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Abstract: Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis
and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery,
5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and
validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important
to better understand the mechanisms involved in cSCC development and progression in order to
develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of
phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets
Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition
of these pathways can be beneficial to counteract the disease. With the growing number of different
inhibitors currently available, it would be important to further investigate the specific contribution
of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising
molecular targets and the best strategy to inhibit cSCC.
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1. Introduction

Keratinocyte carcinomas (KC), comprising basal cell carcinoma (BCC) and cutaneous squamous
cell carcinoma (cSCC), are the main forms of non-melanoma skin cancers (NMSC). They represent
one third of all malignancies [1,2] and are the most common malignancy in the UK [3]. In 2014,
there were 131,772 cases of NMSC registered in the UK, although this is a significant underestimation
as there are acknowledged problems of under-recording [4]. The crude incidence rate indicates 233 new
NMSC cases for every 100,000 males and 176 for every 100,000 females [5]. A recent study reported
that approximately 3.3 million people were treated for NMSC in USA in 2012 [6]. More worryingly,
the incidence of NMSC has risen over the years and it is still rising worldwide [7–12]. For instance one
study estimated that on average the incidence of NMSC has increased by 3–8% yearly among white
populations in Australia, Canada, Europe, and the USA in the last 30 years [12]. Morbidity associated
with NMSC is high and available treatments can be disfiguring and expensive. One study estimated
that in 2008 the cost due to skin cancer was in the range of £106–112 million in England, with expected
cost per case estimated at £889–1226 for NMSC (bottom-up and top-down approaches) [13].

Approximately 75–80% of KC are BCC and 18–20% are cSCC [7,14]. While BCC is usually a
localised cancer, approximately 5% of cSCC are able to metastasise, usually to lymph nodes [2,15].
As a consequence of this, although 95% of cSCC are curable with surgical resection, it has been
estimated that 20% of skin cancer deaths are attributable to cSCC [16]. Indeed the ability of cSCC
to metastasise leads to a 3-year disease-free survival rate of 56% [17] and a five-year survival rate of
25% to 35% [18–21]. Such a poor prognosis is due to a lack of therapies for this subset of patients
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as currently there is no FDA-approved therapy with a specific indication for metastatic cSCC [22].
The development of therapies is further complicated by the fact that no molecular biomarkers that can
predict disease behaviour or treatment response have been validated [22]. With the rising incidence
of this disease, a better understanding of the biochemical pathways involved in cSCC development
and progression is urgently needed in order to identify molecular targets and design drugs that can be
beneficial to patients.

2. The Epidermis

The epidermis of the skin contains stratified layers of squamous epithelium (Figure 1), mostly
consisting of keratinocytes [23]. Keratinocytes are specialised cells named after their ability to produce
keratin, a protein essential in the formation of intermediate filaments and in maintaining the barrier
function of the skin. Keratinocytes continuously divide in the basal layer of the epidermis, and then
differentiate as they migrate upwards through the spinous and granular layers towards the surface
of the skin to ultimately form a layer of anucleate cornified cells called the stratum corneum [24–26].
As the cells migrate upwards they become more flattened and synthesise a number of different
proteins (including different keratins) and lipids from specialised organelles, such as lamellar bodies
and keratohyalin granules [27]. Intercellular junctions, such as desmosomes, are crucial to maintain
the barrier function and modulate cell signalling [28]. The different desmosomal components have
specific expression patterns within the epidermis and this is important to control not only the structure,
but also the specific function of each stratum [29]. By the time they reach the surface the keratinocytes
have become denucleated and form the tough keratinised layer of the stratum corneum, allowing the
skin to remain waterproof and resistant to external stresses [23].
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Keratinocytes that have left the basal layer of skin are squamous in morphology therefore they
are generally referred to as squamous cells and are the most abundant cell type within the epidermis.
KC are classified as BCC or cSCC depending on their histopathological characteristics; BCC cells tend
to resemble those from the basal layer of the epidermis whilst cSCC tend to resemble the squamous
cells [30].

