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Abstract: Wind forecasting, which is essential for numerous services and safety, has significantly
improved in accuracy due to machine learning advancements. This study reviews 23 articles from
1983 to 2023 on machine learning for wind speed and direction nowcasting. The wind prediction
ranged from 1 min to 1 week, with more articles at lower temporal resolutions. Most works employed
neural networks, focusing recently on deep learning models. Among the reported performance
metrics, the most prevalent were mean absolute error, mean squared error, and mean absolute
percentage error. Considering these metrics, the mean performance of the examined works was
0.56 m/s, 1.10 m/s, and 6.72%, respectively. The results underscore the novel effectiveness of machine
learning in predicting wind conditions using high-resolution time data and demonstrated that deep
learning models surpassed traditional methods, improving the accuracy of wind speed and direction
forecasts. Moreover, it was found that the inclusion of non-wind weather variables does not benefit
the model’s overall performance. Further studies are recommended to predict both wind speed and
direction using diverse spatial data points, and high-resolution data are recommended along with
the usage of deep learning models.

Keywords: deep learning; machine learning; nowcast; wind speed; wind direction; wind

1. Introduction

According to the World Meteorological Organization (WMO), nowcasting is the pro-
cess of providing short-term high-resolution forecasts with a detailed description of current
weather conditions over a time horizon of up to six hours. Although nowcasting has
implications in diverse application fields such as hydrology, aviation, road safety, civil
protection, and industry or energy, it is notably relevant for examining severe weather
phenomena such as high wind conditions [1–4].

The conventional forecast employs numerical weather prediction models that have
limited capacity for predicting the timing and location of rapidly evolving weather patterns
due to the complexity of the mathematical and physical equations that they must process
and solve. Additionally, due to their high computational requirements, these systems are
limited in producing rapid results and normally can only perform one or two computations
per day [5]. The need to explore alternative solutions has arisen due to these limitations.
One promising option is using data-driven pattern recognition models, which have gar-
nered significant attention in numerous fields. These models fall under the category of
Machine Learning (ML) techniques and are considered one of the emerging frontiers in
wind engineering [6]. Showcasing the potential of ML in the field, a classification approach
to wind gust occurrence showed that it was possible to improve prediction from around
20% to 2.4% [7]; however, regression methodologies have been mainly utilized in the wind
power sector for nowcasting wind-related data [8]. Although Cook et al. (2023) addressed
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predicting wind gusts using classification methods, the ML literature still lacks comprehen-
sive regression approaches for these events. Therefore, wind gusts were not considered for
this study.

Nevertheless, wind speed and direction nowcasting have the potential to improve
management and reduce costs in other fields, such as in air-traffic operations, where wind
speed and direction prediction is identified as one of the more challenging tasks for the
aviation field [9].

There are several literature reviews on wind speed prediction using ML, mainly fo-
cusing on wind forecasting. A review from 2007 [10] provides a comprehensive analysis
of wind speed forecasting, highlighting that Artificial Neural Networks (ANN) methods,
which emulate the human body’s capacity to learn from experience [11], yield more accu-
rate results for very short-term forecasts, based on observations. However, the authors
mainly focus on power forecasting. Other literature reviews primarily concentrate on
wind speed associated with wind power forecasting [8,12–16] or wind power short-term
prediction [17,18]. Although the authors mention wind speed nowcasting to some extent,
it is apparent that wind speed nowcasting, as a distinct field, has yet to be specifically
targeted. Consequently, this article identifies a gap in the literature which calls for an
in-depth analysis of meteorological wind speed and direction nowcasting.

Therefore, this review aims to assess recent advancements in wind speed and direction
nowcasting using ML, therefore seeking to provide an overview of the techniques used
to enhance temporal resolution and performance. The primary focus is on the prediction
process itself, leaving the applicability of this work the potential to extend beyond spe-
cific fields. The objective is to identify potential weaknesses and limitations by critically
assessing the effectiveness of the methods employed and their capability of producing
accurate and effective wind nowcasts and providing recommendations that may improve
further work.

