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Abstract: Soon after the discovery of microRNAs over 15 years ago, a myriad of research groups
around the world sought to develop clinical applications in breast cancer for these short, noncoding,
regulatory RNAs. While little of this knowledge has translated into the clinic, the recent research
explosion on cell-to-cell communication via exosomes and other extracellular vesicles has rekindled
interest in microRNA-based clinical applications. microRNAs appear to be a preferential and
important cargo of exosomes in mediating biological effects in recipient cells. This review highlights
recent studies on the biology of exosomal microRNAs (exo-miRNAs) and discusses potential clinical
applications. From a diagnostic perspective, circulating exo-miRNAs may represent breast cancer cell
content and/or tumor microenvironmental reactions to cancer cell growth. Thus, serum or plasma
analysis of exo-miRNAs could be useful for early disease detection or for monitoring treatment
response and disease progression. From a therapeutic perspective, exo-miRNAs derived from
different cell types have been implicated in supporting or restraining tumor growth, conferring drug
resistance, and preparing the metastatic niche. Strategies to interfere with the loading or delivery of
tumor-promoting exo-miRNAs or to replenish tumor-suppressive miRNAs via exosomal delivery
are under investigation. These recent studies provide new hope and opportunities, but study design
limitations and technical challenges will need to be overcome before seriously considering clinical
application of exo-miRNAs.

Keywords: microRNA; miRNA; miR; exosome; exosomal; extracellular vesicle; breast cancer; serum;
plasma; blood

1. Introduction

Breast cancer is the most common type of cancer in women worldwide, with an estimated
1.7 million cases diagnosed in 2012 [1]. Despite significant advances in early detection and
treatment, breast cancer remains the second-leading cause of cancer-related deaths, with an estimated
40,160 deaths in the U.S. in 2017 [2]. Further, an estimated 3.3 million U.S. women were living with
breast cancer in 2014 [3]. These numbers highlight the ongoing challenges in the treatment of breast
cancer, and specifically in developing strategies to prevent distant recurrence and to control disease
in the metastatic setting. Tumors as small as 6 mm, i.e., near the resolution of imaging capabilities,
can warrant adjuvant systemic therapy with associated toxicities due to the metastatic potential of
aggressive tumor subtypes including triple-negative and HER2+ breast cancers. In addition, distant
recurrence continues to be a short-term challenge in these aggressive subtypes, as does the late

Cancers 2017, 9, 71; doi:10.3390/cancers9070071 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://dx.doi.org/10.3390/cancers9070071
http://www.mdpi.com/journal/cancers


Cancers 2017, 9, 71 2 of 15

recurrence of estrogen-driven cancers. Strategies and challenges to reduce metastatic disease include
early disease detection, enhancing treatment efficacy in the primary tumor to limit residual disease or
metastatic seeding, and/or promotion of cell dormancy in metastatic niches. This review focuses on
the potential use of microRNAs in exosomes to address these clinical needs.

Exosomes are membrane-bound vesicles, 50–200 nm in size, secreted from cells via a
multivesicular-body endocytic process [4]. All cell types are thought to secrete exosomes, but the main
functions of exosomes remain to be fully understood. Depending on context and cell type, exosomes
have been proposed to be (1) a mechanism to eliminate content (DNA, RNA, or protein) detrimental to
cell viability or fitness; (2) a cell-to-cell communication mechanism by delivering cargo to a recipient
cell or providing ligand-receptor interactions on the plasma membrane of a recipient cell; and/or (3)
a mechanism for surveying cell content for viral infections For example, in HER2+ breast cancers,
HER2-expressing exosomes can serve as a decoy, interfering with the binding of a therapeutic antibody
to HER2-expressing cancer cells and consequently lowering treatment efficacy [5,6].

While most researchers would agree on the definition of exosome based on their intracellular
origin from an endocytic process and their size, many would disagree about the best method for
obtaining highly pure exosomes. Recent reviews describe in more detail the advantages and limitations
of different purification methods [7,8]. Differential ultracentrifugation or commercial kits such as
exoQuick are among the most common methods for isolating exosomes from serum or plasma. Recently,
the International Society for Extracellular Vesicles published a consensus document on the minimal
experimental requirements for the characterization of exosomes [9]. Here we use the term “exosome”
in a looser sense for convenience. For this review, we include studies that report on microRNAs in
exosomes or in extracellular vesicles such as microvesicles budding from plasma membrane [10]. We
rely on authors’ self-reporting of their definition and of the purity of their isolated extracellular vesicles
as exosomes. We acknowledge that the studies we review used different methodologies and analyses,
and that in several of the studies, the term “exosome” may reflect a mixture of different extracellular
vesicles and large RNA-protein complexes (e.g., Ago-2) [11,12]. We conducted a systematic PubMed
search for the terms breast cancer, exosome, extracellular vesicle, and microRNA. The focus of this
review is the primary literature published between April 2014 and April 2017. The reader is referred to
recent reviews for earlier studies.