3. Overview of cSCC Carcinogenesis

Chronic exposure to UV radiation has been described as the most important environmental risk
factor for cSCC development, with other factors, including exposure to ionising agents and chemical
carcinogens, also identified [31]. Indeed the majority of cSCC occurs on sun-exposed areas of the body
and has been strongly associated with chronic sun exposure [32]. Approximately 65% of cSCC arise
from dysplastic regions in the epidermis known as actinic keratoses (AK), which occur as a result of
increased UV exposure [33]. The factors responsible for this progression are, however, still largely
unknown and indeed not all AK progress to cSCC [34,35]. Nevertheless, AK are an important clinical
risk factor for cSCC [36]. Genetically, cSCC is a very heterogeneous disease. Chromosomal changes
have been identified by genome-wide studies, and mainly comprise loss of heterozygosity due to allelic
loss and uniparental disomy at 3p, 9p, 2q, 8p and 13, and allelic gain on 3q and 8q [37,38]. Mutations in
the Notch gene family and many other key genes, including TP53, have also been reported [39]. In fact,
because of the complex mutational patterns, it is very difficult to identify driver genes in cSCC and
this has strongly limited the translation from genomics to the clinic [39]. Indeed while identification of
mutations in BRAF for advanced melanoma and Hedgehog signalling for BCC has paved the road
to clinical use of BRAF and smoothened inhibitors respectively, a similar direct translation has not
occurred in cSCC [39]. Nevertheless accumulating evidence from clinical use of epidermal growth
factor receptor inhibitors or immune modulatory drugs suggests that targeted therapies may be
beneficial [39,40]. There is, therefore, an urgent need to define the critical molecular mechanisms and
key signalling pathways involved in cSCC carcinogenesis in order to identify new molecular targets.

It is now well documented that alteration of specific signalling pathways occurs during cSCC
carcinogenesis. For instance reverse phase protein microarray analysis revealed specific activation of
the mitogen-activated protein kinase (MAPK) pathway in cSCC compared to AK and normal skin [41].
Similarly, a core set of 196 genes was found to be differentially expressed between AK and cSCC and
gene set enrichment analysis indicated a key role for MAPK pathway in cSCC compared to AK [42].
Consistent with this, more recently it has been shown that inhibition of MEK causes senescence, but
not apoptosis, in cSCC cell lines and reduces tumour growth in vivo [43]. Several lines of evidence
also indicate that activation of the enzymes belonging to the phosphoinositide 3-kinase (PI3K) family
is involved in cSCC carcinogenesis (as discussed in more detail below).

4. The PI3K Pathway in Epidermal Homeostasis

PI3Ks catalyse the phosphorylation of position 3 within the inositol ring of specific
phosphoinositides leading to the synthesis of lipid products that can then bind and mediate the
activation of many signalling molecules [44–47]. Due to the ability of their products to activate many
downstream effectors, PI3Ks have a well-established role in regulation of several cellular processes,
including cell proliferation, growth, survival, migration, and metabolism [44–47]. Amongst the many
enzymes that are regulated by PI3Ks, 3-phosphoinositide-dependent protein kinase 1 (PDK1) and
protein kinase B/Akt are by far the most studied and well-characterised. Upon activation, binding
of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP3) to Akt induces translocation of
this enzyme to the plasma membrane where it can be activated through phosphorylation at its residue
Thr308 by PDK1 and at residue Ser473 by additional kinases, including the complex 2 of mechanistic
target of rapamycin (mTORC2) [48,49]. Activated Akt in turn regulates a plethora of signalling
molecules, ultimately controlling cell proliferation, cell cycle, survival, and migration [50,51]. Three Akt
isoforms exist, with data pointing to specific, non-redundant roles for each of them, in particular in
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cancer [52]. One of the key enzymes regulated by Akt is mTOR, a master kinase involved in protein
synthesis, ribosome biogenesis, autophagy and several other cellular functions [53,54]. Activation of
PI3K is normally tightly regulated and activation of PI3K-dependent pathways is also controlled by
specific phosphatases, including the tumour suppressor phosphatase and tensin homolog (PTEN)
which dephosphorylates PIP3 and switches off the signals [55].