ML has demonstrated effectiveness across various domains, from time-series analysis
to computer vision [19]. Its performance largely hinges on selected training methodologies
and criteria, including choices of loss functions and evaluation metrics such as accuracy,
precision, recall, rank, and root mean squared error [20,21].

Following this success pattern of ML, the main research question for this systematic
review was: are ML-based techniques suitable for wind speed and direction nowcasting?

This article is organized into four sections. Section 2 explains the techniques used
for the systematic literature review. Section 3 analyzes the studies included in the review,
while Section 4 concludes the article by describing the major findings and suggesting future
research directions.

2. Materials and Methods

The purpose of this section is to present a detailed account of the methods utilized
to search and analyze articles. In adherence with the 2020 Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [22], this review seeks to
ensure the reproducibility of its examination. Hence, the eligibility criteria employed to
determine the inclusion or exclusion of studies in this review are expounded, outlining the
data sources, search strategy, collection, and selection methods.

2.1. Search Strategy

The present study conducted a comprehensive search for articles across three databases:
Web of Science, Institute of Electrical and Electronics Engineers (IEEE), and ScienceDirect.
Web of Science provides a comprehensive and multidisciplinary database that provides
access to a vast number of indexed journals across various fields of study. The IEEE Xplore
Digital Library is a specialized database focusing on electrical engineering, computer
science, and electronics. ScienceDirect, a database from Elsevier, offers a broad range
of scientific resources, including articles from numerous journals, books, and reference
works, covering a range of scientific disciplines. Cumulatively, the use of these databases
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ensured a rigorous and thorough search due to their extensive coverage of multiple fields
and publishers, allowing for an extensive and comprehensive examination of the topic
under analysis.

The search for articles in these databases was carried out on 1 February 2023, and was
filtered to scan only the article’s title, abstract, and author-defined keywords published
in the 1983–2023 timeframe. The search string utilized to filter and narrow down the
search results according to the topic of interest is presented in Table 1, where the “AND”
operator is applied horizontally and the “OR” operator is applied vertically. A reading
example is “Wind AND Nowcast AND Machine learning”, while the complete string with
all possibilities was utilized to perform the search.

Table 1. Keywords arrangement for the search string.

OR

AND Wind
Nowcast

Machine learning
Deep learning

Short-term forecast
Neural network

Artificial intelligence

The keywords were selected to maximize the retrieval of pertinent information while
minimizing the loss caused by adjectival usage. Specifically, the keyword “wind” was
used to ensure that all search results were related to wind. In addition, the keywords
“nowcast” and “short-term forecast” were used in conjunction with the “OR” operator
to filter the results to the field of very short-term prediction. To ensure the inclusion of
standard machine learning terms, the keywords “machine learning”, “deep learning”,
“neural network”, and “artificial intelligence” were used together with the “OR” operator.

2.2. Eligibility Criteria

Figure 1 shows the PRISMA diagram of the performed systematic article selection
process. The search query across three distinct databases yielded a total of 105 articles, the
details of which are provided in Figure 1. It was observed that the IEEE had the highest
number of publications, with 56 articles, representing the largest contribution among the
three databases.

A duplicate records elimination process was conducted before passing the articles to
the initial screening phase, where three independent scorers evaluated the relevance of
each article. The inclusion criterion was defined as “studies that employed some form of
machine learning to provide short-term forecasts or nowcasts of wind speed or direction”.
The exclusion criteria were “studies that focused solely on wind power calculation or
prediction or other aspects of wind measurement that did not directly relate to wind speed
or direction” and “articles not written in English”.

During this procedure, a voting system was employed, wherein each scorer evaluated
the title and abstract of each article and voted for inclusion, exclusion, or further discus-
sion. Articles receiving two votes for inclusion were automatically included, while those
receiving two votes for exclusion were automatically excluded. One article [23] received
one vote for inclusion, one vote for exclusion, and one vote for further discussion, not
being automatically included or excluded. After debate, to evaluate in more detail its
relevance for the review, all scorers agreed to include the article in the further analysis
process, passing a total of 26 articles for the second screening analysis.
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Figure 1. PRISMA flow diagram of the conducted systematic review.

