

 computers-11-00160

computers-11-00160

Computers 2022, 11(11), 160; doi:10.3390/computers11110160

Article

Features Engineering for Malware Family Classification Based API Call

Ammar Yahya Daeef 1[image: Orcid], Ali Al-Naji 2,3,*[image: Orcid] and Javaan Chahl 3[image: Orcid]

1

Technical Institute for Administration, Middle Technical University, Baghdad 10010, Iraq

2

Electrical Engineering Technical College, Middle Technical University, Baghdad 10022, Iraq

3

School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia

*

Correspondence: ali_al_naji@mtu.edu.iq

Academic Editor: Paolo Bellavista

Received: 9 October 2022 / Accepted: 7 November 2022 / Published: 11 November 2022

Abstract

:

Malware is used to carry out malicious operations on networks and computer systems. Consequently, malware classification is crucial for preventing malicious attacks. Application programming interfaces (APIs) are ideal candidates for characterizing malware behavior. However, the primary challenge is to produce API call features for classification algorithms to achieve high classification accuracy. To achieve this aim, this work employed the Jaccard similarity and visualization analysis to find the hidden patterns created by various malware API calls. Traditional machine learning classifiers, i.e., random forest (RF), support vector machine (SVM), and k-nearest neighborhood (KNN), were used in this research as alternatives to existing neural networks, which use millions of length API call sequences. The benchmark dataset used in this study contains 7107 samples of API call sequences (labeled to eight different malware families). The results showed that RF with the proposed API call features outperformed the LSTM (long short-term memory) and gated recurrent unit (GRU)-based methods against overall evaluation metrics.

Keywords:

malware classification; Jaccard similarity; API call sequence

1. Introduction

As of May 2022, more than 9 million new malware instances have been released, as stated in a report published by AV-TEST [1]; there are a total of 1363.92 million known malware instances currently active in the environment, requiring significant and ongoing technological development to counter new attacks. Furthermore, attackers are constantly improving their skills in writing malicious programs to evade existing protection mechanisms. Conversely, security software developers are updating their methods and techniques to block such zero-day attacks. This competitive "game" has led to the production of metamorphic and polymorphic malware, which are more advanced than regular malicious software. Metamorphic malware programs can change their functions and structures with each iteration; polymorphic malware involves composing new malware based on previous malware with new features. These capabilities make sensing and classifying specimens complex processes [2].

Despite an attacker’s tricks, malicious programs need the host operating system and application services to complete the malicious activity [3]. Hence, the malware requests the API service of the Windows operating system to perform the malicious action. Such service requests generate malicious behaviors employed for detection and classification purposes. As stated by [4], the malware cannot obfuscate or hide the use of the system’s API call.

A large number of malicious programs are classified into families that share common characteristics. Malware family identification is crucial to researchers because it helps to expedite the detection and mitigation procedures of incident responders [5,6].

The process of labeling malware into families is not easy because labeling depends on the outputs of the antivirus programs, which are not always identical, e.g., VirusTotal [3] provides the analysis results from several antivirus engines with malware labeling. As malware in the same family shares common attributes, capturing the API call sharing and sequences could provide a strong indication of the probable family of the malware.

There is little research on classifying malicious programs into families. Therefore, this research analyzes the API calls and sequences carried out by malware in the Windows operating system. The main objective of this research is how API calls (as features) can classify malware into families accurately. Moreover, we examine the usefulness of visual techniques in data analysis and combine computationally sophisticated algorithms with human intuition [7]. Finally, we suggest an algorithm to extract and represent attributes to improve the performances of existing tools for classifying malware into families. The proposed classification system is based on the bag-of-words (bow) model and machine learning.

2. Techniques for Malware Analysis

Malware analysis describes how to investigate a malicious file, in order to understand its behavior and examine the various parts of harmful software. Malware analysis aids in determining and reducing the damage caused by attackers. Moreover, malware analysis assists security experts and incident responders in covert "indications" that ought to be prevented [8]. It is possible to conduct a malware analysis in a static, dynamic, or mixed way.

2.1. Static Analysis

For simple static analysis, the malware does not need to be run. Instead, static analysis searches the file for clues to malicious intent. Identifying libraries, malicious infrastructures, or packaged files may be valuable. Static analyses have been used to identify many malware variants [9,10,11,12]. The benefits of a static analysis include its speed and not requiring a controlled environment to run harmful code. However, obfuscation techniques, such as metamorphic and polymorphic malware, which conceal the harmful payload and make it unrecognizable, hinder the benefits of this technique [13,14]. Static features are not as helpful for malware variants that are characterized by frequent changes in dangerous structures, codes, functions, or even by completely rewriting themselves.

2.2. Dynamic Analysis

In contrast, dynamic analysis does not require reverse engineering of malware. This method relies on executing malware in an isolated environment to record the file behavior, such as API calls, memory writing, registry access, and other activities. Sandbox technology provides a secure environment for suspicious file analysis. Since it monitors how malware interacts with the operating system in a quarantined environment, it helped in developing an effective defense mechanism. This technique is considered the most effective for polymorphic and metamorphic classification. In this context, many dynamic analysis techniques are proposed [15,16,17] to detect malware files.

3. Related Works

The amount of malware spreading has increased significantly; as a reaction from the security community, several studies have been conducted to automatically detect and analyze malware. As attackers design malware for many harmful purposes, malware poses different behaviors on the attacked machine, which results in the existence of many malware families. Malware family identification is crucial to researchers because it helps to expedite the detection and mitigation procedures of incident responders [5,6].

Machine learning solutions have great success in the detection and classification of malware families [18]. Therefore, researchers have employed various machine-learning techniques with different static and dynamic features for malware classification [19,20,21,22]. Malware producers have created a variety of malware obfuscation techniques, including encryption, packing, and API call insertion to avoid detection [23]. The dynamic detection method is unaffected by static obfuscation techniques, such as encryption and packing, because they often do not alter the behavior of malware. For this reason, dynamic detection has received a lot of attention in the field of malware detection. However, for API call-based solutions, the obfuscation method using rearrangement and insertion in the sequences of API calls may result in the failure of the detection system. For instance, authors of a black-box attack [24] focus on generating attacks against API call-based models. Aggressive patterns utilize both static features and API calls. Research shows that such attacks are effective against a variety of classification models.