PI3K-dependent pathways are crucial for regulation of epidermal homeostasis [56–58]. Data obtained
through overexpression of constitutively active and dominant negative PI3K indicated a role of this
pathway in the early phases of keratinocytes differentiation [56]. Consistent with this, it was reported
that pan-PI3K inhibition induced premature differentiation of keratinocytes [57]. Activation of PI3K
was indeed detected in mouse primary keratinocytes upon induction of differentiation and this was
mirrored by activation of Akt [58], also confirmed by analysis of three-day old mouse skin that revealed
increased active Akt in differentiating layers [58]. Activation of Akt has been associated with epidermal
terminal differentiation with Akt1 in particular shown to be important for control of the barrier function
of the cornified layer [59,60]. In this respect recent data have pointed to a role for Akt1 on nuclear
degradation and differentiation through lamin A/C degradation [61]. Finally, data also indicate a role
for PI3K in regulation of keratinocyte survival [62].

Transgenic mouse models have further supported a key role for PI3K-dependent pathways in
epidermis. Mice bearing a keratinocyte-specific PTEN null mutation developed epidermal hyperplasia
and hyperkeratosis [63]. A negative role for PTEN in regulation of skin growth was also confirmed
in another study describing the phenotype of mice carrying a specific deletion of PTEN in the
skin [64]. Additional evidence includes characterisation of a conditional PDK1 knockout model
(with PDK1 ablated in activated CD4 T cells, regulatory T cells and mature keratinocytes) that revealed
a central role for this enzyme in keratinocytes homeostasis [65]. Similarly, another study reported
that epidermis-specific PDK1 knockout mice displayed a thin and shiny epidermis and impaired
barrier function and pointed to a role for this enzyme in asymmetric cell division in the epithelium [66].
Finally, the Akt1/Akt2 null mouse lacks the stratum corneum and dies neonatally, possibly because of
defects in the skin barrier [67].

Possibly the most compelling evidence of a key role for PI3K-dependent pathways in skin derives
from the observation that germline mutations of PTEN lead to a number of severe disorders known
as PTEN hamartoma tumour syndromes (PHTS) which are characterised by hyperplastic changes in
the skin [68]. A typical example of PHTS is Cowden Syndrome, where most patients develop skin
hamartomas and various skin lesions [68,69].

While evidence in literature has demonstrated the importance of the family of PI3Ks and
corresponding PI3Ks-dependent pathways, less attention has been paid to the fact that eight distinct
PI3K isoforms exist which are grouped into three classes according to their structures and substrate
specificity [45,46,70,71], as depicted in Figure 2. Class I PI3Ks are dimers comprising a catalytic and a
regulatory subunit and they catalyse the synthesis of PIP3 in vivo. Class II PI3Ks are monomers that
mainly catalyse the synthesis of phosphatidylinositol 3-phosphate (PI3P) in vivo although evidence
also indicates that they can catalyse the synthesis of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2).
Class III PI3K only catalyses the synthesis of PI3P [46,71]. Isoform specific knock-out and knock-in
mice and the investigation of the effects of isoform-specific inhibitors have shed much light on our
knowledge of the physiological roles and the cellular functions that are regulated by each PI3K.
It is now well established that these enzymes are not redundant and play distinct roles [72–74], but few
studies have investigated the potential contribution of each of the eight PI3K isoforms to normal
skin homeostasis.
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Expression of the class I PI3K catalytic subunits p110α and p110β was detected in mouse epidermis
and in cultured murine keratinocytes [57]. Ribonucleotide protection assays also revealed the presence
of a transcript encoding the class I isoform p110γ in murine skin although the protein could not be
detected [57]. Interestingly, upregulation of p110γ both at the mRNA and protein levels was observed
during wound repair, in particular during the inflammatory phase [57]. Analysis of three-day old
mouse skin revealed a specific localisation of the class I regulatory subunit p85α at cell-cell contacts of
suprabasal differentiating keratinocytes [58]. Expression of two members of the class II subfamily of
PI3Ks has also been reported in human epidermis, with PI3K-C2α found to be expressed throughout
the epidermis and PI3K-C2β mainly restricted to suprabasal layers [75]. To the best of our knowledge
no study so far has specifically investigated the expression levels and localisation of the class III PI3K
hVps34 in the epidermis. In this respect it is worth mentioning that a recent study reported that
autophagy is important during epidermal development and differentiation [76]. Due to the role of
hVps34 in regulation of autophagy [77] it would be important to investigate the potential contribution
of this PI3K isoform to skin homeostasis.