microRNAs (miRNAs) are short, noncoding, regulatory RNAs that modulate gene expression
at the post-transcriptional level, mostly via binding to partially complementary sites at the 3′ UTR
of target mRNAs [13]. The first miRNA expression profiling studies on breast cancer tissue [14,15]
date back to 2005. There are now over 2000 publications on PubMed reporting on different aspects
of miRNA expression and function in breast cancer specimens and cell lines [16]. While some of
these studies suggested cell-extrinsic effects of miRNA via regulation of secreted factors [17], the
discovery of miRNAs as an abundant cargo in exosomes [16] suggested the possibility of direct,
miRNA-mediated regulation in recipient cells both near to or distant from the donor cell expressing
the miRNA(s). Follow-up studies [18–20] solidified the concept that miRNAs are an important and
preferential cargo of exosomes in mediating biological effects in recipient cells [21–23]. There are
now over 60 publications on PubMed related to the diagnostic and therapeutic potential of exosomal
miRNAs (exo-miRNAs) in breast cancer. We discuss many of these studies in the following sections.

2. Detection of Circulating Exo-miRNAs and Their Diagnostics Implications

Cancer patients have a larger number of circulating exosomes relative to healthy controls [4]. This
suggests that circulating exo-miRNAs in cancer patients disproportionally represent exosomes derived
from cancer cells and/or other cell types in the tumor microenvironment (TME) rather than from
non-involved normal cells. Thus, detection of exo-miRNAs could be used for diagnostic or prognostic
purposes in breast cancer [8].
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2.1. Circulating Exo-miRNAs in Serum or Plasma for Early Disease Detection

A reliable blood test that complements the sensitivity and specificity of mammography screening
would be an ideal tool for early detection. There have been many studies on detecting circulating
miRNAs in the serum or plasma of breast cancer patients vs. healthy controls. Unfortunately,
there is relatively little overlap between identified signatures [16]. Exo-miRNAs are thought
to be the predominant source of circulating miRNAs isolated from plasma or serum, based on
comparing matching exosome and tissue samples or matching exosome and cell line samples [24].
An emerging idea is that detecting miRNAs in the exosome fraction isolated from plasma or serum
can provide a higher quality and more consistent readout than “crude” examination of plasma or
serum samples [25–27]. Currently, there are a few studies that have analyzed circulating exo-miRNAs
from breast cancer patients. In a study of 50 breast cancer cases and 12 healthy controls with matched
serum and exosomes, the levels of miR-101 and miR-372 were significantly higher in cancer cases when
detecting these miRNAs in RNA isolated from exosomes, but not in serum RNA preparations [28].
Conversely, the levels of miR-373 were significantly higher in cancer cases when detecting this miRNA
in serum, but not in the exosome preparations [28]. Intriguingly, subgroup analysis based on estrogen
(ER) or progesterone (PR) receptor status showed that exo-miR-373 levels are significantly higher
in receptor-negative cases, consistent with higher levels of miR-373 in serum from triple-negative
breast cancer (TNBC) cases [28]. The differential expression of exo-miRNAs based on tumor subtype
may be useful in identifying the most aggressive subtypes. Note that serum analysis of these three
miRNAs (miR-101, miR-372, miR-373) did not separate benign breast conditions from breast cancer;
exosomal analysis for these miRNAs to separate these two groups was not reported. In another
study, exo-miR-21 and exo-miR-1246 were consistently detected at higher levels in the plasma of mice
growing patient-derived tumors or in the plasma of breast cancer patients, relative to healthy control
groups [29]. These findings agree with previous studies that showed high levels of these miRNAs in
serum or plasma [30–32]. Analysis of exo-miRNAs from conditioned media of breast cancer cell lines
and immortalized breast epithelial cells suggest a differential loading of some miRNAs in exosomes
and support the idea that the circulating levels may be higher than in the originating cells [25,26,33,34].
Such exo-miRNAs could be good candidates for early disease detection. Indeed, miR-1246 was among
the top miRNAs selectively loaded and secreted in exosomes derived from breast cancer cells (MCF7,
Sk-Br-3, MDA-MB-231) relative to immortalized cell lines (MCF10A, IRM90) [25]. Exo-miR-182 levels
were significantly higher than those of exo-miR-96 and exo-miR-183, but these miRNAs were expressed
at similar levels in originating breast cancer cells (MCF7, BT474, MDA-MB-231) [34]. A concern with
cell culture studies is that fetal bovine serum (FBS), which is used in most media preparation can
contain exo-miRNAs or free-circulating miRNAs, identical in sequence to human miRNAs, and
confound result interpretation [35]. miR-122, miR-451a and miR-1246 are abundant in FBS and
reported enrichment of these miRNAs in exosome may, at least in part, have a bovine origin [35].