In order to lessen the effects of obfuscation methods on malware detection, the authors in [25] used Cuckoo Sandbox to extract the sequence of API calls from different malware families to provide a public dataset and employ the deep learning model to classify each malware family. Hansen et al. [26] and Qiao et al. [27] proposed a malware identification system with features related to API calls. In order to classify malware families, the first author translated dynamic analysis findings from the Cuckoo Sandbox investigation into API call sequences. In contrast to Hansen’s findings, the authors of [27] classified malware based on the API call sequences and their frequencies. The Cuckoo Sandbox and CWSandbox were used to acquire the API call sequences. Typically, the API requests take the form of sequences with different lengths, making feature extraction from these sequences a complex process. Therefore, researchers thought about employing deep learning models, such as RNNs (recurrent neural networks) using API call sequences. RNN is highly efficient at processing time series sequences, especially in the natural language processing field. Li et al. [28] presented a classification model for malware families using the RNN model. Long API call sequences are used as classification features for variants of malware. The binary classification presented by Eskandari et al. [22] distinguished malware using RNNs and features extracted from API calls. A deep learning and visualization method for classifying malware was proposed by Tang et al. [29]. Dynamic analysis was used to retrieve API calls, after which, feature images that depicted malware behavior in accordance with color mapping guidelines were created. CNN (convolutional neural network) was then used to categorize the feature images. A single-layer LSTM model for binary classification was used by Yazi et al. [25] to offer malware family recognition. Additionally, Catak et al. [30] used API calls to categorize malware families, they suggested a single-layer LSTM and a two-layer LSTM in their work. In particular, they initially suggested an LSTM to obtain API sequences and that these features be used as input to a CNN for binary classification. Some researchers mapped API call sequences as TF-IDF vectors of features, such as in [31].

The API calls and their sequences constitute the basis for the above-mentioned family classification methods. However, extracting features from API calls to differentiate malware families is still challenging. Most works have tackled malware classification as a binary problem and focused on the accuracy provided by API call features. However, using the visualization method to extract the hidden patterns and correlation of API calls among different malware families was not highlighted in previous works. Based on the aforementioned findings, this paper uses visualization techniques to uncover the hidden patterns of API call sequences and provide a deep understanding of the sequence correlations of API calls among different malware families. Moreover, we provide a classification algorithm to classify different malware families.

4. Windows API Call Dataset

The publicly available dataset of malware API calls found in [3] was used in this research. The total number of samples was 7107, categorized into 8 families as depicted in Figure 1. The eight families were Trojan, worm, downloader, spyware, virus, backdoor, adware, and dropper with no goodware samples. The dataset contains malware labels and an arbitrary length of API calls for each record. These API calls are collected by running windows malware in an isolated environment using a Sandbox. Python scripts are written to extract some important statistics for initially understanding the dataset. The API call sequence length ranges from ten to thousands and the average length of sequences per class is presented in Table 1. Spyware had the longest average API call sequence, which can be justified due to the purpose of spyware in recording user internet movement as well as other activity data. As the total number of unique API calls found in the dataset is 278, finding the distribution of overall malware families indicates the API call correlation. Table 2 depicts the number of API calls each malware family shares; Trojan shares the most API calls. Extraction of the most frequently utilized API calls from each malware family may provide insight into the thought processes of attackers. Figure 2 shows the top 30 most frequently used API calls found in each family. When extracting the shared API calls among all malware families from the top 30, most are related to network connection activities for attackers. These shared API calls are listed in Table 3.

The unique API call occurrence in each family can provide good features to recognize the malware class in this context; Table 4 describes each unique API call with the number of samples in which they occur. According to the above statistics, malware families share most of the 278 API calls, which makes class separation a challenging job. Therefore, more statistical analyses and visualizations are required to explore possible hidden patterns.

5. Jaccard Similarity

Visualizing the shared API calls found in each malware family provides the common characteristics of that family. Visualization techniques are used to answer the important question: to what extent do the malware samples of specific families use the same combinations of API calls? Network visualization of samples sharing API calls is used for this purpose. It is possible to compare sets of unordered collections of elements using the Jaccard similarity metric [32]. Although different techniques for similarity are found in the scientific community, such as Euclidean L2, L1 distance, cosine distance, and others, the Jaccard similarity index is still the most widely used technique. The Jaccard similarity between two sets is the shared features divided by the total number of the features. Considering extraction of the unique API calls of malware A and B, the intersection of A and B provides the features that are shared by both malware. Figure 3 illustrates this by depicting three pairs of malware attributes that were taken from three different malware samples. Each case shows the features that are unique to the two sets, the features that both sets share, and the Jaccard value that results from the supplied malware examples and features.

The similarity index is 1 if two malware samples share the same API combination, and 0 for a completely dissimilar combination. This can be expressed in Equation (1).

The process depicted in Figure 4 was used to visualize the shared API calls based on the Jaccard similarity. Experimentally, the first 500 samples of each malware family were used (except adware was 300). The distinctive API calls were collected for the malware to calculate the similarity score between all malware pair samples belonging to a given family. Following the extraction process, repeatedly comparing the attributes of each pair of malware samples by using the Jaccard index and the API call-sharing graph was then constructed. To achieve this, the cutoff point for how many API calls the two samples should share was chosen; this study used 0.5 as a threshold value as shown in Algorithm 1. A malware pair was linked for visualization if the Jaccard value of that pair was higher than the threshold. The Python library NetworkX [33] was used to generate the network dot file and the open-source network visualization tool Graphviz [34] was used to visualize the dot file.

 J (A , B) = A ∩ B A ∪ B = A ∩ B A + B − A ∩ B

(1)

	Algorithm 1: Creating Networkx file.

