
Citation: Alazzam, H.; Al-Adwan, A.;

Abualghanam, O.; Alhenawi, E.;

Alsmady, A. An Improved Binary

Owl Feature Selection in the Context

of Android Malware Detection.

Computers 2022, 11, 173. https://

doi.org/10.3390/computers11120173

Academic Editors: Phivos Mylonas,

Katia Lida Kermanidis and Manolis

Maragoudakis

Received: 7 October 2022

Accepted: 22 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

An Improved Binary Owl Feature Selection in the Context of
Android Malware Detection
Hadeel Alazzam 1,* , Aryaf Al-Adwan 2,*, Orieb Abualghanam 3,* , Esra’a Alhenawi 4

and Abdulsalam Alsmady 5

1 Department of Intelligent Systems, Al-Balqa Applied University, Al-Salt 19117, Jordan
2 Department of Autonomous Systems, Al-Balqa Applied University, Al-Salt 19117, Jordan
3 Department of Computer Science, University of Jordan, Amman 11942, Jordan
4 Department of Software Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
5 Department of Computer Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
* Correspondence: hadeel.alazzam@bau.edu.jo (H.A.); aryaf_aladwan@bau.edu.jo (A.A.-A.);

o.abualganam@ju.edu.jo (O.A.)

Abstract: Recently, the proliferation of smartphones, tablets, and smartwatches has raised security
concerns from researchers. Android-based mobile devices are considered a dominant operating
system. The open-source nature of this platform makes it a good target for malware attacks that
result in both data exfiltration and property loss. To handle the security issues of mobile malware
attacks, researchers proposed novel algorithms and detection approaches. However, there is no
standard dataset used by researchers to make a fair evaluation. Most of the research datasets were
collected from the Play Store or collected randomly from public datasets such as the DREBIN dataset.
In this paper, a wrapper-based approach for Android malware detection has been proposed. The
proposed wrapper consists of a newly modified binary Owl optimizer and a random forest classifier.
The proposed approach was evaluated using standard data splits given by the DREBIN dataset in
terms of accuracy, precision, recall, false-positive rate, and F1-score. The proposed approach reaches
98.84% and 86.34% for accuracy and F-score, respectively. Furthermore, it outperforms several related
approaches from the literature in terms of accuracy, precision, and recall.

Keywords: Android malware detection; binary owl optimizer; DREBIN dataset

1. Introduction

Malware is the abbreviation of “Malicious Software”, and refers to unwanted types
of software regardless of its type, intent, or distribution method (e.g., virus, Trojan horse,
worms, spyware, etc.) [1]. The Malware infects systems with the intent to gain access to
sensitive information. Malware detection is the process of detecting malware on a host
device, or the process of determining whether a program is malicious or benign. Malware
continues to be a problematic security issue, especially in the software and cyber-security
fields. Until the advent of smartphones, malware was only significantly found in computers.
However, recent technological advancements have seen malware become conspicuous in
smartphones and mobile devices that run on the Android platform. The fact that Android
is the most popular and widely used platform for smartphones and mobile devices renders
it an ideal target for malware attacks. Nonetheless, there have been significant efforts
from the corresponding stakeholders aimed at establishing concrete measures for detecting
malware in Android platforms.

Notably, the fact that the majority of applications utilized in an Android platform can
be accessed from a common source provides leeway for publishers of malware content.
As such, there is always the likelihood that a user with malicious intent can publish an
application that is intended to act as malware. In the majority of cases, a potential malware
application usually mimics a typical app though it is designed to achieve root control

Computers 2022, 11, 173. https://doi.org/10.3390/computers11120173 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11120173
https://doi.org/10.3390/computers11120173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-6768-9696
https://orcid.org/0000-0002-2485-9237
https://doi.org/10.3390/computers11120173
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11120173?type=check_update&version=3

Computers 2022, 11, 173 2 of 19

functions. While some applications might ask for access privileges to features such as
contacts and text messages, a malware app only requires to be installed in the system to
achieve the same purpose [2].

Worse yet, when a malware application is authorized on an Android platform, the re-
sults are nothing less than catastrophic. There is the possibility of the malicious app gaining
access to confidential and private information [3]. Yet, such an app can send secure in-
formation to unauthorized parties primarily for personal reasons, including revenge and
blackmail [4]. Then again, a malicious application residing in an Android-based smart-
phone can be designed in such a way that it culminates in the deactivation of core functions.

With regard to deactivating or stopping core functions and processes, the problem
is exacerbated by the fact that it is imperatively difficult for an unsuspecting user to
detect it. In the majority of cases, Android-based malware takes the form of friendly or
free applications aimed at boosting system performance [5]. A good case in point is an
application that offers the premise to block unnecessary adverts. In such a scenario, a user is
more inclined to install and allow the application to have root access to the system without
the realization that it is actually a malware app.

The problem with having a malware-infected system is that it is imperatively difficult
to control the level of functionality executed by the malicious app. A good example is a
malware app that overtakes the mobile phone browser’s interface and, in effect, displays
unnecessary adverts. The adverts might not only be frustrating, but also have the capacity
to utilize much-needed phone resources, including memory and storage [6]. The worst
thing is that malware disguised as adverts are strategically designed to utilize smartphone
resources with the objective of generating resources from illegitimate adverts.

With the continued evolution of malware applications designed for the Android plat-
form, it is noteworthy that several concerted efforts have been put in place for a correspond-
ing mitigation process. In particular, the majority of Original Equipment Manufacturers
(OEMs) implement requirements aimed at enhancing the security of devices running on
an Android platform [7]. Such an arrangement incorporates the utilization of specific
applications designed to detect, prevent, and remove a potential malware application [8].
While some applications used to detect malware are installed by default, others require the
specific intervention of the device’s user [9]. However, most importantly, the objective is
ensure that a typical Android system is equipped with the capacity to detect the presence
of any malware content.

As per the assertions made by [10], the changing technological dynamics make it
difficult to have in place a universal platform aimed at enhancing the security of an
Android platform against malware. Notably, the traditional security systems based on the
distributed computing models are increasingly being replaced by state-of-the-art cloud-
based systems [1]. The effect is that an application published on one day can be mimicked
and distributed the next day under the same identity, albeit integrated with malicious
content. In particular, it does not guarantee that an application published for an Android-
based device can avoid being infected with malware.

Understandably, the presence of malware in an Android-based mobile device will
always remain a possibility. Even as OEMs and Android developers continue to implement
robust security measures, so do the sophistication and advancement methods employed
by malicious users. A common theme that emerges is that there is not a single mechanism
or security approach that can be used to detect and remove malware on an Android
platform [11]. As such, the subject of discussion is aimed at exploring innovative ways
in which malware content can be detected on a device running on an Android platform.
In this paper, a novel approach for detecting malware on an Android platform has been
proposed. The proposed approach relies on using an ensemble learning classifier beside an
Owl optimizer for choosing the most informative set of features that identify the behavior
of a malicious application from a benign one.