2.2. Circulating Exo-miRNAs to Monitor Treatment Response

There have been several studies analyzing circulating miRNA levels in serum or plasma from
patients before and after neoadjuvant treatment. Differences in drug treatments and tumor subtypes in
those studies have hampered identification of a robust signature [16]. We found no reports focused on
exo-miRNAs for predicting or monitoring tumor response in blood samples from patients undergoing
treatment. Exo-miR-503 derived from endothelial cells can be transferred to breast cancer cell lines
in vitro, and they modify the cells’ proliferation rate and invasive phenotype [36]. Circulating levels
of miR-503 were increased in patients undergoing neoadjuvant treatment. These results suggest at
least some contribution from endothelial-derived exo-miR-503, but the authors did not directly test
this hypothesis [36]. In the next section, we discuss exo-miRNAs from breast cancer cells lines that
modulate resistance to specific chemotherapy drugs, which might provide candidates for monitoring
treatment response in patients (Table 1).
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Table 1. Functional studies of exo-miRNAs in breast cancer.

Exo-miRNA(s) Donor Cell Recipient Cell Biological Activity Evidence Gene Target(s) Experimental System Refs

miR-221, miR-222 Cancer cell Cancer cell Hormonal resistance Functional
(exosome transfer) ER, p27 in vitro (MCF7) [37]

miR-17, miR-30a, miR-100,
miR-222 Cancer cell Cancer cell

Drug resistance
(adriamycin,

docetaxel)

Differential exosomal
representation in vitro (MCF7) [38]

miR-29a, miR-30a, miR-100,
miR-196a, miR-222 Cancer cell Cancer cell

Drug resistance
(adriamycin,

docetaxel)

Differential exosomal
representation in vitro (MCF7) [39]

miR-20a, miR-23a, miR-24,
miR-149, miR-222 Cancer cell Cancer cell Drug resistance

(adriamycin)

Increased levels in
recipient cells
suggestive of

exosomal transfer

in vitro (MCF7) [40]

miR-29a Cancer cell Cancer cell Drug resistance
(adriamycin)

Functional
(transfection),

differential exosomal
representation

PTEN in vitro (MCF7) [41]

miR-29a, miR-222 Cancer cell Cancer cell
Drug resistance

(adriamycin,
docetaxel)

Functional
(transfection) PTEN in vitro (MCF7) [39]

miR-222 Cancer cell Cancer cell Drug resistance
(adriamycin)

Functional
(transfection),

differential exosomal
representation

PTEN in vitro (MCF7) [42]

miR-222 Cancer cell Cancer cell Drug resistance
(adriamycin)

Functional
(transfection),

differential exosomal
representation

in vitro (MCF7) [43]

miR-138-5p, miR-139-5p,
miR-197-3p, miR-210-3p,
miR-423-5p, miR-574-3p,

miR-744-5p, miR-3178, miR-4258,
miR-4443, miR-6780b-3p

Cancer cell Cancer cell Drug resistance
(epirubicin)

Differential exosomal
representation in vitro (MDA-MB-231) [33]

miR-138-5p, miR-140-3p,
miR-210-3p, miR-3613-5p Cancer cell Cancer cell Drug resistance

(vinorelbine)
Differential exosomal

representation in vitro (MDA-MB-231) [33]

miR-149-3p, miR-423-5p,
miR-671-5p, miR-1246,

miR-1268a, miR-4298, miR-4438,
miR-4644, miR-7107-5p,

miR-7847-3p

Cancer cell Cancer cell Drug resistance
(docetaxel)

Differential exosomal
representation in vitro (MDA-MB-231) [33]
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Table 1. Cont.

Exo-miRNA(s) Donor Cell Recipient Cell Biological Activity Evidence Gene Target(s) Experimental System Refs

miR-128 Cancer cell Cancer cell Proliferation Functional (exosome
transfer, shikonin) BAX in vitro (MCF7) [44]

miR-21, miR-143, miR-378e Fibroblast Cancer cell
Proliferation, stem
cell renewal, and

invasion

Functional (exosome
transfer, transfection)

in vitro (patient-derived
fibroblasts, BT549,

MDA-MB-231, T47D)
[45]

miR-140 Preadipocyte Cancer cell Proliferation, stem
cell renewal Functional (shikonin) SOX9 in vitro, xenograft

(3T3L1, MCF10DCIS) [46]

miR-503 Endothelial
cell Cancer cell Proliferation and

invasion
Functional

(exosome transfer) CCND2, CCND3 in vitro (HUVEC,
MDA-MB-231) [36]

miR-134 Cancer cell Cancer cell Migration and
invasion

Functional
(exosome transfer) STAT5B in vitro (Hs578Ts(i)8 [47]

miR-10b Cancer cell Epithelial cell Migration and
invasion

Functional
(exosome transfer) HoxD10, KLF4 in vitro (MDA-MB-231,

HMLE) [48]

miR-141, miR-200a, miR-200b,
miR-200c, miR-429 Cancer cell Cancer cell Metastatic potential