During the second screening analysis, which involved the full article screening process,
three articles were excluded due to their lack of wind speed or direction prediction or the
absence of respective results presentation [23,24], and one [25] which focused solely on
long-term wind forecasting. The selection process resulted in a total of 23 articles that were
included in the systematic review.

By examining the year of publication of the included articles, it was observed that
the research activity on the studied subject commenced more than two decades ago, as
demonstrated in Figure 2, which shows the distribution of the published articles by the
year, followed by a noticeable gap in publications from 1998 to 2012. Furthermore, article
publications until 2019 are sparse, with temporal gaps superior to one year. However, the
gradual surge in the number of publications after 2019 suggests increasing interest in the
topic, while the peak in 2022 indicates that the subject has recently attracted significant
attention. At the beginning of 2023, the time when the database search was conducted, two
articles had already been published, indicating the continuation of the exponential increase
in publications. The prevalence of this trend emphasizes the contemporary significance of
the examined subject matter. It sturdily advocates the need for this review to consolidate
knowledge and point out new directions for future research.
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Figure 2. Annual Published Articles (represented by orange bars), Cumulative Total of Works
(illustrated by the blue line), and Exponential Trendline Reflecting Publishing Trajectory (denoted by
the dashed orange line).

2.3. Method of Analysis

All the articles included in this review employ some form of machine learning to
predict wind speed or direction. However, there is significant variation in terms of the used
temporal window for the prediction, performance analysis metrics, type, and characteristics
of data utilized, and the kind of machine learning models. To simplify the analysis and
group the articles, these variables were adapted into categories.

For the temporal window of the prediction, the minimum value was one minute, so this
was set as the minimum threshold. The 10 min, 30 min, and 1 h temporal steps, commonly
used in the field [26], were selected as grouping alternatives up to the nowcasting half time
and limit of 3 h and 6 h, respectively.

The most frequently used metrics in the reviewed articles were Mean Absolute Error
(MAE), Root Mean Absolute Error (RMAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE). Hence, all articles were
grouped and analyzed accordingly, calculating the MAE and MSE from the RMAE and
RMSE when not directly available to compare the results better. Any other reported metrics
were grouped. The employed data were also evaluated based on their temporal resolution
and the number of different spatial collecting points.

Most machine learning models in the reviewed articles used Feed Forwards Neural
Networks (FFNN). However, other models and classifiers were also utilized and some
hybrid solutions were proposed. Thus, the articles were also grouped and evaluated based
on this characteristic. To present a comprehensive summary of the effectiveness of machine
learning for wind nowcasting, an overview of the same metric is shown for all articles
where it is available and shown as a single primary result. To access the main research
questions, the results were submitted to statistical significance tests using both the t-test
and Welch’s t-test along with the respective null hypotheses.

3. Results and Discussion

This section is divided into two segments where the findings of the included research
papers are presented. The first segment assesses the temporal periods and data resolution
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that the studies concentrate on, while the second segment evaluates the performance
achieved through model-based and approach-based analyses.

In this section, the findings of the included research article are organized into two
subsections. The first aims to evaluate the temporal periods and data resolution that the
studies focus on, while the second segment intends to evaluate the performance achieved
in terms of a model-based and an approach-based analysis.

3.1. Nowcasting Resolution and Range Distribution

The maximum resolution, corresponding to the minimum temporal step achieved in
the prediction, is 1 min [27–29], followed by a non-standard resolution of 2 min and 45 s,
used by Gao et al. [30,31], derived from the plan position indicator delay of the used light
detection and ranging device to collect the data. At the 1 min resolution, the maximum
range achieved was 2 h, as reported by Hu et al. [28], while Gao et al. [30,31] were able to
reach a 27 min forecast.