The contributions of this paper are summarized as follows:

Computers 2022, 11, 173 3 of 19

1. A comprehensive review of the latest research for detecting malicious applications on
the Android platform is presented.

2. A detailed analysis of DREBIN dataset is provided.
3. A modified feature selection based on a binary owl optimizer is proposed.
4. A lightweight machine learning approach that is based on ensemble learning and

binary Owl optimizer is proposed.

The rest of the paper is organized as follows; Section 2 reviews the latest up-to-date
related works, Section 3 presents the proposed feature selection based on binary Owl
algorithm. Section 4 discusses the DREBIN dataset, while Section 5 illustrates the used
methodology for designing malware detection approach for Android platform. Section 6
discusses the achieved results. Section 8 presents the conclusion.

2. Related Works

Recently, Android malware attacks have received special attention from researchers.
In this section, we present the latest research related to Android malware attacks, especially
the one used in the DREBIN dataset for evaluation.

Some studies used ensemble learning for identifying Android malware applications
such as in the work [12], where the authors proposed a framework called (PIndroid) that
used ensemble learning to identify the Android malware application. The proposed frame-
work was based on permission and intent. The achieved results show that the proposed
framework provides an accuracy of 99.8% after applying it to 1745 real-world applications.

Furthermore, in [13], the authors proposed a scalable approach to detect malware
using ensemble learning and Apache Spark. The ensemble learning used is based on two
methods for calculating ranks and weights of the base classifiers. The optimal subset of
features was selected based on weights for majority voting. The proposed ensemble method
was evaluated using 198,350 files and compared with classical ensemble methods. Their
proposed method produced a higher accuracy than the examined ensemble methods.

Other studies used machine learning techniques in general for developing an Android
malware detection and attribution framework. For Android IoT devices, Kumar et al.
in [14] designed a malware detection system that combines the benefits of machine learning
methods and blockchain technology. The process begins with the extraction of malware
data using clustering and classification techniques. Clustering methods iteratively remove
non-informative features to differentiate between malware and benign applications, while
the naive Bayes classifier is used to implement the classification algorithm.

Finally, the blockchain is used to store this data. The proposed framework provides
better malware detection accuracy.

In [15], the proposed model was developed for Android malware detection. Their
model involved the deployment of a Factorization Machine architecture and the extraction
of characteristics from Android applications. They employed clean applications that were
gathered from internet app stores, as well as the DREBIN and AMD datasets, for evaluation.
According to the results, the suggested technique scored 100% for precision on the DREBIN
dataset and 99.22% on the AMD dataset.

The study by [16] serves as an illustration of works that are concerned with deep learn-
ing for the development of Android malware detection frameworks. The authors employed
deep learning techniques and unprocessed API method call sequences to create MalDozer,
an automatic Android malware detection and attribution framework. This framework
can be installed on servers, mobile, and Internet of Things (IoT) devices. The Malgenome,
DREBIN, merged, and MalDozer datasets, which contain between 1 K and 33 K malware
apps and 38 K benign apps, were used by the authors for evaluation. The suggested
framework has an F-score ranging from 96 to 99 percent and can identify Android malware
and their actual families.

Furthermore, in [17] the researchers offered a number of deep learning models that
each focus on learning a particular data distribution for a certain class of malware in order
to learn the complex data distribution of the malware dataset. They used Apache Spark’s

Computers 2022, 11, 173 4 of 19

parallel method to accelerate the model-building process. The authors created a dataset of
3.4 million benignware samples from multiple reliable sources and 2.2 million malware
samples taken from six primary sources for evaluation. Results indicate that the suggested
model performs better than more conventional methods such as Support Vector Machine,
decision trees, and a single deep learning model, and is better equipped to handle the
complex malware data distribution.

Later in 2021, Millar et al. developed a multi-view deep learning Android malware
detection model [18]. They evaluated the suggested model using metrics from the DREBIN
and AMD benchmarks, including weighted average detection rates, false-positive rates,
and F1 score. Comparing the suggested model to state-of-the-art works, the weighted
average detection rates show an improvement of up to 57%. For the DREBIN dataset and
the AMD benchmark dataset, it provides weighted average detection rates of 91% and 81%,
respectively.

Another Android apps framework developed by authors in [19] is based on both
signature- and heuristic-based analyses. The proposed framework was tested on M0DROID
Dataset and achieved 99.81%, 0.38 and 100% for accuracy, FPR and TPR, respectively.

Many research papers have surveyed malware detection techniques used in the litera-
ture such as the work by Odusami et al. in [20], where the authors conducted a survey of
state-of-the-art malware detection techniques in order to detect gaps in previous methods
for guiding the upcoming researchers to develop more effective metrics for the unknown
malware in the proposed methods. The results of this survey indicated that machine
learning presents the most promising direction based on the detection accuracy. They
recommended that researchers focus on deep learning approaches using large datasets for
achieving better detection accuracy.

By scanning studies from the past seven years, from 2014 to 2021, the authors of [21]
conducted a machine learning techniques survey for Android malware detection. They
summarized each study from five different perspectives: analysis type, dataset, feature
extraction method, performance metrics and ML classification techniques. Based on their
observations, they illustrated the current trends in research and future directions. Results
reveal that most methodologies adopt a diverse set of fundamental factors, such as dataset
metadata, analytical methods, and assessment criteria.

Rana et al. evaluated the performance of various machine learning models for Android
malware detection. They used the DREBIN dataset for evaluation where results demon-
strated that using machine learning classifiers for Android malware detection provides an
accuracy of over 94% [22].

Recently, the authors in [8] focused on studying the effectiveness of supervised ma-
chine learning algorithms for malware detection in Android OS using six well-known
classification techniques including (Bernoulli Naive Bayes, Random Forest, L1 and L2 regu-
larization, Shallow neural network, and SVM) under different configurations, and recording
the most significant set of features that each classifier depends on for building its decision.
They used DREBIN dataset with 123,453 goodware versus 5560 malware applications
associated to the 10 feature sets for evaluation. The results showed that employing approxi-
mately 1000 features from the original DREBIN feature set is sufficient for all the models to
reach the highest classification accuracy.

In 2021, researchers in [23] proposed two attack models based on the data poisoning
attack and the evasion attack for investigating several types of adversarial example attacks.
They used Support Vector Machine (SVM) with different types of kernel functions to build
the malware detector for the Android system. They used some real Android application
datasets which contain “malware”, and “benign” applications for evaluating the proposed
detection approach capability to detect adversarial example attacks. Results show that
evasion attacks are more difficult to detect via the malware detection system than data
poisoning attacks.