Functional
(exosome transfer),

differential exosomal
representation

in vitro, in vivo
allograft (4TO7, 4TO1E) [49]

miR-9 Cancer cell Fibroblast Metastatic potential

Functional
(exosome transfer),

differential exosomal
representation

in vitro (MDA-MB-231,
MDA-MB-468,

patient-derived
fibroblasts)

[50]

miR-9 Fibroblast Cancer cell Metastatic potential

Functional
(exosome transfer),

differential exosomal
representation

E-cadherin

in vitro, in vivo
xenograft (fibroblasts,

MDA-MB-231,
MDA-MB-468)

[50]

miR-122 Cancer cell
Fibroblast,
neurons,
microglia

Metabolic
reprogramming,
metastatic niche

Functional
(exosome transfer)

Pyruvate kinase
(PKM2), Citrate
synthase (CS)

in vitro, in vivo
xenograft

(MCF10DCIS.com,
MDA-MB-231, murine
brain cortical neurons,

murine lung fibroblasts)

[51]

miR-105 Cancer cell Endothelial
cell

Vascular
permeability,
extravasation

Functional
(exosome transfer) ZO-1

in vitro, in vivo
xenograft

(MDA-MB-231,
HMVECs)

[52]

miR-181c Cancer cell Endothelial
cell

Vascular
permeability,
extravasation

Functional
(exosome transfer) PDPK1

in vitro
(MDA-MB-231.D3H2LN,

endothelial cells)
[53]
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Table 1. Cont.

Exo-miRNA(s) Donor Cell Recipient Cell Biological Activity Evidence Gene Target(s) Experimental System Refs

let-7, miR-21, miR-23a,
miR-27a/b, miR-320 Cancer cell Endothelial

cell Angiogenesis
Functional

(exosome transfer,
docosahexaenoic acid)

in vitro (MCF7,
EA.hy926) [54]

miR-23, miR-320 Cancer cell Endothelial
cell Angiogenesis Functional

(transfection)
PLAU, AMOTL1,

NRP1, ETS2
in vitro (MCF7,

EA.hy926) [54]

miR-16 MSC Cancer cell Angiogenesis Functional
(exosome transfer) VEGF

in vitro, in vitro
allograft (murine MSC,

4T1)
[55]

miR-23b MSC Cancer cell
Dormancy, drug

resistance
(docetaxel)

Functional
(exosome transfer) MARCKS

in vitro
(MDA-MB-231.BM2,

MSC)
[56]

miR-127, miR-197, miR-222,
miR-223 MSC Cancer cell Dormancy Functional

(exosome transfer) CXCL12
in vitro, in vivo
xenograft (MSC,

MDA-MB-231, T47D)
[57]

miR-222, miR-223 MSC Cancer cell
Dormancy, drug

resistance
(carboplatin)

Functional
(exosome transfer,

transfection)

in vitro, in vivo
xenograft (MSC,

MDA-MB-231, T47D)
[58]
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2.3. Limitations, Challenges and Opportunities for Diagnostic Application

There are few studies focused on exo-miRNA detection in breast cancer. More studies are needed
to assess the robustness and reproducibility of exo-miRNAs and to independently validate exo-miRNA
signatures. Harmonization of technology for exosome isolation and exo-miRNA detection will be
important in order to directly compare results across studies. Currently, size-exclusion chromatography
is considered the most reliable method for the most highly enriched isolation of exosomes, but current
protocols will be difficult to implement in clinical setting [7]. The field as a whole may need to come
to a compromise between a technology that allows for a consistent enrichment of exosomes with
an acceptable amount of other “contaminating” extracellular vesicles and a technology that can be
implemented in a clinical laboratory [59].

Exo-miRNA detection also offers unique analysis opportunities. Proteins displayed on the
exosome surface match those of the plasma membrane of source cells. Antibody-based selection of cell
type–specific surface proteins could be used to enrich and interrogate with less noise the content of a
specific cell type in a tumor. Epithelial Cell Adhesion Molecule (EpCam)-based capturing of exosomes
for miRNA detection has been reported for colorectal cancer [60], and there are some concerns about
the loss of EpCam presence in epithelial cell–derived cancer cells because of no (or low) expression or
cleavage of EpCam [61]. It will be important to test whether exo-miRNA analysis in EpCam+ exosomes
outperforms other EpCam-based assays for early disease detection and disease monitoring (such as
for the number of circulating tumor cells). Similarly, it will be important to test whether exo-miRNAs
in preparations enriched for exosomes derived from tumor-associated fibroblasts or other cell types
provide additional information to EpCam-selected exosome analysis.