Using a resolution of 10 min [32–39], it was possible to predict wind characteristics
up to 1008 steps [37], which is equivalent to one week. Sunglee et al. [40] utilized high-
resolution 5-s wind data to realize 20 min resolution predictions up to one hour ahead.
Furthermore, using an interval of 1 h steps [41–49] it was possible to forecast a maximum
range of one week [42].

In Figure 3, the number of articles published about the maximum prediction range for
each resolution is represented, grouped by the timeframes previously defined, and limited
to the nowcasting range of 6 h. This data visualization takes the form of a heatmap-type
chart, presenting a broad illustration of the relationship between the number of articles and
both the prediction range and time resolution.
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Upon observing Figure 3, it becomes clear that the quantity of published articles
is noticeably diminished for high-resolution time intervals compared to the number of
articles published, where temporal steps are in the order of 10 min or 60 min, shown as
darker zones in the figure. Additionally, the overall data distribution suggests a correlation
between decreasing resolution and an extension of the prediction range. For example, for a
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60 min ahead prediction, there is only one article with a 1 min resolution, five articles with
a 10 min time-step, and ten articles with the lowest resolution of a 60 min step.

3.2. Model Performance Analysis

Table 2 presents a summary breaking down the studies into key events and rounding
metric values to two decimal places to provide a more comprehensive evaluation of the
performance reported by all the reviewed articles. Therefore, the presented information
includes article identification with the used forecasted data, ML model, resolution, and
performance metrics. The articles are organized by MAE, progressing toward high error re-
sults. All metrics provided are extracted from the highest resolution forecast and minimum
steps forward, according to the grouping method previously referred to, and from the top
performance method or model when the authors tested more than one. When various tests
are presented, the metrics extracted correspond to the best performance achieved or, when
not available, the mean for test or validation.

The ML models utilized can be grouped in categories as: two Wind Speed Prediction
(WSP) based models, Weibull-Distribution-Based (WEB) and Rayleigh-Distribution-Based
(RYM); two autoregressive-based, AutoRegressive Integrated Moving Average (ARIMA)
and Nonlinear AutoRegressive with exogenous inputs (NARX); two conventional ML-
based (non-neural networks), Support Vector Regression (SVR) and regression tree; and
twelve neural-network-based, among them, seven conventional neural networks, specifi-
cally, FFNN, Radial Basis Function Neural Network (RBFNN), Self-Organizing Map (SOM),
Elman Neural Network (ENN), Sinusoidal Rough Neural Network (SR-NN), Vanilla Recur-
rent Neural Network (V-RNN), Online Sequential Extreme Learning Machine (OS-ELM);
and eight deep learning, precisely, Long Short-Term Memory (LSTM), Deep Belief Network
(DBN), Bi-directional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Network
(CNN), Graph Neural Network (GNN), and Temporal Convolutional Network (TCN).
Figure 4 summarizes the employed models in a taxonomy diagram.
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Table 2. Performance summary of the reviewed articles.

Article Forecasted Data Study Domain ML Model Step
(Minute:Second) Performance Metrics

MAE (m/s) MSE (m/s) MAPE (%) Other

[32] speed energy FFNN
10:00 - - - 9.16% improvement in

comparison to persistent error-

[27] direction yach races SVR
1:00 - - - Mean Error of Identification

(MEI) of 0.79-

[28] speed energy SOM
1:00 - - - In-chart RMSE (no values

available)-

[48] speed energy
Ensemble (FFNN, GNN, LSTM,

TCN 60:00 - - - In-chart RMSE (no values
available)-

[45] speed energy V-RNN
60:00 - 0.61 # -

-

[30] speed Meteorology CNN-LSTM 10:00 - 0.74 # - -
- (2:45)