A transient upregulation of p110α and p110β was detected in differentiating primary human
keratinocytes in vitro [57]. Similarly, treatment of cultured human keratinocytes with calcium induced
phosphorylation of p85α as well as activation of all class I PI3K isoforms, as assessed by in vitro
assays [78]. Another study however showed that overexpression of either dominant negative p85
mutant (∆p85) or constitutively active p110α (p110α CAAX) did not induce differentiation of primary
human keratinocytes, as assessed by Western blotting analysis of involucrin expression levels [75].
These authors further showed that overexpression of the class II PI3K-C2β, but not PI3K-C2α,
was able to induce differentiation of primary human keratinocytes in vitro, although downregulation
of these enzymes, either alone or in combination, did not appear to affect their calcium-induced
differentiation [75]. Importantly, no difference in epidermal differentiation was detected in transgenic
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mice with either increased or absent PI3K-C2β expression, ruling out a major role for this enzyme in
this process in vivo [75].

Evidence suggests that deregulation of PI3Ks-dependent pathways (possibly of specific
PI3Ks-dependent pathways) can lead to alteration of the normal differentiation pattern and normal skin
organisation. For instance, it was shown that stable overexpression of an inducible, constitutively-active
mutant of p110α enhanced keratinocyte proliferation and migration, delayed differentiation in human
keratinocytes and induced formation of disorganised, hyperplastic epithelium in organotypic skin
cultures [57]. Selective roles for p110α or p110β were also reported in a transgenic mouse model
which develops dermal lesions resembling PHTS [69]. By using mice lacking PTEN in epidermal
keratinocytes (PTEN∆) and mice with concurrent ablation of either p110α or p110β or both PI3K
isoforms, the authors showed that p110α mainly regulated survival of suprabasal keratinocytes while
p110β mainly regulated proliferation of basal keratinocytes in such a context of PTEN loss. A similar
distinct regulation of Akt activation in the two layers was also observed in these transgenic mice [69].
Importantly, while PTEN∆ mice developed multiple cutaneous hamartomas, concurrent ablation
of either p110α or p110β significantly delayed both the development and severity of these skin
lesions and simultaneous ablation of both PI3K isoforms completely prevented their development [69].
Relative mRNA levels of p110α and p110β were higher in cells from suprabasal and basal layers,
respectively, and this was observed in cells from ear epidermis of both PTEN∆ and wild-type mice,
possibly suggesting a different role of the two isoforms also in normal skin epidermis.

Further studies are required to better define the contribution of each PI3K isoform in normal
skin homeostasis and whether selective deregulation of some of them is associated with skin diseases.
Improved understanding of the specific signalling pathways regulated by the distinct enzymes would
also provide important information. For instance, although Akt undoubtedly plays a crucial role, it is
very likely that PI3Ks mediate epidermal homeostasis via a number of different signalling pathways.
Induction of PI3K signalling in the epidermis led to changes in expression of over 100 genes, with
many associated with cell motility and adhesion as well as cell cycle control and DNA repair [57].
PI3K signalling has also been shown to inhibit the activity of the integrin-regulated YAP1 protein
which is involved in epithelial cell proliferation [79]. Defining the contribution of the distinct isoforms
could shed new light into the specific signalling pathways that these enzymes can control in epidermis.