	 [image: Computers 11 00160 i001]

NetworkX is a Python library used to build and manipulate complex networks. It is used to examine complex networks represented as node and edge-based graphs. A node denotes an element, while an edge links two nodes to show their connections as shown in Figure 5, where the nodes are labeled from A to E. To visualize API calls, the graph’s nodes are numbered according to the sequence of the malware sample. For example, the first 500 malware samples of the Dropper family were drawn as nodes numbered from 1 to 500. The node names and the edge information according to the Jaccard index were stored as a dot file containing graph description language as represented in Figure 6. By creating the dot file, Graphviz was used to process it to generate PNG representation.

6. Network Visualization of Jaccard Similarity

The resulting networks of API call sharing for each family are shown in Figure 7. It is very clear that sharing relationships were very weak within the same family, and this means that most of the malware samples used different combinations of API calls, which weakened their reliability in classifying malware families. It also weakened the reliability of the API call sequence because it gave inaccurate results. This can be justified for a number of reasons, e.g., malware family labeling in the dataset may be prone to error. Moreover, most malware creators insert additional API call sequences to mask the malicious behavior of malware.

One interesting observation about the similarity graph is that some malware samples are tightly linked, which means they belong to the same attack group or the same compilation tools. The adware graph shows a more connected group compared with other families due to its very specific purpose. Depending on the visualization results, using API calls, such as a bag-of-words (with 0 and 1), or employing the sequences of these API calls with deep learning leads to low accuracy classification results. As all malware families share most of the 278 API calls that exist in a dataset, using the frequency of occurrence of all API calls can provide a simple and more accurate classification solution.

7. API Call Frequency-Based Classification

The malware dataset [3] was created by executing the malware samples in the Cuckoo Sandbox, which is a wildly used malware analysis environment. This tool monitors the behavior of each malware and generates reports, including dynamic and static analysis results, such as API calls and hash values. Then, the hash value of each sample is fed to VirusTotal, which analyses each sample with different antivirus tools. As different antivirus engines produce different labels for the same sample, the class of the malware is determined by considering the majority agreement among the results of antivirus engines. The labeled dataset was finally produced by matching the malware classes and the sequences of API calls.

In order to convert the raw data into a format suitable for classification algorithms, Python code was used to extract all 278 unique API calls that existed in the dataset. These API calls were arranged as a bag-of-words; for each malware sample, the frequency of each API call was recorded. Therefore, the feature vector length was 278 and each feature was the frequency of the corresponding API call in that sample. Algorithm 2 depicts the process of feature extraction. The histogram of the feature distribution is visualized in Figure 8. This histogram shows many zero values for the API calls in the extracted features. Adware presents the best histogram distribution.

	Algorithm 2: Feature extraction and classifier learning.

	 [image: Computers 11 00160 i002]

The testing classifiers were chosen based on their widespread use and the success provided by them in the field of malware classification. Therefore, random forest (RF), support vector machine (SVM), and k-nearest neighborhood (KNN) were used in this research. The Python machine learning library scikit-learn was used with the default parameters to implement the classification process.

8. Experimental Results

The benchmark dataset was imbalanced in some malware families, such as Adware and Spyware. Hence, accuracy evaluation was not enough to identify the best classifier and make fair comparisons with other research [28,30]; the same evaluation metrics, precision, recall, and F1 score were used to present the results.

By examining the results shown in Table 5, RF and SVM show trade-offs in some evaluation values but RF provides the best classification performance compared to all of the evaluation metrics, and kNN is the worst. The results are based on the visualization analysis, where the highest evaluation metrics are noted for the Adware class and the worst classification results are observed for Spyware and Trojan. Referring to Figure 7, the lowest API call sharing was drawn for Trojan followed by Spyware. This interprets the low classification results for these families. The comparisons with the state-of-the-art works that employ deep learning methods, such as LSTM and GRU, are shown in Table 6. On the one hand, the proposed method in this work using RF outperforms the deep learning techniques in terms of the higher evaluation metrics for all malware families, and on the other hand, it provides a simple traditional malware classifier compared with deep learning techniques, which require more processing resources and longer times during the learning processes.

9. Research Limitations

The training dataset must be sufficiently large in order to draw reliable findings from a study, such as malware family classification. How accurate the results are will depend on the sample size used. More meaningful relationships in the data can be found from the larger dataset. Therefore, the limited number of malware samples for each family is considered a limitation of this study. Additionally, due to processing resource limitations, the Jaccard similarity visualization was only possible for the first 500 samples.

10. Conclusions and Future Direction

This work utilized malware API calls as classification features to recognize different families of malicious software. The network analysis of shared API calls provided valuable information about the malware connectivity within the same family. This connectivity showed limited API call sharing among the samples of the same malware family, meaning the instances used different combinations of API calls. This can occur for many reasons, e.g., dataset labeling being prone to errors, attackers inserting API calls to hide the real purpose of malware, and the possibility of detecting the analysis environment (Sandbox) by advanced malware blocking the actual malicious behavior. This conclusion reduces the effectiveness of using API calls as time-series features. Time-series-based malware classification solutions use high-computational cost-neural network algorithms. API call frequencies, as features with RF classifiers, show effective and simple solutions for multiclass malware classification compared with existing complex methods.

Employing the proposed method for binary classification by adding legitimate samples would be an interesting future work direction. Another way to utilize the results of this work is by improving the visual analysis to comprise more dynamic and static attributes achieved from the new facilities supported by the VirusTotal service.

Author Contributions

Conceptualization, A.Y.D. and A.A.-N.; data curation, A.Y.D.; formal analysis, A.Y.D.; funding acquisition, A.A.-N. and J.C.; investigation, A.Y.D.; methodology, A.Y.D. and A.A.-N.; project administration, A.A.-N. and J.C.; resources, A.Y.D.; Software, A.Y.D.; validation, A.Y.D.; writing—original draft, A.Y.D.; writing—review and editing, A.A.-N. and J.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Institute, A.T. Malware Statistics and Trends Report: AV TEST. 2022. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 19 July 2022).