[40] speed Meteorology FFNN
60:00 - 8.14 - 0.49% error-

[33] Speed energy RBFNN
10:00 - - 3.80

Root Mean Square Percentage
Error (RMSPE) of 4.01-

[46] speed energy NARX
60:00 - - 36.99 NRMSE of 0.29-

[29] speed energy WE- EOD
1:00 0.02 0.003 # 0.57-

[35] speed energy ENN
10:00 0.10 - 2.32 IA of 1.00-

[41] speed energy FFNN
60:00 0.13 0.16 0.69 -

optimization algorithm: Train
Broyden–Fletcher–Goldfarb–

Shanno

[49] speed energy FFNN
60:00 0.18 0.05 # 5.13optimization algorithm:

Levenberg–Marquardt Algorithm

[37] speed energy SR-NN
10:00 0.25 0.10 # 3.98-

[39] speed energy GNN
10:00 0.40 0.35 - -

Use of transformers
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Table 2. Cont.

Article Forecasted Data Study Domain ML Model Step
(Minute:Second) Performance Metrics

Use of transformers

[34]
speed and direction(→

u ,
→
v
) meteorology FFNN

10:00 0.54 - - 84% accurate direction within
45◦ slope-

[36] speed energy FFNN
10:00 0.59 - 8.6 -

-

[44] speed energy FFNN
60:00 0.62 0.54 # -

Smoothing with Hold—Winters

[31] speed
geoscience

meteorology
CNN-LSTM 10:00

0.63 0.78 - -
- (2:45)

[43] speed energy FFNN
60:00 0.76 - - Correlation R of 0.82Interval based approach

[38] speed energy Bi-LSTM
10:00 0.99 0.48 0.43 Theil’s inequality coefficient of

0.04-

[42] speed energy Regression tree 60:00 0.99 1.33 - R2 of 0.82,
0.95 agreement index

[47] speed energy
Ensemble (LSTM, SVR, ARIMA,

WEB, RYM) 60:00 1.70 1.00 # 4.70
-

# Calculated by squaring RMSE value provided in the article.
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3.2.1. Assessment of Frequently Employed Models

The data available were further compiled, grouping the results according to the
model. The most used machine learning approach was FFNN, representing eight of the
analyzed articles [32,34,36,40,41,43,44,49]. The second most published approach, with three
articles [30,31,38], was LSTM, and the remaining eleven studies were dispersed over a
variety of models, therefore grouped as “other” [27–29,33,35,37,39,42,45–48].

Figure 5 resumes the performance of the grouped approaches, plotting the models as
polygons on a polar coordinate system, where each metric forms a polygon vertex. The
length of each spoke represents the mean value for that metric, and the error bars around
each point represent the standard deviation.
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The MAE’s mean value for the FFNN was 0.47, indicating that the average difference
between the predicted and actual values was relatively small. The standard deviation
of 0.23 suggests that the data points were clustered around the mean, indicating that the
model was relatively consistent in its predictions. In contrast, LSTM had a higher mean
MAE of 0.81, which indicates a larger average difference between predicted and actual
values. However, its standard deviation of 0.18 indicates that the predictions were more
tightly clustered around the mean than the other models’ group. The models classified as
“other” had a mean MAE of 0.58 and a standard deviation of 0.59, suggesting that they
had a higher level of inconsistency in their predictions, taking the FFNN model to the
best position regarding performance and consistency in its predictions when analyzing
this metric.

Analyzing the MSE, the FFNN model had a mean value of 2.22, suggesting a relatively
large difference between the predicted and actual values. The standard deviation value
of 3.42 indicates that the data points were widely spread around the mean, showing an
inconsistency in the model’s predictions. In contrast, the LSTM model had a much lower
mean MSE value of 0.67, indicating a lower difference between the predicted and actual
values. The standard deviation value of 0.13 suggests that the predictions were more tightly
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clustered around the mean, indicating greater consistency. The other models had a mean
MSE value of 0.57 and a standard deviation of 0.48, relatively indicating more inconsistent
predictions than LSTM.