3. Functions of Exo-miRNAs and Their Therapeutic Implications

Functional studies in breast cancer cell lines, co-cultures, and xenograft models have unraveled
the roles of miRNAs in cancer cells or other cell types of the tumor microenvironment (TME) in
supporting or restraining tumor growth, conferring drug resistance, and preparing the metastatic
niche. miRNA-mediated regulation of one cell type could affect other cell types in the TME by
regulating the levels of secreted ligands, cytokines, and chemokines [17]. Exo-miR-21 released by
cancer cells can be taken up by tumor-associated macrophages (TAMs) within the TME [62]. TAMs
express Toll-like receptor 8 (TLR8), the first identified receptor for miRNAs, an “miRceptor”. By
binding to TLR8, exo-miR-21 activates NF-κB signaling in TAMs, leading to transactivation of miR-155,
which is then released as an exo-miRNA and is shuttled back to cancer cells, where it increases
resistance to cisplatin by directly targeting TERF1 [63]. While this mechanism has been described in
detail in neuroblastoma, co-culture of cancer cells (including breast cancer cells) and human monocytes
in a Transwell system (no cell-to-cell contact) consistently results in increased levels of miR-155 and
reduced levels of TERF1 in the recipient cancer cell. These data suggest that the described mechanism
(the first of its kind showing the ability of exo-miRNAs to bind to and activate a receptor signaling)
may be involved in the acquisition of drug resistance in a variety of human cancers [64], including
breast cancer [63]. The facts that (1) elevated levels of selective miRNAs are found in exosomes from
breast cancer patients and (2) exosomes derived from breast cancer patients induce the transformation
of nonmalignant breast epithelial cells in a Dicer-dependent manner [65,66] suggest the involvement
of exo-miRNAs in transferring functions or characteristics of a donor cell into a recipient cell.

3.1. Cancer Cell-Derived Exo-miRNAs Modulate Resistance to Hormone Therapy

Tamoxifen and aromatase inhibitors are the main anti-hormonal treatments for ER+ tumors.
Expression profiling in human breast cancer tissues and ER+ cell lines have identified many miRNAs
that correlate with ER status and some miRNAs that can confer resistance to tamoxifen treatment,
including miR-221 and miR-222. Previous studies indicated that miR-221 and miR-222 down-regulate
ERα and p27 [67]. A study suggests that exo-miR-221 and exo-miR-222 can be transferred from
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tamoxifen-resistant MCF7 to sensitive MCF7 cells and can increase the resistance to tamoxifen in
recipient cells via regulation of these two targets [37]. It would be interesting to see if other miRNAs
linked to anti-hormonal resistance (such as miR-342 and miR-519a) also confer resistance to hormonal
treatment via exosomal transfer [16,68].

3.2. Cancer Cell-Derived Exo-miRNAs Modulate Resistance to Chemotherapy Agents

A combination of anthracyclines, cyclophosphamide, and/or taxanes are the backbone of most
chemotherapy regimens for breast cancer treatment. Several miRNAs (including miR-21, miR-29a,
miR-100, miR-221, and miR-222) have been proven to modulate chemoresistance in breast cancer cells
to chemotherapy drugs, including doxorubicin and docetaxel [69,70]. While these studies focused
on cancer-cell-intrinsic changes of miRNA expression, recent studies have uncovered roles for the
same miRNAs in exosomes in contributing to chemoresistance (Table 1). Exosomes derived from
adriamycin-resistant or docetaxel-resistant MCF7 cells can confer chemoresistance to sensitive MCF7
cells. miR-17, miR-30a, miR-100, and miR-222 are up-regulated in MCF7 cells after drug treatment and
are enriched in exosomes derived from treated cells [38]. These exo-miRNAs are thought to mediate,
at least in part, chemoresistant effects.

Transfection of miR-29a and/or miR-222 mimetic RNAs into parental MCF7 cells increases
resistance to either adriamycin or docetaxel, whereas transfection of miR-222 inhibitor increases
sensitivity to these drugs [39,41–43,71]. These two miRNAs down-regulate PTEN expression, which
may contribute to the observed phenotype. These results suggest that the delivery of miR-29- and/or
miR-222-enriched exosomes enhances resistance to these chemotherapy agents in the recipient cells.
However, this possibility was not directly tested. Another study analyzed changes of exo-miRNA
levels in MDA-MB-231 sub-lines that developed resistance to docetaxel, epirubicin, or vinorelbine [33].
Ten miRNAs were up-regulated in cells and were also loaded at increased copy numbers in exosomes
from docetaxel-resistant MDA-MB-231 cells; 11 miRNAs from epirubicin-resistant MDA-MB-231 cells;
and 4 from vinorelbine-resistant MDA-MB-231 cells (Table 1). None of these miRNAs were represented
in all signatures, and only two common miRNAs (miR-138-5p, miR-210-3p) were present in the
epirubicin- and vinorelbine-resistant signatures. The functional contribution of these exo-miRNAs
was not investigated.