	

Al-Hashmi, A.A.; Ghaleb, F.A.; Al-Marghilani, A.; Yahya, A.E.; Ebad, S.A.; Saqib, M.; Darem, A.A. Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model. IEEE Access 2022, 10, 42762–42777. [Google Scholar] [CrossRef]

	

Catak, F.O.; Yazı, A.F. A benchmark API call dataset for windows PE malware classification. arXiv 2019, arXiv:1905.01999. [Google Scholar]

	

Oliveira, A.; Sassi, R. Behavioral malware detection using deep graph convolutional neural networks. TechRxiv 2019. preprint. [Google Scholar] [CrossRef]

	

VMRay. Sans Webcast Recap: Practical Malware Family Identification for Incident Responders. 2021. Available online: https://www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap (accessed on 10 July 2022).

	

Sebastián, M.; Rivera, R.; Kotzias, P.; Caballero, J. Avclass: A tool for massive malware labeling. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Paris, France, 19–21 September 2016; pp. 230–253. [Google Scholar]

	

Heer, J.; Bostock, M.; Ogievetsky, V. A tour through the visualization zoo. Commun. ACM 2010, 53, 59–67. [Google Scholar] [CrossRef]

	

Srivastava, V.; Sharma, R. Malware Discernment Using Machine Learning. In Transforming Management with AI, Big-Data, and IoT; Springer: Berlin/Heidelberg, Germany, 2022; pp. 215–232. [Google Scholar]

	

Liu, X.; Du, X.; Lei, Q.; Liu, K. Multifamily classification of Android malware with a fuzzy strategy to resist polymorphic familial variants. IEEE Access 2020, 8, 156900–156914. [Google Scholar] [CrossRef]

	

Kakisim, A.G.; Nar, M.; Sogukpinar, I. Metamorphic malware identification using engine-specific patterns based on co-opcode graphs. Comput. Stand. Interfaces 2020, 71, 103443. [Google Scholar] [CrossRef]

	

Bayazit, E.C.; Sahingoz, O.K.; Dogan, B. A Deep Learning Based Android Malware Detection System with Static Analysis. In Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022; pp. 1–6. [Google Scholar]

	

Liu, X.; Lin, Y.; Li, H.; Zhang, J. A novel method for malware detection on ML-based visualization technique. Comput. Secur. 2020, 89, 101682. [Google Scholar] [CrossRef]

	

Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.g.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [Google Scholar] [CrossRef]

	

Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Zhang, K. A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding. Comput. Secur. 2019, 84, 376–392. [Google Scholar] [CrossRef]

	

Qiang, W.; Yang, L.; Jin, H. Efficient and Robust Malware Detection Based on Control Flow Traces Using Deep Neural Networks. Comput. Secur. 2022, 122, 102871. [Google Scholar] [CrossRef]

	

Palša, J.; Ádám, N.; Hurtuk, J.; Chovancová, E.; Madoš, B.; Chovanec, M.; Kocan, S. MLMD—A Malware-Detecting Antivirus Tool Based on the XGBoost Machine Learning Algorithm. Appl. Sci. 2022, 12, 6672. [Google Scholar] [CrossRef]

	

Usman, N.; Usman, S.; Khan, F.; Jan, M.A.; Sajid, A.; Alazab, M.; Watters, P. Intelligent dynamic malware detection using machine learning in IP reputation for forensics data analytics. Future Gener. Comput. Syst. 2021, 118, 124–141. [Google Scholar] [CrossRef]

	

Bahtiyar, Ş.; Yaman, M.B.; Altıniğne, C.Y. A multi-dimensional machine learning approach to predict advanced malware. Comput. Netw. 2019, 160, 118–129. [Google Scholar] [CrossRef]

	

Han, W.; Xue, J.; Wang, Y.; Huang, L.; Kong, Z.; Mao, L. MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208–233. [Google Scholar] [CrossRef]

	

Xiaofeng, L.; Xiao, Z.; Fangshuo, J.; Shengwei, Y.; Jing, S. ASSCA: API based sequence and statistics features combined malware detection architecture. Procedia Comput. Sci. 2018, 129, 248–256. [Google Scholar] [CrossRef]

	

Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578–594. [Google Scholar] [CrossRef]

	

Eskandari, M.; Khorshidpur, Z.; Hashemi, S. To incorporate sequential dynamic features in malware detection engines. In Proceedings of the 2012 European Intelligence and Security Informatics Conference, Odense, Denmark, 22–24 August 2012; pp. 46–52. [Google Scholar]

	

Lu, F.; Cai, Z.; Lin, Z.; Bao, Y.; Tang, M. Research on the Construction of Malware Variant Datasets and Their Detection Method. Appl. Sci. 2022, 12, 7546. [Google Scholar] [CrossRef]

	

Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based malware classifiers. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Crete, Greece, 10–12 September 2018; pp. 490–510. [Google Scholar]

	

Yazi, A.F.; Çatak, F.Ö.; Gül, E. Classification of methamorphic malware with deep learning (LSTM). In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]

	

Hansen, S.S.; Larsen, T.M.T.; Stevanovic, M.; Pedersen, J.M. An approach for detection and family classification of malware based on behavioral analysis. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; pp. 1–5. [Google Scholar]

	

Qiao, Y.; Yang, Y.; Ji, L.; He, J. Analyzing malware by abstracting the frequent itemsets in API call sequences. In Proceedings of the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, Australia, 16–18 July 2013; pp. 265–270. [Google Scholar]

	

Li, C.; Zheng, J. API call-based malware classification using recurrent neural networks. J. Cyber Secur. Mobil. 2021, 10, 617–640. [Google Scholar] [CrossRef]

	

Tang, M.; Qian, Q. Dynamic API call sequence visualisation for malware classification. IET Inf. Secur. 2019, 13, 367–377. [Google Scholar] [CrossRef]

	

Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API Calls. PeerJ Comput. Sci. 2020, 6, e285. [Google Scholar] [CrossRef]

	

Schofield, M.; Alicioglu, G.; Binaco, R.; Turner, P.; Thatcher, C.; Lam, A.; Sun, B. Convolutional neural network for malware classification based on API call sequence. In Proceedings of the Proceedings of the 8th International Conference on Artificial Intelligence and Applications (AIAP 2021), EL-Oued, Algeria, 28–30 September 2021. [Google Scholar]

	

Rogel-Salazar, J. Data Science and Analytics with Python; Chapman and Hall/CRC: London, UK, 2018. [Google Scholar]

	

Networkx. NetworkX Network Analysis in Python. 2022. Available online: https://networkx.org/ (accessed on 20 July 2022).