5. PI3Ks-Dependent Pathways upon UV Irradiation

UV radiation causes DNA damage, for instance through generation of cyclobutane pyrimidine
dimers (CPD) [80,81]. CPD have been associated with initiation of UVB-induced skin
carcinogenesis [82] and repair or reduction of CPD in UVB-exposed murine skin reduces the risk of
tumour development [83]. The nucleotide excision repair (NER) pathway is one of the mechanisms
involved in the repair of UV-induced DNA damage [84]. It has been demonstrated that PTEN
is necessary for efficient NER through regulation of the xeroderma pigmentosum proteins [85]
and, therefore, alteration of its expression levels and/or function (and consequent deregulation
of PI3Ks-dependent pathways) can lead to impaired DNA repair upon UV exposure. Indeed mice
lacking PTEN in their epidermis are predisposed to skin tumourigenesis upon exposure to low
sub-erythemal UV radiation [86]. UV radiation can induce alteration of PTEN levels/function through
genetic alteration of the gene [87] or possibly through inactivation of the enzyme by UV-induced
reactive oxygen species [88]. Indeed, reduced expression levels of PTEN were detected in transformed
human keratinocytes upon chronic exposure to UVA radiation [89]. Similarly, it was shown that
UVB radiation reduced PTEN levels in primary human keratinocytes, HaCaT keratinocytes and in
mouse skin and this was associated with increased survival [90]. These authors further showed that
downregulation of PTEN occurred at the transcriptional level and it was mediated by UVB-dependent
activation of ERK and Akt [90]. Alteration of the PI3K pathway can also occur as consequence of
alteration in the microRNA profile upon exposure to UV as observed in a study on SKH-1 hairless
mice [91]. Consistent with the detected alteration of PTEN, several lines of evidence indicate that
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the PI3Ks/Akt/mTOR pathway is activated upon exposure to UV radiation. Phosphorylation of
Akt [92,93] and mTOR [93] was reported in HaCaT cells treated with low doses of UVB as well as in
SKH-1 mice treated with an acute dose of solar-simulated light (SSL) [94]. Moreover activation of Akt
and mTOR was detected in sun-protected human skin after acute doses of physiologically-relevant
SSL exposure [95]. Interestingly, one study reported differential regulation of Akt phosphorylation
by UV, with phosphorylation of Ser473 mainly mediated by UVB and phosphorylation of Thr308
mediated by UVA in normal human epidermal keratinocytes [96]. On the other hand, both UV
types were able to activate mTOR, as assessed by phosphorylation of S6K [96]. As UV represents
the most important environmental risk factor for cSCC [39], it would be important to define the
specific contribution of PI3Ks-dependent pathways, and in particular of the selective PI3K isoforms,
on UV-driven cSCC carcinogenesis.

6. PI3Ks-Dependent Pathways in cSCC

Deregulation of the PI3Ks/Akt/mTOR pathway is one of the most common mechanisms
responsible for development and progression of many cancer types [97–100]. Reverse phase protein
microarray analysis revealed activation of a number of key proteins involved in this pathway in
advanced and non-advanced human cSCC compared to AK [41]. Constitutive activation of the
Akt/mTOR pathway in epidermal tumours was also reported in another study, with levels of
phosphorylated Akt and mTOR shown to be much higher in 15 samples of SCC than in the same
number of normal or AK skin samples [101]. Moderate/strong phosphorylation of Akt at Ser473 was
also detected in 10 out of 15 cSCC and in eight out of 10 metastatic cSCC [101]. A specific role for
distinct Akt isoforms has also been suggested by the observation that down-regulation of Akt1 and
upregulation of Akt2 occur commonly in cSCC [102]. In addition, activation of upregulated Akt2 is
associated with high-grade tumours [102].