Others studies have teased out specific contributions of individual exo-miRNAs in modulating
chemoresistance and other cell properties. The delivery of miR-134-enriched exosomes into the TNBC
cell line Hs578Ts(i)8 reduced its cell migration and invasiveness and increased its sensitivity to a drug
targeting Hsp90 [47]. Down-regulation of STAT5B and Hsp90 protein expression via exo-miR-134,
although not as profound as that due to lipofectamine-mediated transfection, was proposed as a
main molecular mechanism for the observed phenotypes [47]. The restoration of miR-134 activity via
transfection enhanced the cisplatin-mediated apoptotic rates, but these chemosensitivity effects were
not studied with exo-miR-134 supplementation.

3.3. Cancer Cell-Derived Exo-miRNAs Promote Invasion and Metastasis

Members of the miR-200 family are master regulators of maintenance of epithelial programs
by down-regulating ZEB1/2 transcriptional repressors of E-cadherin and other epithelial genes,
including miR-200 family members themselves. The miR-200 family members maintain epithelial
differentiation, suppress the epithelial-to-mesenchymal (E-MT) transition, and also enhance the
mesenchymal-to-epithelial transition (M-ET). miR-200 family members have been shown to facilitate
metastasis formation by inducing an M-ET for the growth in distant sites of circulating tumor cells
having an E-MT phenotype or by maintaining an epithelial phenotype in cancer cells that colonize
without undergoing E-MT [72]. In syngeneic mouse models using different experimental approaches,
exo-miR-200 from highly metastatic cell lines that express large amounts of members of the miR-200
family enhanced the metastatic potential of nonmetastatic cancer cells that do not express those
miRNAs [49]. Tail vein injection of nonmetastatic 4T07 cells incubated with exosomes from the highly
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metastatic 4T1 epithelial subline (which expresses high levels of miR-200s) significantly increased the
incidence of lung metastasis. Remarkably, small primary tumors that express miR-200s but have no
metastatic potential themselves were able to confer metastatic potential to tail-vein injected 4T07 cells
via exo-miR-200s. In some breast cancer studies, miR-10b expression correlated with the incidence of
metastasis, and the forced expression of miR-10b in nonmetastatic breast cancer cell lines enhanced
their metastatic potential [73]. Exo-miR-10b secreted from metastatic MDA-MB-231 cells increased
the invasion ability of nonmalignant immortalized human mammary epithelial cells (HLME) via
down-regulation of the known targets HoxD10 and KLF4 [48].

While these cancer-cell-derived exo-miRNAs appear to predominantly transfer functions to other
pre-malignant or malignant epithelial cells, other exo-miRNAs are transferred into noncancerous
recipient cells to promote metastasis. miR-9 is considered a pro-metastatic miRNA that regulates
E-cadherin expression within cancer cells. Exo-miR-9 transfer to normal fibroblasts can enhance their
conversion to tumor-associated fibroblasts (TAFs) to support cancer cell growth [50]. TAFs of aggressive
TNBC cases expressed higher levels of miR-9 than those other subtypes [50]. TAF-derived exo-miR-9
can be transferred to cancer cells, increasing miR-9 expression and down-regulating E-cadherin
expression. Exo-miR-105 is taken up by endothelial cells in which it down-regulates tight junction
protein ZO-1 [52]. This leads to increased vascular permeability and extravasation of breast cancer cells
to distant organs [52]. Similarly, exo-miR-181c compromises the blood–brain barrier and facilitates
seeding of breast cancer cells to the brain [53]. Exo-miR-181c targets 3-phosphoinositide-dependent
protein kinase-1 (PDPK1) in endothelial cells which leads to abnormal actin dynamics and fiber
arrangements, and the weakening of tight junctions [53]. Exo-miR-122 can reprogram glucose
metabolism of noncancerous cells in the pre-metastatic niche including fibroblasts in the lung and
astrocytes and neurons in the brain to free up nutrients for incoming cancer cells [51]. Both in vitro
and in vivo delivery of exo-miR-122 down-regulated expression of pyruvate kinase in noncancerous
recipient cells and decreased their glucose utilization [51].