	

Graphviz. What Is Graphviz? 2022. Available online: https://graphviz.org/ (accessed on 20 July 2022).

[image: Computers 11 00160 g001 550]

Figure 1. Number of samples in each malware family.

Figure 1. Number of samples in each malware family.

[image: Computers 11 00160 g001]

[image: Computers 11 00160 g002 550]

Figure 2. The top 30 most frequently used API calls in each malware family. (a) Adware; (b) Backdoor; (c) Virus; (d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

Figure 2. The top 30 most frequently used API calls in each malware family. (a) Adware; (b) Backdoor; (c) Virus; (d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

[image: Computers 11 00160 g002]

[image: Computers 11 00160 g003 550]

Figure 3. An illustration of the concept underlying the Jaccard index in graphic form.

Figure 3. An illustration of the concept underlying the Jaccard index in graphic form.

[image: Computers 11 00160 g003]

[image: Computers 11 00160 g004 550]

Figure 4. API call visualization workflow using the Jaccard similarity index.

Figure 4. API call visualization workflow using the Jaccard similarity index.

[image: Computers 11 00160 g004]

[image: Computers 11 00160 g005 550]

Figure 5. Nodes and edges in Networkx.

Figure 5. Nodes and edges in Networkx.

[image: Computers 11 00160 g005]

[image: Computers 11 00160 g006 550]

Figure 6. The content of the Networkx dot file.

Figure 6. The content of the Networkx dot file.

[image: Computers 11 00160 g006]

[image: Computers 11 00160 g007a 550][image: Computers 11 00160 g007b 550]

Figure 7. API call similarity graph for each malware family. (a) Adware; (b) Backdoor; (c) Virus; (d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

Figure 7. API call similarity graph for each malware family. (a) Adware; (b) Backdoor; (c) Virus; (d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

[image: Computers 11 00160 g007a][image: Computers 11 00160 g007b]

[image: Computers 11 00160 g008 550]

Figure 8. Histogram distribution of the extracted features.

Figure 8. Histogram distribution of the extracted features.

[image: Computers 11 00160 g008]

[image: Table]

Table 1. API sequence length (average).

Table 1. API sequence length (average).

	Family
	Average of Sequence Length

	Spyware
	46,951

	Downloader
	6522

	Trojan
	13,818

	Worms
	33,614

	Adware
	6867

	Dropper
	16,008

	Virus
	18,369

	Backdoor
	11,293

[image: Table]

Table 2. Number of API calls found in each family.

Table 2. Number of API calls found in each family.

	Family
	Number of API

	Spyware
	228

	Downloader
	232

	Trojan
	255

	Worms
	236

	Adware
	212

	Dropper
	226

	Virus
	241

	Backdoor
	227

[image: Table]

Table 3. Shared API calls among the top 30.

Table 3. Shared API calls among the top 30.

	
Shared API Calls

	
listen

	
getfileversioninfosizew

	
ntcreatethreadex

	
regenumvaluew

	
httpopenrequesta

	
dnsquery_a

	
findfirstfileexa

	
module32nextw

	
ioctlsocket

	
getfilesizeex

	
send

	
getaddrinfow

	
__anomaly__

	
wsasocketa

[image: Table]

Table 4. Unique API in each family.

Table 4. Unique API in each family.

	Family
	Unique API
	Description
	No. Samples Occurrence

	Spyware
	rtlcreateuserthread
	The malware calls this API by passing the address of the load library to this API call to make the remote process run the DLL on behalf of the malicious code.
	7

	Downloader
	createdirectoryexw
	Creates a new directory
	2

	
	getusernameexa
	Retrieves the user’s name
	1

	Trojan
	wsasend
	Sends data on a connected socket
	1

	
	rtldecompressfragment
	Decompress part of a compressed buffer
	1

	
	rtlcompressbuffer
	For easy file compression implementation
	1

	
	cryptgenkey
	Decrypt the malware’s configurations
	1

	
	ntdeletefile
	Delete specific file
	1

	
	cryptdecodeobjectex
	Decode the structure of the encryption algorithm
	1

	Worms
	recvfrom
	To transfer data using UDP connections.
	1

	Adware
	-
	-
	-

	Dropper
	-
	-
	-

	Virus
	certopensystemstorea
	The local system’s certificates can be accessed using this function.
	1

	
	netgetjoininformation
	Function returns data on the specified computer’s join status
	1

	
	cryptunprotectdata
	Retrieve and decode the saved logins
	1

	
	findwindowexw
	Finds a window whose class name and window name match the given strings.
	1

	
	setinformationjobobject
	Restrictions for a job object
	1

	
	findfirstfileexa
	Directory search for a file or sub-folder with the supplied name and properties.
	1

	Backdoor
	-
	-
	-

[image: Table]

Table 5. Classifiers performance results.

Table 5. Classifiers performance results.

	
	Spyware
	Downloader
	Trojan
	Worms
	Adware
	Dropper
	Virus
	Backdoor

	RF
	
	
	
	
	
	
	
	

	Precision
	0.49
	0.77
	0.43
	0.66
	0.92
	0.55
	0.87
	0.62

	Recall
	0.46
	0.74
	0.40
	0.66
	0.87
	0.71
	0.77
	0.66

	F1 score
	0.48
	0.75
	0.42
	0.66
	0.89
	0.62
	0.82
	0.64

	SVM
	
	
	
	
	
	
	
	

	Precision
	0.58
	0.83
	0.19
	0.62
	0.91
	0.50
	0.74
	0.64

	Recall
	0.27
	0.39
	0.79
	0.26
	0.55
	0.43
	0.41
	0.27

	F1 score
	0.37
	0.53
	0.31
	0.36
	0.69
	0.46
	0.53
	0.38

	kNN
	
	
	
	
	
	
	
	

	Precision
	0.43
	0.63
	0.41
	0.47
	0.71
	0.37
	0.71
	0.44

	Recall
	0.39
	0.63
	0.31
	0.37
	0.82
	0.49
	0.61
	0.60

	F1 score
	0.41
	0.63
	0.36
	0.41
	0.76
	0.42
	0.66
	0.51

[image: Table]

Table 6. Comparison with state-of-the-art works.