In the same year, in [24], authors introduced a code deobfuscation technique with an
Android malware detection system. In order to eliminate interference due to the size of

Computers 2022, 11, 173 5 of 19

the application, they proposed interaction terms based on identifying feature interactions.
For evaluation they used the DREBIN dataset, and results show that the proposed Android
malware detection model achieves an accuracy of 99.55% and a 94.61% F-score.

That same year, the authors published [24] which combined an Android malware
detection system with a code deobfuscation technique. They suggested interaction terms
based on recognizing feature interactions to remove the interference brought on by the
scale of the application. They employed the DREBIN dataset for evaluation, and the results
indicate that the suggested Android malware detection model achieves a 99.55% accuracy
rate and a 94.61% F-score.

Arif et al. focused on risk assessment using the fuzzy analytic hierarchy process
(AHP) method in [25]. They proposed a mobile malware detection system. For evaluation,
they used 10,000 samples from the “DREBIN”, and “AndroZoo” datasets with permission-
based features. This method raised mobile users’ awareness concerning the importance of
accepting any permission application request. The proposed detector has a high accuracy
rate of 90.54%, and a risk assessment more than 80%.

Selvaganapathy et al. investigated the effects of evasion attacks on an anti-malware
program that relies on the feed-forward deep neural network model developed by [26]
by deploying a deep learning network in order to detect malware attacks. They used the
DREBIN dataset for evaluation, with recall, specificity, false-positive rate, false-negative
rate, accuracy, and F1 score as evaluation metrics. The findings demonstrated the impor-
tance of developing adaptive defenses to foster a secure learning model [27].

Table 1 presents a summary of the latest works in the literature on detecting malicious
applications on the Android platform with the dataset, evaluation metrics, and the model
used for evaluation. All the listed related works used a random subset of the Drebin dataset
combined with applications from other sources, which makes it challenging to verify their
results owing to the lack of dataset availability. Our proposed approach has been evaluated
using the standard splits provided by the Drebin website. Moreover, the main issue of
the Drebin dataset is the complexity of its structure. In this paper, a simplified version
of the Drebin dataset is introduced. Furthermore, the proposed binary version of the
Owl optimizer accelerates the convergence curve significantly, which affects the whole
system’s performance.

Table 1. Summary of related works.

Reference Datasets Evaluation Metrics Model

[16] Malgenome, DREBIN, merged,
and MalDozer dataset.

F-score, false alarms, precision,
recall, and runtime. Neural networks.

[8] DREBIN dataset.

F-score, precision, recall, true
negative rate, accuracy, false
positive rate, and Area Under
Curve (AUC).

Naive Bayes, L1 and L2
regularization, Random
Forest, Support Vector
Machine (SVM), and Shallow
neural network.

[23]

Original DREBIN, malware dataset,
and a modified DREBIN dataset,
The benign applications are
obtained from Google play.

Precision, recall, and F-score. SVM.

[17]
Constructed dataset with
2.2 million malware samples, and
3.4 million benignware samples.

Area under curve, true positive
rate, and false positive rate. Deep learning model.

Computers 2022, 11, 173 6 of 19

Table 1. Cont.

Reference Datasets Evaluation Metrics Model

[14]

Combined data set from the Chinese
App Store and Google Play Store,
containing 5560 malware samples
and 6192 benign ones.

True positive rate, F-measure,
false alarms, and classification
accuracy.

Multi feature Naive Bayes
algorithm.

[15]

DREBIN and Malware Dataset
(AMD) datasets, in addition to
clean applications which collected
from online app stores.

Precision, recall, accuracy, F1,
and False-Positive Rate.

New Factorization Machine
(FM) model.

[12] Dataset contains 1745 real world
applications.

True positive rate, false alarms,
accuracy, F-score, model build-up
time, and area under curve.

Naive Bayes, Decision Table,
Random Forest, Sequential
Minimal Optimization,
Decision tree, and Multi
Lateral Perceptron (MLP).

[24] DREBIN dataset and AndroZoo
dataset.

Accuracy, precision, F-score,
recall, and area under curve.

CatBoost, LightGBM,
RandomForest,
and LineraSVM.

[22] DREBIN dataset.
Accuracy, precision, F-score,
recall, area under curve, and false
positive.

Decision Tree, Gradient
Boosted , Random Forest,
Extremely Randomized Tree,
Neural Networks, k Nearest
Neighbors, Discriminant
Analysis, NB , Logistic
Regression, Bagging, K
Means, and SVM.

[27] DREBIN dataset.
Recall, specificity, false-positive
rate, false-negative rate, accuracy,
and f1_score.

Feed-forward deep neural
network model.

3. Owl Optimization Algorithm

The Owl algorithm is a recent nature-inspired optimization algorithm developed
by [28]. The Owl optimizer mimics the actions of owls that hunt at night and use their
hearing rather than their sight to locate prey. The Owl optimizer is a population-based
algorithm that exploits the unique features of owls, such as their feathers, binocular vision,
and binaural hearing, which are optimized for silent flight [29]. Owls bear a unique
auditory system that causes the sound to reach one ear before the other. As a result, they
have evolved a remarkable system for sound localization that is based on the intensity at
the surface of a sphere surrounding the prey, as illustrated in Figure 1.

Figure 1. Owl Hunting mechanism.

The Owl search algorithm contains the following phases [30]:

Computers 2022, 11, 173 7 of 19

• Initial Population: The forest’s population of owls is represented by the initial set of
random solutions. Each Owl is represented by a vector of length equal to the number
of features in the search problem.

• Owl Evaluation: all Owls in the population are evaluated using a target evaluation or
fitness function. The evaluation value indicates how well the solution fits the intensity
of the information detected by the owl’s ear. The best Owl is the one that receives the
maximum intensity in the case of the maximization problem, while the worst Owl is
the one that receives the minimum intensity. The intensity information for Owl Oi can
be normalized using Equation (1).

Intensity(Oi) =
f (Oi)−Oworst

Obest −Oworst
(1)

where f (Oi) is the fitness value for the Owl Oi. Obest and Oworst are the best and the
worst solutions in terms of their fitness value in the current population.

• Update Owl Location: each Owl updates its position toward the prey. Here, the fittest
owl with the highest fitness value is the prey. All the Owls update their locations
according to the distance toward the prey as in Equations (2) and (3).

Ri = ‖Oi, V‖2 (2)

where V is the location of the prey achieved by the fittest Owl, and Ri is the distance
between the target prey and Owl Oi.

ICi =
Intensity(Oi)

Ri
2 + α (3)

where α is a random value between [0, 0.5] that represents the noise and ICi is the
intensity changed toward the prey.

Based on the Intensity changed IC, the Owls will update their positions accordingly
by Equation (4).

