER−/HER2+ BCa with AR expression, and inhibitors for WNT signaling may
offer another therapeutic opportunity, particularly when ER−/HER2+ BCa cells develop resistance to
the anti-HER2/AR agents.

9. Concluding Remarks

As two key pathways regulating both normal development and tumorigenesis in
hormone-responsive prostate and mammary glands, the context-dependent interplay of AR and
WNT signaling pathways provides a unique opportunity to explore therapeutic options for treating
prostate and breast cancers, particularly when under the setting of therapeutic resistance. As both
CRPCs and ER− BCas (i.e., TNBC and ER−/HER2+ BCa, or even ER+ BCas that become resistant to
hormone therapy) are refractory or unresponsive to hormone therapy, a better understanding of roles of
AR and WNT pathways and their interactions in these hormone-refractory diseases should open a new
avenue for improving their treatment and for combating the inevitable challenge of therapy resistance.
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