Some studies have investigated the mechanisms responsible for activation of PI3Ks-dependent
pathways in cSCC. Activating mutations of PIK3CA, a common characteristic of many cancer types,
including lung SCC and head and neck SCC (HNSCC), have been reported but do not appear to occur
at high frequency in cSCC [103]. For instance whole exome sequencing on DNA from 39 patients
reported that PIK3CA was mutated only five times in four patients and, importantly, none of these
mutations were the “classical” hotspot mutations observed in other tumour types [104]. On the other
hand, a more recent study of 122 recurrent, metastatic cSCC identified clinically-relevant genomic
alterations of PIK3CA in 6% of the cases [105]. This was consistent with data from a cohort of metastatic
cSCC (29 cSCC lymph node metastases) that identified a PIK3CA P471L mutation in some of these
tumours [22]. Importantly, a sustained clinical response was observed in one patient with metastatic
cSCC harbouring mutations (including the PIK3CA P471L mutation) upon treatment with the mTOR
inhibitor temsirolimus [105]. It remains to be established whether this mutation is indeed associated
with hyperactivation of PI3K-dependent pathways. It is worth mentioning that this specific mutation
was also detected in one primary cSCC sample [106], possibly suggesting that this event might not be
specifically associated with metastatic cSCC although additional studies would be required to confirm
this observation. A few additional mutations in other PI3K isoforms were observed in this same
study [106], although the limited number of specimens does not allow the drawing of any conclusions
about their importance and relevance.

Loss of PTEN function is a common mechanism responsible for hyperactivation of
PI3Ks-dependent pathways in many cancer types. Although somatic mutations of PTEN are rare in
skin lesions, reduced levels of PTEN have been detected in human AK and cSCC, indicating that either
epigenetic modifications or post-transcriptional downregulation of PTEN might be involved in the
progression of the disease. Indeed, while initial studies did not detect any deletion (47 cSCC) [107]
or somatic mutations (21 cSCC) [108] or hypermethylation of the promoter (20 cSCC) of PTEN [109],
a more recent study showed that loss of protein expression of PTEN was observed in 15 out of 16
cSCC and this was associated with an increase in fibroblast growth factor 10, which in turn plays a
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central role in cSCC promotion [110]. Some mechanisms that can lead to inactivation/loss of PTEN
have been observed in animal models. For instance it has been shown that loss of protein expression
of PTEN can occur upon genetic ablation of the developmental transcription factor grainy head-like 3.
This is associated with activation of the PI3K pathway and formation of aggressive cSCC which are
completely inhibited by restoration of PTEN [111]. Finally, PTEN alteration can occur as a result of
UV exposure, as discussed above. Alternative mechanisms to PTEN alteration, ultimately leading to
hyperactivation of PI3Ks-dependent pathways, might also exist in the context of cSCC. For instance
increased formation of spontaneous precancerous lesions and cSCC was reported in transgenic mice
expressing the tyrosine kinase Fyn (K14-Fyn Y528F mice) together with increased activation of several
signalling pathways, including increased phosphorylation of PDK1 [112]. PI3K/Akt activation has
also been detected downstream of the basement membrane proteins laminin-332/collagen VII and
proved to be crucial in mediating their contribution to cSCC tumourigenesis and invasion [113].

The impact of activation of PI3Ks-dependent pathways on cSCC development and progression has
been demonstrated in many studies using transgenic animal models. Conditional knockout of PTEN
in skin induces neoplasia and is critical for skin cancer development [64,88]. Analysis of transgenic
mice bearing a PTEN null mutation specifically in the keratinocytes revealed that 100% of these
mice developed spontaneous tumours within 8.5 months of birth, mostly squamous papillomas [63].
Importantly, many of these papillomas further developed into SCCs which were able to invade the
dermis. In addition, the keratinocyte-specific PTEN ablation resulted in accelerated tumourigenesis
upon chemical treatment [63]. Analysis of mouse skin tumours showed that PTEN was detectable
in differentiating areas of the papilloma and in the most differentiating areas of cSCC whereas
it was undetectable in non-differentiating infiltrative areas of cSCC [114]. Models of mouse skin
tumourigenesis further demonstrated the central role for PI3K/Akt during both tumour formation and
progression stages. Evidence includes demonstration of the critical role for Akt in insulin like growth
factor-1 (IGF-1)-mediated mouse skin tumour promotion [115,116]. An increase in Akt activity was also
detected throughout the entire process in the two-stage model of mouse skin carcinogenesis [114] and
overexpression of Akt in mouse primary basal keratinocytes accelerated tumourigenesis upon injection
into mice [114]. Furthermore transgenic mice expressing increased levels of Akt or constitutively-active
Akt in the basal layer of stratified epithelia displayed higher sensitivity to the tumour promoter
12-O-tetradecanoylphorbol-13-acetate and increased sensitivity to two-stage skin carcinogenesis [117].