Comparing these results to the MAE results, we can observe some differences. The
FFNN model had a higher mean value for MSE than MAE, suggesting that the squared
difference between the predicted and actual values was significantly larger than the absolute
difference. The LSTM model, on the other hand, had a lower mean MSE value than
MAE, indicating that the squared difference between the predicted and actual values was
relatively smaller than the absolute difference. The results of these two metrics already
suggest that the LSTM model had better performance in predicting wind speed as it had a
lower mean and standard deviation for MAE and slightly higher, but more consistent, MSE
compared to the other models.

For the last metric, MAPE, the FFNN mean value indicates that the model’s predictions
were off by 4.83%. The standard deviation of 3.26 suggests that the error rates varied widely
from the mean, indicating that the model’s predictions were relatively inconsistent. In
contrast, the LSTM model had a much lower mean MAPE value of 0.43, suggesting that
the model’s predictions were more accurate, with an average error rate of 0.43%. The
standard deviation value for this model is 0 due to only one study presenting the results
with this metric. The “other” models group had a mean MAPE value of 8.73 and a standard
deviation of 12.71, indicating that the error rates were widely spread around the mean,
signaling inconsistency in their predictions.

When examining all models and metrics, the results suggest that the LSTM had the
best performance among the three models in terms of predicting the outcome variable with
the lowest average error rate and the most consistent predictions. The FFNN performed
worse than the LSTM but had relatively consistent predictions, while the models grouped
as “other” had the highest average error rate and the most inconsistency in their predictions.
This result can be observed in Figure 5, where LSTM is represented with the smallest area,
followed by the FFNN polygon and the group of other models, which is the wider polygon.

3.2.2. Comparison Based on Model Deepness

To evaluate the performance, two groups were constituted based on the deepness of
the models, where all models that employed deep learning methods, singularly or in an
ensemble approach, were classified as “deep learning models” [29–31,38,39,47,48]. The
remaining models were grouped as “conventional ML methods”.

It is relevant to mention that deep-learning articles only started in 2021, with
Liu et al. [29], and both articles published in 2023 [39,48] are also based on deep learning
methods, suggesting a positive trend in the approach.

As depicted in Figure 6, deep learning shows a decrease in mean error, mainly demon-
strated by MSE, where deep learning shows a value of 0.56 compared to 1.56 of the
conventional ML models. The standard deviation was 0.33, whereas conventional models
are less consistent, with a value of 2.72. The MAPE values also indicate a performance
improvement, with a mean value of 1.9 versus 8.79, and a standard deviation of 1.98 for
the deep learning models compared to the 11.74 presented by conventional ML. The MAE
values are slightly better for the conventional models, with a mean value of 0.46 and a
standard deviation of 0.29. In contrast, deep learning models presented 0.75 and 0.57 for
mean and standard deviation, respectively.



Computers 2023, 12, 206 12 of 18

Computers 2023, 12, x FOR PEER REVIEW 11 of 18 
 

For the last metric, MAPE, the FFNN mean value indicates that the model’s predic-
tions were off by 4.83%. The standard deviation of 3.26 suggests that the error rates varied 
widely from the mean, indicating that the model’s predictions were relatively incon-
sistent. In contrast, the LSTM model had a much lower mean MAPE value of 0.43, sug-
gesting that the model’s predictions were more accurate, with an average error rate of 
0.43%. The standard deviation value for this model is 0 due to only one study presenting 
the results with this metric. The “other” models group had a mean MAPE value of 8.73 
and a standard deviation of 12.71, indicating that the error rates were widely spread 
around the mean, signaling inconsistency in their predictions. 

When examining all models and metrics, the results suggest that the LSTM had the 
best performance among the three models in terms of predicting the outcome variable 
with the lowest average error rate and the most consistent predictions. The FFNN per-
formed worse than the LSTM but had relatively consistent predictions, while the models 
grouped as “other” had the highest average error rate and the most inconsistency in their 
predictions. This result can be observed in Figure 5, where LSTM is represented with the 
smallest area, followed by the FFNN polygon and the group of other models, which is the 
wider polygon. 