Oi
t+1 =

{
Oi

t + β ∗ ICi ∗ ‖αV −Oi
t‖Pvm < 0.5

Oi
t − β ∗ ICi ∗ ‖αV −Oi

t‖Pvm ≥ 0.5
(4)

where β decrements linearly from 1.9 to 0 [29]. β first introduces significant changes and
encourages the investigation of the search area, and Pvm is the likelihood of Owl movement.

Modified Binary Owl Optimizer

In order to hasten the search step, the Owl optimizer has been discretized into a binary
Owl version. Each Owl Oi represents a solution, the Oi is a binary vector where its length
is equal to the number of feature vectors. The feature vector is binary where 0 indicates the
absence of the corresponding feature and 1 indicates the presence of the feature.

The first two phases of the modified binary Owl optimizer are the same as the original
version. Whereas the updated Owl location phase is based on the similarity between the
Owl Oi and Obest using Equation (5) since here we deal with binary vectors.

Distance(Ri) =
o f similarity f eatures
length o f f eature vector

(5)

For instance, the number of similar features for “11001” and “11010” is 3, and the
Distance Ri =

3
5 = 0.6. The Intensity change ICi is calculated according to Equation (6).

ICi =
Intensity(Oi)

Ri
+ α (6)

where α is a random number between [0, 0.5].

Computers 2022, 11, 173 8 of 19

Finally, all Owls’ locations will be updated according to Equation (7).

Oi
t+1 =

{
Oi

t Obest < r
Oi

t , Oi ≥ r
(7)

where r is a uniform random number.
Note that the Owl population is stored in a set, if one or more Owls are the same, then

a new randomly generated solution will join the set instead of the replicated one. In this
way, a new random solution will always be provided the chance to exit the local optima.

4. Data Description

DREBIN dataset has been used to build the proposed malware detection approach for
the Android platform. The DREBIN dataset consists of 123,453 benign applications from the
Play Store and 5560 Malware applications’ samples. The collected applications have been
represented in a lightweight format by extracting a set of features from different sources [31].
The dataset set preparation process from the Android applications includes extracting
features from the Android manifest and Dex code. Every Android application must have
an Android manifest.xml file that describes the essential information about the app to
the Android build tool and platform (e.g., permissions, intents and activity) to support
application installation and later execution [32]. The Dex code file is a compiled code written
for Android and Google Linux-based mobile phone platform. The disassembled code gives
information about the API calls and strings contained in the application. The feature sets
selected from the “manifest and the Dex code” file are listed in Table 2 [33].

Table 2. Extracted features from manifest and Dex code files.

Manifest File

Feature Set Description

Hardware Components Contains the requested hardware components such as request access to the mobile camera.

Requested permissions Permission granted by the user at the installation time, such as SEND_SMS Permission

App Components There are four types of application components (services, activities, broadcast receivers,
and content providers).

Filtered Intents
On Android, intra-process and inter-process communications are performed through
intents. This is a passive data structure that works as a synchronous message, allowing
sharing of information between different components and applications.

Dex Code

Restricted API Calls API calls are restricted by permissions, inside Dex code, this set searches for API calls that
do not have an associated permission.

Used permission The set of permissions that are requested in manifest and actually used based on the
disassembled code. Sometimes they refer to it as real permission.

Suspicious API calls

API calls that are frequently used in malware applications and requested access to sensitive
data or resources. There are four types of these API calls; API calls to access sensitive data,
API calls for communicating over the internet, API calls for sending and receiving SMS
messages and finally API calls used frequently for obfuscation.

Network Addresses This includes any IP address, URL, or host-name found in the disassembled code.

DREBIN Dataset Structure

The DREBIN dataset contains 5560 Android applications from 179 different malware
families in addition to 123,453 benign Android applications. The data were collected in the
time period between August 2010 and October 2012 [31]. The main challenge with DREBIN
is the scattered record’s structure. Multiple files should be mapped to obtain the whole

Computers 2022, 11, 173 9 of 19

record with the label class. Thus, extensive pre-processing should be performed before
building a model. On the official site, the malware applications were grouped into five
separate links, where each link contained 1000 applications [32].

The dataset is structured as follows:

• Feature vector folder: this folder contains the feature vector for the applications, where
each application’s feature vector is saved in a separate file. Each file has been titled by
the application signature in (SHA256) format. Moreover, in the feature vector folder,
there are 129,013 files for all benign and malware applications. The feature vector files
contain all features selected from the application (“android manifest and Dex code”)
including the requested permissions, the “used permission”, URLs, API calls, etc.

• Family Labels file: this file lists all the signatures (SHA256 hash) of all applications
with the corresponding family label (benign, malware family).

• Dataset Splits folder: this folder contains 10 sub-folders, each sub-folder contains
training, testing, and validating files. These files only contain a list of signatures for
the applications (SHA256 hash).

Figure 2 illustrates the dataset structure.

Figure 2. DREBIN Dataset Structure.

It is noted that the extracted feature vector files have 545,356 sparse features which
contain numerous typos and irrelevant features (i.e., requested permission that was never
used, URLs for images, etc.). Moreover, the dataset requires an extensive mapping to
concatenate the application feature vectors with their corresponded signature, and family
label. Furthermore, the same work must be performed for all data splits. In this paper,
an enhanced simplified version of the DREBIN dataset has been introduced. The enhanced
version will help researchers to use the DREBIN dataset for evaluation purposes.

Computers 2022, 11, 173 10 of 19

5. Malware Detection Model Development
5.1. An Enhanced Simplified Version of the DREBIN Dataset

As mentioned earlier, DREBIN dataset has many challenges with respect to its struc-
ture. In this section, a new enhanced and simplified version of DREBIN dataset is intro-
duced. The first challenge presented by the DREBIN dataset is the variety of feature vector
files. There are no standard features and you can also find the same permission request
with different syntax including typos. Moreover, the number of features is huge since the
feature vector includes many irrelevant features including the following:

• All URLs are removed from the feature vector, since every application has a unique
URL referring to images or an external link.

• All features in the requested permission set that are never used and do not affect the
functionality of the application.

• The requested permissions with typos. After removing the irrelevant features men-
tioned above, only distinct features from all files are combined to form the standard
feature vector.

The second challenge presented by the DREBIN dataset is the scattered files. The re-
quired information for each application should be collected from three locations (feature
vector file, the name of the feature vector, and family label file). A mapping process should
be conducted to correlate the required information. Moreover, training and testing files
only contain the signature of the applications. The simplified version of the DREBIN
dataset prepared is to include all information in a new single structure. In the simplified
version, the application signatures and families from the “SHA family” file are mapped
and concatenated with the content of feature vector files, where each row has the “SHA256”
signature, standard feature vector and the family as shown in Figure 3.

Figure 3. The combined file structure.