The specific mechanisms by which PI3Ks/Akt regulates cSCC promotion involve both increased
cell proliferation and resistance to apoptosis, as detected in PTEN-deficient keratinocytes [63]. Similarly,
the pathway has been implicated in resistance to apoptosis mediated by the receptor tyrosine kinase
Axl in cSCC [118]. Interestingly, it has been recently demonstrated that Axl is involved in development
of resistance to a class I PI3K p110α inhibitor in HNSCC and in oesophageal SCC (OSCC) [119],
suggesting a complex interplay between the Axl-dependent and PI3Ks-dependent signalling pathways
in SCC.

7. Targeting PI3Ks-Dependent Pathways in cSCC

The PI3Ks/Akt/mTOR pathway is a well-established target for anti-cancer drugs
development [97,98,120–125] and several inhibitors have been developed, targeting PI3K, Akt, mTOR,
as represented very schematically in Figure 3. As for the class I subfamily, several inhibitors are
currently available, including inhibitors that target all isoforms with similar IC50 (pan-PI3K) or
mainly one/more-than-one selective isoforms (isoform-specific, i.e., with a much lower IC50 towards
one/more-than-one isoforms compared to the others) [125]. Isoform-sparing PI3K inhibitors have also
been developed, as is the case of GDC-0032, an inhibitor showing much less potency towards p110β
(β-sparing) [126]. Finally, dual PI3K/mTOR inhibitors have also been developed [125].
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Isoform-specific PI3K inhibitors were developed with the aim of reducing side-effects
and increasing potency, by specifically targeting the main isoform(s) involved in the
development/progression of each specific cancer type [124,125]. For instance this led to trials of
p110α inhibitors in cancers harbouring activating PIK3CA mutations or p110β inhibitors in tumours
driven by PTEN loss, as this specific isoform was reported to be critical in this context [127–131].
Similarly, due to their high expression in immune cells, inhibitors of p110δ and p110γ (or targeting
both isoforms) have been tested in many haematological malignancies, with a selective p110δ inhibitor
(Idelalisib) approved for use in chronic lymphocytic leukemia and follicular B-cell non-Hodgkin
lymphoma [125]. With the increasing evidence suggesting the importance of the microenvironment for
tumour development/progression, the potential beneficial effects of p110δ and p110γ inhibitors in
other cancer settings are also being tested.

To the best of our knowledge no studies so far have reported results from clinical trials aimed to
assess the effect of pan-PI3Ks or isoform-specific inhibitors in cSCC. On the other hand, these inhibitors
have been tested or are being tested in other SCC [125]. For instance, as the PI3K pathway is the
most frequently mutated pathway in HNSCC, several inhibitors have been or are being tested in
this context, either alone or in combination with other interventions [132]. These include pan-PI3K
inhibitors (Buparlisib (BMK120), PX-866, Copanlisib (BAY 80-6946), SF1126) and isoform-specific
inhibitors (Alpelisib (BYL-719, NVP-BYL719) or the p110δ inhibitor AMG319), as well as Akt and
mTOR inhibitors [132]. According to the clinicaltrials.gov website, at the time of writing this review,
other trials are ongoing or are recruiting participants to test PI3K inhibitors in different SCC, including
OSCC and squamous non-small cell lung cancer either alone or in combination with other drugs.