3.2.2. Comparison Based on Model Deepness 
To evaluate the performance, two groups were constituted based on the deepness of 

the models, where all models that employed deep learning methods, singularly or in an 
ensemble approach, were classified as “deep learning models” [29–31,38,39,47,48]. The re-
maining models were grouped as “conventional ML methods”. 

It is relevant to mention that deep-learning articles only started in 2021, with Liu et 
al. [29], and both articles published in 2023 [39,48] are also based on deep learning meth-
ods, suggesting a positive trend in the approach. 

As depicted in Figure 6, deep learning shows a decrease in mean error, mainly 
demonstrated by MSE, where deep learning shows a value of 0.56 compared to 1.56 of the 
conventional ML models. The standard deviation was 0.33, whereas conventional models 
are less consistent, with a value of 2.72. The MAPE values also indicate a performance 
improvement, with a mean value of 1.9 versus 8.79, and a standard deviation of 1.98 for 
the deep learning models compared to the 11.74 presented by conventional ML. The MAE 
values are slightly better for the conventional models, with a mean value of 0.46 and a 
standard deviation of 0.29. In contrast, deep learning models presented 0.75 and 0.57 for 
mean and standard deviation, respectively. 

 
Figure 6. Violin plots of the performance according to the model deepness; the green line connects 
the average value of both violins. 
Figure 6. Violin plots of the performance according to the model deepness; the green line connects
the average value of both violins.

To assess which model approach performs better, a statistical Welch’s t-test, which does
not assume equal variances between the two groups, was performed with the significance
level set to 0.05. The null hypothesis was “the performance of deep learning models is
analogous to conventional ML models for wind prediction” [50,51]. Statistical relevance
was observed for one performance metric (MSE), but it was not achieved for all MAE and
MAPE. Although the use of deep learning shows promise with these results, as the findings
of the statistical test are mixed, the outcome cannot be conclusively determined and the
null hypothesis was not rejected.

3.2.3. Time Resolution and General Results

For the performance evaluation based on forecasted time resolution, the 1 min time
step was not fully accessed due to the incompatibility of the data or the lack of precise
information. Tagliaferri et al.’s [27] study was based only on wind direction, and the author
did not provide MAE, MSE, or MAPE metrics. Hu et al. [28] only present the RMSE, plotted
as a chart without referencing the exact values achieved. In this regard, Table 3 presents
the summary for nowcasting error parameters by available temporal resolution, where it is
shown that the tighter timescale shows a smaller order of magnitude errors. For example,
the MAE for the resolution of 10 min is 0.73, decreasing to 0.50 for the 10 min steps and
falling to 0.02 at the higher resolution of 1 min.

Table 3. Mean error metrics by the time resolution.

MAE MSE MAPE

1 min 0.02 - 0.57
10 min 0.50 0.19 3.84
60 min 0.73 1.69 11.88

Based on all reviewed works where the data could be extracted, the general ML mean
performance, represented in Figure 7, achieved (on average) an MAE of 0.56, MSE of 1.10,
and MAPE of 6.72. WMO set the minimum accuracy for wind nowcasting to have an RMSE
under 2 m/s [1]. Therefore, to validate the viability of ML for wind nowcasting, a statistical
test (t-test) was conducted, confirming that there is a statistical significance (p-value lower
than 0.05) of the calculated mean RMSE (0.81 m/s), showing that the null hypothesis “ML
wind nowcast is not possible” is disproved.
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As these results derive from data extracted and grouped, it is relevant to mention
that the best results achieved in wind speed prediction, based on the analyzed articles,
were attained by Liu et al. [29], which reached an MAE of 0.02 and an MAPE behind
the 1% mark (0.57). This result was obtained by predicting the mean 1 min wind speed
for the next minute with an ensemble machine learning approach denominated by EOD
(ELM + ORELM + DBN), which combines several different techniques to create a more
accurate and efficient model.