3.4. Cancer Cell- and Mesenchymal Stem Cell-Derived Exosomes Modulate Angiogenesis

Docosahexaenoic acid (DHA) is a natural compound with anti-angiogenic properties, which
is under investigation as dietary supplement for breast cancer prevention and treatment. In vitro
treatment with DHA alters exosome secretion rate and miRNA cargo of MCF7 and other breast cancer
cell lines [54]. The most pronounced changes were noted for exo-let-7s, exo-miR-21, exo-miR-23a,
exo-miR-27a/b, and exo-miR-320 [54]. Exosomes derived from DHA-treated MCF7 cells increased
expression of these miRNAs in the recipient EA.hy926 endothelial cell line and reduced tubular
formation. Transfection of miR-23b and miR-320b mimetic compound into EA.hy926 cells reduced
tubular formation and down-regulated expression of their pro-angiogenic target genes (PLAU,
AMOTL1, NRP1, and ETS2) [54]. Exosomes derived from mesenchymal stem cells (MSCs) in the
TME can also exert anti-angiogenic effects by down-regulating (Vascular Endothelial Growth Factor
(VEGF) expression in recipient cancer cells. Exo-miR-16 is enriched in MSC-derived exosomes and
is thought to contribute in part in this anti-angiogenic mechanism as it is known to directly regulate
VEGF expression [54].

3.5. Stromal Cell-Derived Exo-miRNAs Modulate Cancer Stem Cell-like Properties

Interactions between preadipocytes and cancer cells promote tumor growth and metastatic
spread. Exosomes derived from preadipocytes contribute to cancer stem-like cell niche formation.
Co-culture experiments with mouse preadipocyte 3T3L1 cell and MCF10DCIS as a model of early-stage
breast cancer identified preadipocyte-derived exo-miR-140 as an important negative regulator of
cancer stem-like cell renewal and cell migration via targeting of SOX9 [46]. Treatment of 3T3L1
cells with Chinese herbal medicine shikonin (a naphthoquinone) increased exosomal secretion of
miR-140 [46]. Co-culture of MCF10DCIS with exosomes derived from shikonin-treated 3T3L1 inhibited
growth, whereas exosomes derived from untreated cells promoted breast cancer cell growth in an
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in vivo model [46]. Shikonin is known to have many biological activities ranging from antiviral to
anti-angiogenic. Regulation of miRNA cargo in exosomes appears to be another and complex biological
activity of shikonin. While shikonin treatment of 3T3L1 results in preferential loading of miR-140 in
exosomes, treatment in MCF7 reduces exosomal loading of pro-growth and anti-apoptotic miR-128 [44].
Exosomes derived from TAFs also modulate proliferation, stem cell-like capacity and E-MT of cancer
cells. Exo-miR-21, exo-miR-143, and exo-miR-378e are enriched in exosomes derived from TAFs
compared to normal fibroblasts [45]. Co-culture of TAF-derived exosomes with BT549, MDA-MB-231
or T47D increased anchorage-dependent and anchorage-independent growth of these breast cancer
cell lines, which also exhibit increased expression of stem-cell like and mesenchymal markers [45].
Transfection of normal fibroblasts with miR-21, miR-143 and miR-378e mimetics, prior to co-culture of
fibroblast-derived exosomes with cancer cells, resulted in similar enhanced malignant phenotypes in
breast cancer cells, suggesting a functional role for these three TAF-derived exo-miRNAs [45].

3.6. Stromal Cell-Secreted Exo-miRNAs Modulate Cancer Cell Dormancy

Bone marrow metastasis can develop decades after initial diagnosis. Stromal cells, including
MSCs, in the bone microenvironment interact with disseminated cancer cells via physical contact,
paracrine signaling and exosome transfer. Bone marrow stroma can induce cancer cell quiescence and
long-term dormancy. Co-culture of bone marrow stroma with MDA-MB-231 or T47D breast cancer
cells induced G0-cell cycle arrest [57]. Bone marrow stromal cell–derived exo-miR-127, exo-miR-197,
exo-miR-222, and exo-miR-223 are taken up by T47D cells in which these miRNAs repress CXCL12
expression [57]. CXCL12 is a chemokine that interacts with CXR4 and CXR7 receptors. Loss of CXCL12
in cancer cells disrupts their physical interaction with CXR4-expressing hematopoietic stem cells
creating a more hostile microenvironment for this growth. While this seems to be a tumor-suppressive
mechanism to restrain metastatic growth, cancer cells entering quiescence may acquire the selective
advantage of being more resistant to chemotherapy [58]. MSC-derived exosomes from naïve cells (not
exposed or interacting with cancer cells) do not induce G0-cell cycle arrest, only exosomes from primed
MSCs (exposed or in contact with cancer cells) induced cell cycle arrest [58] as originally reported [57].
Exo-miR-222 and exo-miR-223 are 5-fold enriched in exosomes from primed MSCs compared to naïve
MSCs and confer resistance to breast cancer cell lines against carboplatin treatment. In an in vivo
femur model of breast cancer dormancy, transfection of MSCs with anti-miR-222/223 inhibitors before
bone implantation sensitized breast cancer cells to low-dose carboplatin treatment by preventing the
transfer of MSC-derived exo-miR-222/223 and/or by delivering anti-miR-222/223 in exosomes to the
cancer cells [58]. This study did not investigate which factor(s) from the cancer cells were triggering
this priming. Exo-miR-23b derived from MSC can also induce dormancy and increase chemoresistance
to docetaxel. Co-culture of BM2 (an MDA- MB-231 subline with increased propensity to form bone
marrow metastasis) and MSCs (obtained from human donors) suppressed proliferation, decreased
stem-cell like properties, and migratory capability of BM2 cells [56]. Exo-miR-23b was among the
most enriched miRNAs in the cargo of MSC-derived exosomes compared to exosomes from adult
fibroblasts. The myristoylated alanine-rich C kinase substrate (MARCKS) was identified as a key
target of exo-miR-23b in recipient BM2 cells [56]. miR-23b expression was increased in metastatic bone
lesions compared to matched primary breast tumors from a cohort of 10 patients, whereas MARCKS
expression was decreased [56]. This provides support to the clinical relevance of miR-23b-mediated
regulation of dormancy.