Overall data in literature indicate that targeting the PI3Ks/Akt/mTOR pathway could be
beneficial in cSCC [133]. For instance studies have demonstrated the beneficial effects of the mTOR
inhibitor rapamycin in animal models, such as in mice receiving chronic sub-erythrogenic doses of UVB
and UVA, where rapamycin increased latency of large tumours and reduced their multiplicity [134].
Decreased tumour multiplicity, size, and progression were also detected in hairless mice exposed to
UVB upon treatment with rapamycin alone or in combination with cyclosporine [135]. Rapamycin also
reduced tumour incidence and multiplicity in a chemically-induced mouse model [136]. Another study
further reported that rapamycin reduced not only the tumour burden of mice harbouring early and
advanced tumour lesions but also recurrent skin SCCs in a chemically-induced cancer model, basically
resulting in regression of carcinogen-induced skin SCC [137]. More importantly, the beneficial effects of
mTOR inhibitors towards cutaneous carcinogenesis have been observed in specific subsets of patients.
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Prolonged immunosuppression strongly increases the risk of cSCC in organ transplant recipients,
with a 65–100 fold increased incidence observed in transplant recipients compared to the general
population [138–140]. These cutaneous malignancies are also generally more aggressive and numerous
than those seen in the general population [138,139]. A significantly reduced risk of developing
post-transplant de novo malignancies and non-skin solid malignancy was observed in patients
receiving mTOR inhibitors (sirolimus/everolimus) as immunosuppressants compared to patients
receiving calcineurin inhibitors (CNI) [141]. Switching renal transplant recipients receiving CNI-based
therapies to sirolimus resulted in reduced incidence of de novo KC formation [142–145] and even
regression of pre-existing premalignant lesions [144]. While these data suggest a potential beneficial
role for mTOR inhibitors, it is important to mention that in many cancer settings the use of some
inhibitors of the PI3Ks-dependent pathways has unfortunately led to the discovery of compensatory
mechanisms that reduce their therapeutic efficiency [146,147]. One of the most characterised
mechanisms of resistance was identified through the use of mTOR inhibitors that were reported to
induce hyperactivation of Akt through removal of a negative feedback loop [148–150]. Increased Akt
phosphorylation upon treatment with rapamycin has also been observed in keratinocytes, confirming
the existence of such a feedback loop in these cells [60]. Possibly consistent with this, a study in SKH-1
mice reported that while rapamycin indeed reduced tumourigenesis when it was applied topically
after mice were exposed for 15 weeks to SSL, tumourigenesis was actually increased if rapamycin
was applied during SSL exposure and for an additional 10 weeks [94]. Importantly this study further
showed that the selective PDK1/Akt inhibitor PHT-427 was able to prevent this latter effect, indicating
that combination of drugs targeting distinct components of the PI3Ks-dependent pathways could
prevent or oppose potential compensatory mechanisms [94].

The question remains as to whether targeting PI3Ks directly using either pan-PI3Ks or
isoform-specific inhibitors would represent a valid therapeutic option in cSCC. It was previously
shown that inhibition of PI3Ks with the pan inhibitor LY294002 reduced chemically-induced skin
tumour promotion in a mouse model overexpressing IGF1 [116]. Additionally, selective simultaneous
inhibition of p110α and p110β not only prevented the development of PHTS in mice lacking PTEN
in epidermal keratinocytes (PTEN∆) but it was also able to reverse advanced skin hamartomas [69].
With the increasing number of PI3Ks inhibitors currently available, an improved understanding of the
relative contribution of each isoform in cSCC carcinogenesis, in particular in the context of metastatic
cSCC, would be useful to ascertain the potential impact of these drugs.

8. Conclusions

Despite several data indicating that PI3Ks-dependent signalling pathways are important in cSCC
much still needs to be understood about the contribution of these enzymes and, in particular, the
selective contribution of each of the distinct PI3K isoforms to the disease. Currently, the lack of strong
evidence indicating either specific mutations or selective activation of specific PI3K isoform(s) during
cSCC carcinogenesis, in particular during progression to metastatic cSCC, makes it difficult to envisage
which selective PI3K inhibitor(s) or which specific drugs combination(s) could be beneficial in this
context. Additional investigations, including a better characterisation of the role of distinct PI3Ks, are
needed to determine whether targeting selective PI3Ks could represent a useful strategy to counteract
this disease, in particular for metastatic cSCC.
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