Table 6. Comparison with state-of-the-art works.

	

	
Spyware

	
Downloader

	
Trojan

	
Worms

	
Adware

	
Dropper

	
Virus

	
Backdoor

	
RF

	

	

	

	

	

	

	

	

	
Precision

	
0.49

	
0.77

	
0.43

	
0.66

	
0.92

	
0.55

	
0.87

	
0.62

	
Recall

	
0.46

	
0.74

	
0.40

	
0.66

	
0.87

	
0.71

	
0.77

	
0.66

	
F1 score

	
0.48

	
0.75

	
0.42

	
0.66

	
0.89

	
0.62

	
0.82

	
0.64

	
LSTM (2 layers [30])

	
Precision

	
0.23

	
0.64

	
0.25

	
0.39

	
0.61

	
0.27

	
0.56

	
0.35

	
Recall

	
0.19

	
0.61

	
0.14

	
0.20

	
0.75

	
0.41

	
0.68

	
0.46

	
F1 score

	
0.21

	
0.62

	
0.18

	
0.26

	
0.67

	
0.33

	
0.61

	
0.40

	
LSTM (Case 2 [28])

	
Precision

	
0.38

	
0.71

	
0.30

	
0.45

	
0.77

	
0.62

	
0.72

	
0.55

	
Recall

	
0.32

	
0.72

	
0.38

	
0.52

	
0.91

	
0.51

	
0.76

	
0.51

	
F1 score

	
0.35

	
0.71

	
0.33

	
0.48

	
0.83

	
0.56

	
0.74

	
0.53

	
GRU (Case 2 [28])

	
Precision

	
0.36

	
064

	
0.40

	
0.60

	
0.74

	
0.61

	
0.68

	
0.40

	
Recall

	
0.38

	
0.74

	
0.32

	
0.52

	
0.90

	
0.46

	
0.76

	
0.65

	
F1 score

	
0.37

	
069

	
0.36

	
0.56

	
0.81

	
0.53

	
0.72

	
0.50

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
[Dropper dot E3 [Dropper dot E3

1 strict graph 502 295 [penwidth="1.0"];
7 e 03 e (penviathor1. 0"
H S04 75 Tpamidtneri 071
' S0 305 (pemeidehord 0%1)
s S0 167 (peneidthona on);
€ z 507 260 [penwidth="1.0"];
: g s00 i 10m)
. - S0 15 1011
s $is B4 (pemidthor 011
10 El s 30" tpemmidehert 00
B g s Sa

12 =3 513 403 &
52 a1z 8 s 30 (pemvidenrd 0%l
113 (abercis) s 15 (emidinr 011
1511 Oaberoinl sie 225

113 Oabeiis) 7 S

1 16 (ameiciel 510 16

1617 (abeiein] 510 i

19 10 (abetcis); s20]

2 19 [labe1os); o 11

2 20 taeizo) 522 138

uorjemIojur so8py

media/file4.png
Number of malware

Malware distribution with their families.

N iI II II II II
- | II II

N II II II II II
N II II II II II
200 - I II II II

Spyware Downloader Trojan Worms Adware Dropper Virus Backdoor

media/file18.png
232

3

361

\.

362

DIS

242

D o G
/ N -

@@
@@@@@@m
D@ G
ololo
©

100

S

®
)
5 &
2

-

ao@ D)

IO
GO

453 @ @ 432
D @
2!
45
373 (
:
263 @ 494

OO E@E
25
159
-
186
157

213 199
e

215

0 @wmg

8\ ©)@

]

00005800e
5968 m

ololololololalolo
O®®E®®®E®E® @
QEDDODODD

@

@

e

o)

@@
@@
O
©
O
o7
®
@
DG
S

~
2
&

471

I

%f
@

Q 0@@
595 (1“©©®@@
® @@@amme;aa;a@ @e
)9 0906, © @wwm@wmwo 05008
Qm O OQ @@O C@ @@Q@ @@O

s) ()
378
N
@
268
€
A\ 233
@
DI
A\

@

mxam - JINC m‘um/vﬁ

.@
1500950,
@omoo

®

Slole

424

L~

298

194

DIDICD,
142

D@ ® @ @
— _
28 84 283 @ /;D

323

ololo
321

e

@
HOHDE
@
@
o«
oG

325

480 (478 477
DG
oo

@@@ m

71 —
439

€

451
QZS 426 424
®®®E
S~
161

e —
162

179

olola

@@ @@
D @ @
178

114

274

Ve

@@
O
251 2
1;8 { 1;7
® @G
{

®®
D @

OIS
O®

olo
oo

o)

g)

00 9

QQ@

; olo
500,905°000 620 00p0E0000
05000909 Oq

@QQ @QQ

O®®

N
1

61010

g) @Z © | °©v
0 B

694 900i0.¢

CC@@O@ @Q@@Q @CO%@O @CQ S

elolelolelololo
o)clelolololololel
020E 0 OREEENEHEEE
HUXO, e;%m m Olelololololl0M000

() - wam)
Soreathonty B8icaice.:

Q@@Q QQ

@”egwweww « 000

099 0- 060 %8 20, p,ooa@@@o
50980, .@@.? mgm@@oa@@@

- < (3 @ L @@ -) (E)
p090x05 V0008 500% e

()

60 0o @a\ Yoo 0750

() N))(2) (3
650 09, 05.0050g 00 D55

a. D YOLA0 @@@@
mxxvo@ @@O@@@o

mwnm %“o Blelolo

000000
1nm cl6lofol
m@o@@os
9800000

Q@@@@@
m DEOOEE

342
w@ Ce

(341

D8
oea@ea@omayu

0@@@@@@ Y
@ao.ao

@
@@coocoowm@m

—

=

p

()

media/file3.jpg
Number of malware

1000

800

600

400

200

Malware distribution with their families.