3.7. Limitations with Current Study Designs and Perceived Challenges for Therapeutic Application

Most reports mechanistically dissecting the role of exo-miRNA have been conducted in in vitro
cell line systems or co-culture systems in which conditioned media containing exosomes or purified
exosome preparations have been incubated with intended recipient cells. In many cases, it is not
clearly established whether the amount of exo-miRNAs and other cargo delivered by this approach
is within a physiological range. The amount of miRNAs in exosomes is typically several orders of
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magnitude below cellular levels [33], one recent study suggests a typical exosome may carry just a
single molecule of any given miRNA [74]. Thus, exogenous supplementation of native and synthetic
exosomes may exaggerate the function of exo-miRNA cargo, and it may be difficult to extrapolate the
effects of these in vitro manipulations to an in vivo system, in which it would be more challenging
to track transfer of exosomes from donor to a specific recipient cell [75]. Most studies use a limited
number of well-established cell lines, mainly, MCF7 and/or T47D as ER+ models and MDA-MB-231
as a TNBC model. Besides the hormonal status, it must be pointed out that genetic mutations,
epigenetic alterations, and global miRNA profiles are different between MCF7 and T47D compared to
MDA-MB-231. Thus, it is interesting that there was no obvious overlapping of increased exo-miRNA
levels between docetaxel-resistant MCF7 and docetaxel-resistant MDA-MB-231 cells in chemoresistance
studies, while in other studies on selective exosomal loading and dormancy there were more similarities
in the exo-miRNAs content and function between MCF7 (and/or T47D) and MDA-MB-231 (and other
TNBC cell lines). Collectively, these studies support the idea that specific exo-miRNAs derived from
breast cancer cells have a more profound effect in nonmalignant epithelial cells, MSC, endothelial
cells or other stromal cells. Likewise, specific exo-miRNAs derived from MSC, endothelial cells and
other stromal cells have a profound effect in cancer cells. It is a bit puzzling and a challenge in the
field to envision how donor cells manage to exquisitely load and sort differential miRNA cargo in
distinct subsets of exosomes with differential affinity towards distinct recipient cells. Several efforts
have been conducted to better understand the miRNA sorting mechanism to exosomes, leading to the
remarkable conclusion that exosome enrichment is modulated by cell-activation-dependent changes of
miRNA target levels in the donor cells [76]. Integrins decorating exosomes’ membranes are important
determinants for selective delivery of cancer cell-derived exosomes to different distant organs, with
integrin α6β4- and α6β1-decorated exosomes favoring delivery to the lung and αvβ5 to the liver [77].
Other surface proteins yet to be characterized may also contribute to the selective delivery of exosomes.

4. Conclusions

We are still in the early days of exosomal research in breast cancer. From a diagnostic perspective,
it is likely that studies on circulating exo-miRNA analysis in patient blood samples will flourish
within the next few years. These studies will enable a more critical evaluation of the clinical value of
exo-miRNAs in total or cell type-enriched exosomal preparations. From a therapeutic perspective,
a major impediment continues to be the inability of nucleic acid-based miRNA activity modulators
to reach breast cancer cells or cellular compartment of the tumor microenvironment. Strategies that
target exosomes rather than cancer cells may provide new opportunities to inhibit tumor-promoting
miRNAs. These strategies may include transfection of anti-miRNA compounds into exosomes, drugs
that selectively interfere with loading or delivery of tumor-promoting exo-miRNAs, or depletion
of specific exosome subsets from circulation. Native or synthetic exosomes with cell-type-specific
affinities could be harnessed to deliver miRNA-activity-modulating compounds to metastatic cancer
cells or other components of the microenvironment to replenish tumor-suppressive miRNAs or inhibit
tumor-promoting miRNAs, respectively.
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