Each row content is filled by “0” or “1” indicating whether the feature is used in the
application or not. Moreover, the class label “malware families and benign” is transferred
to binary classes 0 and 1, where the 0 indicates a benign application, and 1 indicates a
malware application. This process has been performed for the 10 standard data splits listed
on the DREBIN official site. This will make it easier for researchers to use the DREBIN
dataset and conduct a fair comparison with other approaches.

5.2. Feature Selection and Model Development

The DREBIN dataset contains 545,356 sparse features. After removing the requested
permission feature set and discarding the URL features, the remaining number of features
was reduced to 476 distinct features [33].

For the enhanced version of the DREBIN dataset, feature selection was performed
using the modified binary Owl optimizer. Only 476 distinct features have been used as
input for the modified binary Owl optimizer. The first population has been generated
randomly, where each solution “Owl” Oi is a binary vector with length 476. The “0”
indicates the feature’s absence in the solution, where “1” indicates presence of the feature
in the solution. All the Owls will be evaluated in terms of the fitness function presented in
Equation (8) after building the model [34].

Fitness Function = Wa ∗ tpr + Wb ∗
1

f pr
+ Wc ∗

FN
FS

(8)

where Wa, Wb and Wc are the weights for the True-Positive Rate (TPR), False-Positive
Rate (FPR) and the ratio of selected features, respectively. FN refers to the feature vector

Computers 2022, 11, 173 11 of 19

length, and FS represents the number of selected features in the solution (count “1’s” in the
feature vector).

The model development includes training the set of features using Random Forest
Classifier. The model will then be evaluated using the testing set in terms of the selected
performance metrics.

An ensemble learning technique called Random Forest is applied to classification
or regression tasks. Several decision trees are built throughout the training process of
the random forest. The classification will then be determined by majority vote of all
created trees during the test phase [35]. The proposed malware approach is presented in
Algorithm 1.

Algorithm 1 Malware Detection Approach Pseudocode.
Input: Population_Size Ps, Number of Iterations Ni, Fitness Function Weights Wa, Wb, Wc.
Output: Global Solution Obest

Initialize Oi for each Owl randomly.
Evaluate_Owls (O1, O2, . . . , OPs) by their fitness values.
Obest = Fittest Owl (minimum f itness)
while (ni >= 1) do

Update Intensity Change for each Owl by Equation (6)
Find the Owl distance towards the prey by Equation (5)
Update Owl location toward the best Owl by Equation (7)
Train the model for each Oi
Evaluate Owls (O1, O2, . . . , OPs) by their fitness values using Equation (8).
Update Obest

end while
Evaluate_Owls(O1, O2, . . . , OPs) :
forEach Oi in Owls

forEach x in Oi
Select= []
if xi > 0.5
then Select.append(xi)

end forEach
prediction=RandomForest.fit(train_set[:,Select], target_train).predict(test_set)
Calculate Fitness Value using Equation (8)
end forEach

6. Experiments and Results
6.1. Experimental Setup

All experiments in this section were conducted using Windows 10, a 64-bit operating
system, an Intel Core i7, and 16 GB of RAM. The RF-Owl technique has also been imple-
mented using the Anaconda Python framework version 5.1. Note that an average of 30 runs
was used to obtain the final findings (Table 3).

6.2. Performance Metrics

There are several performance metrics used by researchers to evaluate the proposed
approaches [36–38]. In this paper, we will evaluate the proposed approach based on
“accuracy, F-score, precision, recall, and false-positive rate”. Furthermore, the convergence
of the modified binary Owl optimizer will be evaluated.

The following are the definitions and the Equations of the selected performance metrics:

• Accuracy: Measures the number of correctly classified applications to the total number
of classifications.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Computers 2022, 11, 173 12 of 19

• F-score: F-measure is a harmony measure that take into consideration both the recall
and precision.

F− score =
2 ∗ TP

2 ∗ TP + FP + FN
(10)

• Precision: Measures the number of correctly predicted applications as malware to the
all applications predicted as a malware.

Precision =
TP

TP + FP
(11)

• Recall: Measures the number of applications that are correctly predicted as malware
to the number of actual malware applications.

Recall =
TP

TP + FN
(12)

• False-Positive Rate: Measures the rate of benign applications erroneously classified
as malware.

False Positive Rate =
FP

FP + TN
(13)

Table 3. The experimental setup.

Owl Parameters

Parameter Value

α A random number between [0, 0.5]
β A linear decreasing number from 1.9 to 0
r Uniform random number

Number of Iterations 300
Population size (Np) 100

Fitness Function

α 0.48
β 0.48
γ 0.04

All the above metrics are calculated according to the following confusion matrix
parameters [39]:

• True Positive (TP): The quantity of malware application instances that were accurately
classified.

• True Negative (TN): The quantity of benign applications that were accurately classified.
• False Positive (FP): The quantity of benign applications that were erroneously classi-

fied as malware.
• False Negative (FN): The quantity of malware application instances that were incor-

rectly classified as benign.

6.3. Results

The evaluation of the proposed approach is divided into two phases; the first phase
evaluates the proposed approach using the 10 standard splits of the DREBIN dataset.
Table 4 presents the results of all sample splits from the DREBIN dataset. The results of
each data sample split are examined based on “precision, recall, FPR, accuracy, F-score,
and number of features”.

The sample split #2 achieved the best precision and FPR among all other splits, while
split #9 achieved the best recall results. Regarding the accuracy and F-score, sample split
#1 score the best results. Furthermore, the sample splits were compared in terms of the
number of selected features. Sample split #10 has the least number of selected feature,

Computers 2022, 11, 173 13 of 19

namely 205. Note that all the sample splits have a number of selected features between 205
and 248.

The proposed method is evaluated versus the examined selected approaches from the
literature using an average of all samples split’s results.

The performance of the proposed modified binary Owl optimizer is evaluated in
terms of the convergence curve compared with the standard continuous version. Figure 4
illustrates the convergence curve of the proposed binary Owl optimizer for feature selection
and the standard continuous Owl optimizer. As the figure shows, the modified binary
OWL optimizer accelerates the convergence of the algorithm significantly. The fitness value
of the binary version improved with each iteration and reached the maximum value at
approximately 1000 iterations.

Table 4. All DREBIN Samples Split Results.