Spyware Downloader Trojan Worms Adware Dropper Virus Backdoor

media/file19.jpg

media/file7.jpg
7 O
o_ o
D

O O _ ¢
o
Malware 1 Malware 2
Jaccard index=0/20=0 Jaccard index=10/10=1
(o))
oo
oo

Jaccard index=6/10=0.6

media/file10.png
~

e 3 e

First 300 malware Extract unique API calls Calculate Jaccard index

(Adware) of each sample between each pair
First 500 malware Extract unique API calls Calculate Jaccard index
(Trojan) of each sample between each pair
{ API_calls.txt] First 500 malware Extract unique API calls Calculate Jaccard index For each family, draw
(Worms) of each sample between each pair malware as a node
- < - - < number and draw edge
{ Labels.csv] First 500 malware Extract unique API calls Calculate Jaccard index between each pair if
(Spyware) of each sample between each pair jaccard index > 0.5

\ 2

using NeworkX and

Calculate Jaccard index GraphViz.

between each pair

Extract unique API calls
of each sample

First 500 malware
(Downloader)
Extract unique API calls
of each sample

D,
<

Calculate Jaccard index
between each pair

First 500 malware
(Virus)

\
>

D,
<

Calculate Jaccard index

First 500 malware Extract unique API calls

BIENEN
LILERT]
LIEERT

(Dropper) of each sample between each pair

media/file14.png
|=] Dropper.dot E3 | [=| Dropper.dot E3

1 strict graph { =— 502 4 —— 295 [penwidth="1.0"]; —
2 1 [label=1]: 503 11 —— 89 [penwidth="1.0"1;
3 2 [label=2]: S04 17 —— 479 [penwidth="1.0"1;
4 3 [label=3]: 505 27 -- 202 [penwidth="1.0"];
5 4 [label=4]: 506 32 -— 187 [penwidth="1.0"1;
& 5 [label=5]; 2 507 32 —— 260 [penwidth="1.0"1;
7 6 [label=6]: g_ 508 32 —— 482 [penwidth="1.0"1;
8§ 7 [label=T71:) 509 34 —- 150 [penwidth="1.0"];
o 8 [label=8]: 510 34 —— 374 [penwidth="1.0"1;
10 9 [label=9]; E 511 44 —— 50 [penwidth="1.0"];:
11 10 [label=10] = 512 51 -- 391 [penwidth="1.0"];
12 11 [label=11] - 5132 51 -- 403 [penwidth="1.0"];
13 12 [label=12] ﬁ 514 54 —— 378 [penwidth="1.0"1;
14 13 [label=13] 515 54 —— 489 [penwidth="1.0"1;
15 14 [label=14] 516 62 —— 223 [penwidth="1.0"1;
16 15 [label=15] 517 70 —- 382 [penwidth="1.0"1;
17 16 [label=16] 518 72 —— 160 [penwidth="1.0"1;
18 17 [label=17]. 519 72 -- 494 [penwidth="1.0"];
19 18 [label=18]; 520 72 -- 496 [penwidth="1.0"];
20 19 [label=19]; 521 76 —— 118 [penwidth="1.0"1;
21 20 [label=20]: 522 76 —— 159 [penwidth="1.0"1;

UOT]1RWIOJUT Sa3pj

media/file11.jpg
(%)
Q‘G

=4

media/file6.png
The top 30 most frequently used APIs in Adware

The top 30 most frequently used APIs in Virus

The top 30 most frequently used APIs in Spyware

The top 30 most frequently used APIs in Downloader

cocreateinstanceex regqueryvalueexw
aeateactctxw - freq oocreateinstanceex - freq
aeateprocessinternalw ayptunprotectmemaory
setsockopt regsetvalusexw
enumwindows enumwindows
exception 5 aeateactctow
- nnect = findwindoww
yfilew I regenumvaluea
getfileinformaticnbyhandleex @ shutdown
open £ urldownloadtofilew
urldownloadtofilew 5 connect
shutdown = ntenumeratekey
regenumvaluew T dosesocket
getaddrinfow 3 thread3Znext
ntopenthread Z uuidcreate
regsetvalueexw 5 regenumkeyw
thread32next = rinfow
ntenumeratekey .,“E' getfileversicninfosizew
squery_a = ry_a
getfilesizeex E getfilesizeex
module32nextw P regenumvaluew
send m module32nextw
_anomaly__ g send
ntcreatethreadex w anomaly
getfileversioninfosizew S listen
wsasocketa wsasocketa
ioctlsocket httpopenrequesta
listen ioctlsocket
httpopenreguesta ntcreatethreadex
i il - ———— | i i il | ————_|
0 50 100 150 200 250 300 350 0 200 400 600 800 1000
Freguency of API Frequency of API
(a) (b)
getfileinformationbyhandleex regenumkeyw
|dricaddll - freq gettemppathw - freq
ntopenfile urldownlecadtofilew
certopensystemstorea connect
ptdecrypt findwindoww
rtladdvectoredexceptionhandler ayptdecrypt
letevaluea 5 regsetvalueexw
thread32next E getaddrinfow
regsetvalusexw = thread32next
keyexw E regenumvaluea
urldownloadtofilew & shutdown
down -E regqueryvalueexw
ntopenthread @ cocreateinstanceex
getaddrinfow - dosesocket
exception = aeateactctxw
module32nextw u widcreate
regenumvaluea g ntenumeratekey
ntenumeratekey + getfileversioninfosizew
wn
o
mvaluew E module32nextw
getfileversicninfosizew a2 getfilesizeex
getfilesizeex = regenumvaluew
wsasocketa o listen
httpopenreguesta =
ioctlsocket wsasocketa
listen anomaly
send httpopenrequesta
anomaly ioctlsocket
ntcreatethreadex ntcreatethreadex
findfirstfileexa - - : : ' findfirstfileexa - - : : !
200 400 600 800 1000 200 400 600 800 1000
Frequency of API Frequency of API
(c) (d)
loadresource ueryvalueexw
ntresumethread - freq getfileinformationbyhandleex - freq
thread32next aeateactctxw
findwindoww findwindoww
dosesocket getaddrinfow
setfileattributesw - uuidcreate
regsetvalueexw £ gettemppathw
ntopenfile ;0 cbtainuseragentstring
connect - regenumvaluea
regenumvaluea n |dricaddll
urldownloadtofilew E down
regqueryvalueexw B cocreateinstanceex
uuidcreate b ntenumeratekey
getaddrinfow 2 thread32next
aeateactctxw = dosesocket
shutdown) regenumkeyw
getfileversioninfosizew a setfileattributesw
ntenumeratekey = getfileversicninfosizew
regenumvaluew E ry a
module32nextw E module32nextw
dnsquery_a = regenumvaluew
listen a getfilesizeex
getfilesizeex 2 listen
wsasocketa E send
httpopenrequesta anomaly
ioctlsocket httpopenrequesta
send wsasocketa
anomaly ioctlsocket
ntcreatethreadex ntcreatethreadex
findfirstfileexa - - - : : : : findfirstfileexa - - : : !
100 200 300 400 500 600 700 800 200 400 600 800 1000
Frequency of API Frequency of API
(e) (f)
openkeyexw drawtextexa
I.m;lri:cr;;pentr!\"read - freq internetopenw - freq
ntclose getsystemwindowsdirecterya
rtladdvectoredexceptionhandler rtladdvectoredexceptionhandler
dresourceexa uuidcreate
cbtainuseragentstring 5 getfileinformationbyhandleex
_ exception & osesocket
aryptdecrypt 3] urldownloadtofilew
getfileinformationbyhandleex o enumwindows
enumvaluea E getaddrinfow
regqueryinfokeya o regsetvalueexw
setfileattributesw < ntopenfile
ntallocatevirtualmemory E aeateactctxw
urldownloadtofilew = nnect
getaddrinfow = shutdown
copyfilew © module32nextw
thread32Znext) ntenumeratekey
regenumvaluew E regenumvaluew
module32nextw i regenumvaluea
dnsquery a E ry_a
getfilesizeex = getfileversioninfosizew
send o listen
listen B httpopenrequesta
getfileversioninfosizew o
wsasocketa = ioctlsocket
httpopenreguesta send
ioctlsocket anomal
maly getfilesizeex
findfirstfileexa ntcreatethreadex
ntcreatethreadex : - : :] findfirstfileexa : - : :
(200 400 600 800 1000 200 400 600 800