Split Sample Precision Recall FPR Accuracy F-Score # of Features

Split #1 0.9930 0.9964 0.1524 0.9897 0.8780 205

Split #2 0.9933 0.9948 0.1484 0.9884 0.8638 221

Split #3 0.9918 0.9951 0.1709 0.9874 0.8504 208

Split #4 0.9924 0.9963 0.1719 0.9890 0.8642 221

Split #5 0.9925 0.9948 0.1683 0.9878 0.8542 225

Split #6 0.9922 0.9963 0.1654 0.9891 0.8730 224

Split #7 0.9927 0.9960 0.1576 0.9890 0.8707 228

Split #8 0.9921 0.9958 0.1729 0.9882 0.8604 216

Split #9 0.9927 0.9965 0.1626 0.9896 0.8743 231

Split #10 0.9928 0.9941 0.1615 0.9873 0.8500 201

Average 0.9924 0.9956 0.1601 0.9884 0.8634 -

200 400 600 800 1,000 1,200 1,400
0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

Fi
tn

es
s

V
al

ue

Modified Binary Owl Optimizer Continuous Owl Optimizer

Figure 4. Convergence curve of the modified binary Owl optimizer vs. the continuous Owl optimizer.

Figures 5–9 show comparisons of the evaluation findings for the proposed RF-Owl
approach to the approaches introduced by [8,23,24,27,40] in terms of precision, recall,
false-positive rate, accuracy and F-score, respectively.

Figure 5 illustrates the precision results for the proposed RF-Owl against six examined
approaches from the literature. The findings indicate that, when compared to the others,

Computers 2022, 11, 173 14 of 19

the proposed RF-Owl approach exhibited the highest precision. Meanwhile, the BNB
approach proposed by [8] exhibited the worst precision score with only 0.469.

R
F-

O
w

l

D
ro

id
En

em
y

BN
B

1A
N

N

D
ec

is
io

nT
re

e

N
ai

ve
Ba

ye
s

K
N

N

0.4

0.6

0.8

1

Pr
ec

is
io

n

Figure 5. Precision results for the 7 examined algorithms using the DREBIN dataset.

As observed from Figure 6, the RF-Owl has the best recall results compared to the
six examined approaches. The KNN and Decision_Tree Approaches came in second place,
while the DriodEnemy produced the worst results in terms of recall.

R
F-

O
w

l

D
ro

id
En

em
y

BN
B

1A
N

N

D
ec

is
io

nT
re

e

N
ai

ve
Ba

ye
s

K
N

N

0.7

0.8

0.9

1

R
ec

al
l

Figure 6. Recall results for the 7 examined algorithms using the DREBIN dataset.

Figure 7 illustrates the accuracy results for the four examined approaches. Regarding
accuracy, the RF-Owl, Deep Neural Network (DNN) and the approach that uses the code
deobfuscation have approximately the same score. Meanwhile, the DroidEnemy bears the
worst accuracy score with only 0.747.

Computers 2022, 11, 173 15 of 19

R
F-

O
w

l

D
ro

id
En

em
y

D
N

N

D
eo

bf
us

ca
ti

on

0.7

0.8

0.9

1

A
cc

ur
ac

y

Figure 7. Accuracy results for the 4 examined algorithms using the DREBIN dataset.

Concerning the FPR, the results of FPR for five examined approaches are illustrated
in Figure 8. The FPR should be reduced. The proposed RF-Owl approach has the lowest
FPR with only 0.1601. While the approach that used the DNN has the worst FPR score with
0.28. The Decision_Tree, Naive_Bayes and KNN approaches have approximately the same
FPR results.

R
F-

O
w

l

D
N

N

D
ec

is
io

nT
re

e

N
ai

ve
Ba

ye
s

K
N

N

0

0.1

0.2

0.3

0.4

0.5

FP
R

Figure 8. FPR results for the 5 examined algorithms using the DREBIN dataset.

Finally, the F-score has been used to evaluate the examined approaches. Figure 9
presents the results of the F-score for five examined approaches. The RF-Owl approach
achieved the best F-score result with 0.8634. The approach of code Deobfuscation came in
second place with 0.747, while the BNB approach had the worst F-score result with 0.625.

Computers 2022, 11, 173 16 of 19

R
F-

O
w

l

D
ro

id
En

em
y

D
eo

bf
us

ca
ti

on

BN
B

1A
N

N

0.5

0.6

0.7

0.8

0.9

1

F-
sc

or
e

Figure 9. F-score results for the 5 examined algorithms using the DREBIN dataset.

7. Discussion

Table 5 summarizes the precision, recall, accuracy, FPR, and F-score results that
have been generated from comparing the proposed approach with some state-of-the-
art works. The “-” sign indicate that evaluation measure has not been reported in the
corresponding reference.

Table 5. Results summary for all examined approaches compared with the proposed approach.

Reference Approach/Technique Precision Recall FPR Accuracy F-Score

[23] DroidEnemy 0.749 0.9964 - 0.747 0.752

[24] Deobfuscation - - - 0.9889 0.8212

[8] BNB 0.469 0.937 - - 0.625

[8] 1ANN 0.712 0.774 - - 0.742

[40] DecisionTree 0.928 0.992 0.179 - -

[40] NaiveBayes 0.9920 0.867 0.167 - -

[40] KNN 0.933 0.993 0.163 - -

[27] DNN - - 0.28 0.987 -

Proposed Approach RF-Owl 0.9924 0.9956 0.1673 0.9881 0.8634

Table 6 illustrates the comparison between our proposed approach (RF-OWL) and
other related approaches that use different metaheuristic algorithms; Particle Swarm Op-
timization (PSO) in [41], Sophisticated Extrinsic Random-based Ensemble (ERBE) in [42],
and Intelligent Water Drop (IWD) in [43]. It can be noticed that RF-OWL outperforms the
listed proposals in terms of accuracy, precision and recall. Thus, our approach acheived
better performance in terms of precision and recall compared with the other methods.
The approach in [43] achieves higher accuracy compared with our approach due to the fact
that, but still the proposed approach demonstrates better performance in terms of precision
and recall.

Computers 2022, 11, 173 17 of 19

Table 6. Results summary for related approaches that are based on different metaheuristic approaches
compared with the proposed approach.

Reference Featuer Selection/Classifier Precision Recall Accuracy

[41] PDL-PSO 0.988 0.98 0.977

[42] ERBE 0.936 0.940 0.938

[43] IWD 0.9535 0.9668 0.9912

Proposed Approach RF-Owl 0.9924 0.9956 0.9881

Table 7 illustrates a comparison between the proposed approach and different ensem-
ble approaches such as Decision Tree (DT), Random Forest (RF), Extremely Randomized
Tree (ERT), Support Vector Machine (SVM), Logistic Regression (LR), and Gradient Boost-
ing (GB). It can be noticed that in [44], a bagging (RF) has been used as an ensemble
approach and is the same ensemble approach used in this paper. Our proposed approach
achieved better performance in terms of precision, recall and accuracy compared with other
approaches, since the whole approach depends on both the feature selection used and
the classifier.

Table 7. Results summary for related approaches that are based on different ensemble approaches
compared with the proposed approach.