(8)

Frequency of API

(h)

Frequency of API

media/file15.jpg
®

@

nav.xhtml

 computers-11-00160

 		
 computers-11-00160

media/file1.png
5

Input :Unique API call sets X
foreach x € X do
foreach x,,.1 € X do
Intersection = len(x, M X;41)
Union = len(x, U Xy41)
Similarity index = Intersection /Union
if Similarity index > 0.5 then
Create graph edge
d

en
d

£
<
)
E
g
z
z
o
2
5

media/file2.png
Input :Dataset of malware API calls X, family class Y

foreach x € X do

1
2 | foreach APLall € x do

s \ APl:all/rcqnem = (Numbero foccurrences)
B

s rmtefealurwecmr

s end

7 Xtvains Xtests Yrains Y1est <—Split rate (X,Y) 0.8 for training
Output:Malware class classifier

media/file20.png
Worms

Trojan

Adware

1000

800

600

400

200

1000

800

600

400

200

300

il
200

100

Virus

Downloader

Spyware

1000

800

600

400

200

1000

1000

800

800

600

00

400

200

Backdoor

400

200

800

600

400

200

Dropper

BOO

00

400

200

media/file5.jpg

media/file16.jpg
0,009 00060000
%wm@w@ 50 058550550
230080 0 5000
360980 20 980001
. mmo%%@@%

9,083
gsoces 2888

30! 0
000 @%E 60883880028
960,900 69600
00 ao000008008
o 26db0g00eco &
G800 08 3
5935
08
B,
0.0
8
49
bt
S
0%
bt
9!
o
8900000
L 8800360
E: 6000660 B
@ 000!

©,

1) 00,
0 00500
%95 90

media/file12.png

media/file9.jpg

media/file0.png

media/file17.png
OEUEE

&

— 95 —
291 (13
ICD) Sl

: NOIG @ @
28) 261 »
@(@ @@\i)@{o\)_‘/ CS/ 413%@@%—%/(-’3\12 @@
& OO e oo OOECE S <)
e OO O®E I L G® o

OO® o m e @O RS
SISIC e p\;)‘\ji@% @@/g\@ PIE Ca
- 81 82 83 84 85 87

ole

AYA

a<\
A

0
/‘@

ololelolele

ST OEEO®®EE® DUWWEE

TOOOE®EE®®® DOEOE 5 5 =
321

OEEE@®®®®® DO 5

EEEO®E®®®®E® POE® F

)
¢
0
¢
€
©
0
0
9
)

S D DD _DDOOOOODDHmE®
&C DS DG

| &
\

|

% -
-
G
"
¢

8
a

®
ol0
9
©
o0
00
SN
®
©
®
9
®
9
9
OF
X

)18

ol0
5@
lojete
A @O
O
ﬁe‘f
5
0@ (
olo10
Slo
Ololo
90
@

G
&)
)
(
;
) (
(
)
)
G
0
©
> _/

/E
)

J
g
. g
) 7
)RY0
@4%

(2

%

—

Ol
(=
)
10]
O
a‘
0
) ()
@

[
)

2
S

o

3

;@
|2
%
oF
s
]
€
/E

3
3
1j:<\
-
5]
£
3

01,
opY,
o
@ L
eo
@(
@
©

&
3

,@15
&
Ole
O
@@
(2 -
a 2
O
)

©
©
©
@ |

(

®
101010

0O6
elclc

01010

i)
®

Y
0,

=}
£
N
8
4
£
3

o
olo

G\
Y
<\
W
Ny

°@@@®®
0

/.?)

J0IC,

() (s
06
DO
B¢
OI€

jelelclolelo
EHEEE

N

®
g
@
g
(é
(¥
[o[o

.
&
&
=
&
3

media/file8.png
Malware 1 Malware 2
Jaccard index=0/20=0 Jaccard index=16/10=1
OO0
OO
00

Jaccard index=6/106=0.6