Reference Ensemble Approach Precision Recall Accuracy

[44] Stacking (DT, SVM, LR) 0.92 0.91 0.9158

[44] Bagging (RF) 0.91 0.92 0.9173

[42] ERBE 0.936 0.940 0.938

[44] Bagging (ERT) 0.92 0.91 0.9129

[44] Boosting (GB) 0.86 0.86 0.8611

Proposed Approach Bagging (RF) 0.9924 0.9956 0.9881

8. Conclusions

With more than four-million Android applications available online, they have become
a popular target for cybercriminals. Several malware detection approaches based on
machine learning techniques have been proposed to ensure the safety of Android devices.
Many research works address the problem of feature selection; however, the number and
the type of irrelevant features also affect the performance and accuracy of the system.
In this paper, an ensemble learning method with a “modified binary Owl optimizer” is
presented for malware detection. The proposed malware detection approach uses a new
“modified Owl optimizer” to manage feature selection. The DREBIN dataset was used
for evaluation purposes. Many irrelevant features were initially discarded prior to the
feature selection process. The features were reduced from 545,356 to 467. The prepared data
were then inserted into the proposed model that employs a Random Forest classifier with
the modified binary Owl optimizer. The proposed approach outperforms the examined
approaches from the literature in terms of accuracy, precision, and recall.

Author Contributions: H.A.: Conceptualization, Methodology, Software, Validation, Investigation,
Writing—original draft, Writing—review and editing. A.A.-A.: Writing—original draft, Writing—
review and editing. O.A.: Writing—review and editing. E.A.: Writing—review and editing. A.A.:
Software, Validation, Investigation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Computers 2022, 11, 173 18 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Almin, S.B.; Chatterjee, M. A novel approach to detect android malware. Procedia Comput. Sci. 2015, 45, 407–417. [CrossRef]
2. Talal, M.; Zaidan, A.; Zaidan, B.; Albahri, O.S.; Alsalem, M.; Albahri, A.S.; Alamoodi, A.; Kiah, M.L.M.; Jumaah, F.; Alaa, M.

Comprehensive review and analysis of anti-malware apps for smartphones. Telecommun. Syst. 2019, 72, 285–337. [CrossRef]
3. Xu, K. Advanced Malware Detection for Android Platform. Ph.D. Thesis, Singapore Management University, Singapore, 2018.
4. Li, W.; Ge, J.; Dai, G. Detecting malware for android platform: An svm-based approach. In Proceedings of the 2015 IEEE 2nd

International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 3–5 November 2015; pp. 464–469.
5. Amro, B. Malware detection techniques for mobile devices. Int. J. Mob. Netw. Commun. Telemat. (IJMNCT) 2017, 7. [CrossRef]
6. Truong, H.T.T.; Lagerspetz, E.; Nurmi, P.; Oliner, A.J.; Tarkoma, S.; Asokan, N.; Bhattacharya, S. The company you keep: Mobile

malware infection rates and inexpensive risk indicators. In Proceedings of the 23rd International Conference on World Wide Web,
Seoul, Republic of Korea, 7–1 April 2014; pp. 39–50.

7. Shabtai, A. Malware detection on mobile devices. In Proceedings of the 2010 Eleventh International Conference on Mobile Data
Management, Kansas City, MO, USA, 23–26 May 2010; pp. 289–290.

8. Syrris, V.; Geneiatakis, D. On machine learning effectiveness for malware detection in Android OS using static analysis data.
J. Inf. Secur. Appl. 2021, 59, 102794. [CrossRef]

9. Feizollah, A.; Anuar, N.B.; Salleh, R.; Wahab, A.W.A. A review on feature selection in mobile malware detection. Digit. Investig.
2015, 13, 22–37. [CrossRef]

10. Vishnoi, A.; Mishra, P.; Negi, C.; Peddoju, S.K. Android Malware Detection Techniques in Traditional and Cloud Computing
Platforms: A State-of-the-Art Survey. Int. J. Cloud Appl. Comput. (IJCAC) 2021, 11, 113–135. [CrossRef]

11. Kouliaridis, V.; Barmpatsalou, K.; Kambourakis, G.; Chen, S. A survey on mobile malware detection techniques. IEICE Trans. Inf.
Syst. 2020, 103, 204–211. [CrossRef]

12. Idrees, F.; Rajarajan, M.; Conti, M.; Chen, T.M.; Rahulamathavan, Y. PIndroid: A novel Android malware detection system using
ensemble learning methods. Comput. Secur. 2017, 68, 36–46. [CrossRef]

13. Gupta, D.; Rani, R. Improving malware detection using big data and ensemble learning. Comput. Electr. Eng. 2020, 86, 106729.
[CrossRef]

14. Kumar, R.; Zhang, X.; Wang, W.; Khan, R.U.; Kumar, J.; Sharif, A. A multimodal malware detection technique for Android IoT
devices using various features. IEEE Access 2019, 7, 64411–64430. [CrossRef]

15. Li, C.; Mills, K.; Niu, D.; Zhu, R.; Zhang, H.; Kinawi, H. Android malware detection based on factorization machine. IEEE Access
2019, 7, 184008–184019. [CrossRef]

16. Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep
learning. Digit. Investig. 2018, 24, S48–S59. [CrossRef]

17. Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [CrossRef]
18. Millar, S.; McLaughlin, N.; del Rincon, J.M.; Miller, P. Multi-view deep learning for zero-day Android malware detection. J. Inf.

Secur. Appl. 2021, 58, 102718. [CrossRef]
19. Rehman, Z.U.; Khan, S.N.; Muhammad, K.; Lee, J.W.; Lv, Z.; Baik, S.W.; Shah, P.A.; Awan, K.; Mehmood, I. Machine learning-assisted

signature and heuristic-based detection of malwares in Android devices. Comput. Electr. Eng. 2018, 69, 828–841. [CrossRef]
20. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android malware detection: A survey.

In Communications in Computer and Information Science, Proceedings of the International Conference on Applied Informatics, Bogotá,
Colombia, 1–3 November 2018; Springer: Cham, Switzerland, 2018; pp. 255–266.

21. Kouliaridis, V.; Kambourakis, G. A Comprehensive Survey on Machine Learning Techniques for Android Malware Detection.
Information 2021, 12, 185. [CrossRef]

22. Rana, M.S.; Gudla, C.; Sung, A.H. Evaluating machine learning models for Android malware detection: A comparison study.
In Proceedings of the 2018 VII International Conference on Network, Communication and Computing, Taipei City, Taiwan,
14–16 December 2018; pp. 17–21.

23. Bala, N.; Ahmar, A.; Li, W.; Tovar, F.; Battu, A.; Bambarkar, P. DroidEnemy: Battling adversarial example attacks for Android
malware detection. Digit. Commun. Netw. 2021, in press. [CrossRef]

24. Chen, Y.C.; Chen, H.Y.; Takahashi, T.; Sun, B.; Lin, T.N. Impact of Code Deobfuscation and Feature Interaction in Android
Malware Detection. IEEE Access 2021, 9, 123208–123219. [CrossRef]

25. Arif, J.M.; Ab Razak, M.F.; Mat, S.R.T.; Awang, S.; Ismail, N.S.N.; Firdaus, A. Android mobile malware detection using fuzzy
AHP. J. Inf. Secur. Appl. 2021, 61, 102929.

http://doi.org/10.1016/j.procs.2015.03.170
http://dx.doi.org/10.1007/s11235-019-00575-7
http://dx.doi.org/10.2139/ssrn.3430317
http://dx.doi.org/10.1016/j.jisa.2021.102794
http://dx.doi.org/10.1016/j.diin.2015.02.001
http://dx.doi.org/10.4018/IJCAC.2021100107
http://dx.doi.org/10.1587/transinf.2019INI0003
http://dx.doi.org/10.1016/j.cose.2017.03.011
http://dx.doi.org/10.1016/j.compeleceng.2020.106729
http://dx.doi.org/10.1109/ACCESS.2019.2916886
http://dx.doi.org/10.1109/ACCESS.2019.2958927
http://dx.doi.org/10.1016/j.diin.2018.01.007
http://dx.doi.org/10.1016/j.eswa.2019.04.064
http://dx.doi.org/10.1016/j.jisa.2020.102718
http://dx.doi.org/10.1016/j.compeleceng.2017.11.028
http://dx.doi.org/10.3390/info12050185
http://dx.doi.org/10.1016/j.dcan.2021.11.001
http://dx.doi.org/10.1109/ACCESS.2021.3110408

Computers 2022, 11, 173 19 of 19

26. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.
In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 21–24 March
2016; pp. 372–387.

27. Selvaganapathy, S.; Sadasivam, S. Anti-malware engines under adversarial attacks. Int. J. Comput. Appl. 2021, 44, 1–14. [CrossRef]
28. Jain, M.; Maurya, S.; Rani, A.; Singh, V. Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization.

J. Intell. Fuzzy Syst. 2018, 34, 1573–1582. [CrossRef]
29. Lai, G.; Li, L.; Zeng, Q.; Yousefi, N. Developed owl search algorithm for parameter estimation of PEMFCs. Int. J. Ambient. Energy

2020, 43, 1–10. . [CrossRef]
30. El-Ashmawi, W.H.; Abd Elminaam, D.S.; Nabil, A.M.; Eldesouky, E. A chaotic owl search algorithm based bilateral negotiation

model. Ain Shams Eng. J. 2020, 11, 1163–1178. [CrossRef]
31. Daniel, A.; Michael, S.; Hugo, G.; Konrad, R. Drebin: Efficient and explainable detection of android malware in your pocket.

In Proceedings of the 21th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA,
23–26 February 2014.

32. Michael, S.; Florian, E.; Thomas, S.; Felix, C.F.; Hoffmann, J. Mobilesandbox: Looking deeper into android applications. In
Proceedings of the 28th International ACM Symposium on Applied Computing (SAC), Coimbra, Portugal, 18–22 March 2013.

33. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. Ndss 2014, 14, 23–26.

34. Alazzam, H.; Sharieh, A.; Sabri, K.E. A feature selection algorithm for intrusion detection system based on pigeon inspired
optimizer. Expert Syst. Appl. 2020, 148, 113249. [CrossRef]

35. Alazzam, H.; Alsmady, A.; Shorman, A.A. Supervised detection of IoT botnet attacks. In Proceedings of the Second International
Conference on Data Science, E-Learning and Information Systems, Dubai, United Arab Emirates, 2–5 December 2019; pp. 1–6.

36. Stiborek, J.; Pevnỳ, T.; Rehák, M. Multiple instance learning for malware classification. Expert Syst. Appl. 2018, 93, 346–357.
[CrossRef]

37. Surendran, R.; Thomas, T.; Emmanuel, S. Gsdroid: Graph signal based compact feature representation for android malware
detection. Expert Syst. Appl. 2020, 159, 113581. [CrossRef]

38. Fan, Y.; Ye, Y.; Chen, L. Malicious sequential pattern mining for automatic malware detection. Expert Syst. Appl. 2016, 52, 16–25.
[CrossRef]

39. Chandak, T.; Shukla, S.; Wadhvani, R. An analysis of “A feature reduced intrusion detection system using ANN classifier” by
Akashdeep et al. expert systems with applications (2017). Expert Syst. Appl. 2019, 130, 79–83. [CrossRef]

40. Yusof, M.; Saudi, M.M.; Ridzuan, F. A new mobile botnet classification based on permission and API calls. In Proceedings
of the 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK, 6–8 September 2017;
pp. 122–127.

41. Al-Andoli, M.N.; Tan, S.C.; Sim, K.S.; Lim, C.P.; Goh, P.Y. Parallel Deep Learning with a hybrid BP-PSO framework for feature
extraction and malware classification. Appl. Soft Comput. 2022, 131, 109756. [CrossRef]

42. Potha, N.; Kouliaridis, V.; Kambourakis, G. An extrinsic random-based ensemble approach for android malware detection.
Connect. Sci. 2021, 33, 1077–1093. [CrossRef]

43. Sharma, R.M.; Agrawal, C.P. MH-DLdroid: A Meta-Heuristic and Deep Learning-Based Hybrid Approach for Android Malware
Detection. Int. J. Intell. Eng. Syst. 2022, 15, 425–435.

44. Rana, M.S.; Sung, A.H. Evaluation of advanced ensemble learning techniques for Android malware detection. Vietnam J. Comput.
Sci. 2020, 7, 145–159. [CrossRef]

http://dx.doi.org/10.1080/1206212X.2021.1940744
http://dx.doi.org/10.3233/JIFS-169452
http://dx.doi.org/10.1080/01430750.2020.1842240
http://dx.doi.org/10.1016/j.asej.2020.01.005
http://dx.doi.org/10.1016/j.eswa.2020.113249
http://dx.doi.org/10.1016/j.eswa.2017.10.036
http://dx.doi.org/10.1016/j.eswa.2020.113581
http://dx.doi.org/10.1016/j.eswa.2016.01.002
http://dx.doi.org/10.1016/j.eswa.2019.04.017
http://dx.doi.org/10.1016/j.asoc.2022.109756
http://dx.doi.org/10.1080/09540091.2020.1853056
http://dx.doi.org/10.1142/S2196888820500086

	Introduction
	Related Works
	Owl Optimization Algorithm
	Data Description
	Malware Detection Model Development
	An Enhanced Simplified Version of the DREBIN Dataset
	Feature Selection and Model Development

	Experiments and Results
	Experimental Setup
	Performance Metrics
	Results

	Discussion
	Conclusions
	References