Regarding the datasets referenced by the authors in the reviewed articles, many either
do not specify where the data can be accessed or obtained, or they simply mention that
they do not have permission to share the data. However, Piazza et al., 2021 [46] states
that the data used were retrieved from a publicly available database published by the U.S.
National Renewable Energy Laboratory (NREL), Sunglee et al., 2022, obtained data from
AccuWeather [40], Bentsen et al., 2023 [39] downloaded the data using the Frost API and
Tagliaferri et al., 2015 [27] acquired the data from America’s Cup Event Authority.

3.3. Input Features Effect

The features that are fed to ML models play a crucial role in determining performance.
The studies reviewed in this research varied in terms of the features included in the models,
with some utilizing only wind-related data, while others incorporated additional variables.

Despite Dupuy et al.’s [34] findings that temperatures demonstrated a positive cor-
relation in downhill wind predictions when measured at relevant different altitudes, the
remaining authors did not provide information on the direct comparison of predictions
with or without these extra features. To compare the overall performance based on the
use of other variables versus wind features, an overview is depicted in Figure 8, where the
results were grouped by the input features. While the inclusion of supplementary data
may intuitively seem beneficial in enhancing the performance of the models, the findings
of this study suggest that it may not be necessary.

Incorporating non-wind-related weather variables did not improve the results ob-
tained compared to the other works that used only wind-related variables. Conversely,
using a higher resolution of wind data had a clear association with reduced errors and
better performance, as described in Table 3.
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To address this topic, a statistical Welch’s t-test was performed on the retrieved
data [50]. The considered null hypothesis was “the use of wind variables in conjunction
with other weather-related variables are comparable to using only wind variables to now-
cast wind with ML approach”, and the significance level was defined as 0.05 [51]. The
obtained results show that there is no statistical significance in the data. Therefore, the
null hypotheses cannot be rejected, indicating no clear advantage regarding the use of
additional weather-related variables.

As for the wind features nowcast, only Dupy et al. [34] predict wind speed and
direction, decomposing the wind into its base vectors (

→
u ,
→
v ). Tagliaferri et al. [27] could

output a wind direction prediction but it does not present wind speed. The remaining
reviewed articles provide forecasting only for wind speed, lacking the integration of the
wind direction. The distribution of studies by predicted wind using only wind speed is
91.3%, while only 4.3% for each wind direction and wind speed and direction predictions.

In examining the domain of research that addresses wind direction, it is clear that most
studies come from sectors such as sail yachting or the meteorology field where direction
is crucial. With most of the current research stemming from the energy sector, wind
direction has not received extensive attention. Another challenge is the nature of wind
direction measurements, which range from 0 to 360 degrees. This continuous range can be
complex to integrate into machine learning models. The high variability of wind direction
further complicates its application, making it a significant challenge for researchers. As
a result, while wind speed is a common focus in many studies, wind direction often
remains overlooked.

4. Conclusions

This article explored the potential of ML for accurate wind speed and direction now-
casting through a systematic review. The search for articles was conducted across three
databases, namely Web of Science, IEEE, and ScienceDirect, using a thorough search string
and applying filters. The employed eligibility criteria was applied to further screen the
initially identified articles, using the 2020 PRISMA guidelines to ensure the reproducibility
of the examination.

The reviewed articles used ML-based techniques to predict wind speed or direction,
but there was significant variation in terms of the prediction window, performance analysis
metrics, data used, and examined models. To simplify the analysis, the variables were
grouped into categories. The most common metrics used were MAE, MSE, and MAPE, and
the articles were evaluated accordingly.
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The temporal window for wind prediction varies, with a minimum value of 1 min and
a maximum range of 1 week. The maximum resolution was 1 min, while the maximum
steps were 60 min. The number of published articles is higher for lower temporal steps,
with a correlation between decreasing resolution and an extension of the prediction range.

Evaluating the performance of the models highlighted that LSTM attained, on average,
the utmost mean performance, with an MAE of 0.81, an MSE of 0.67, and an MAPE of
0.43. The analysis of the deepness performance also shows that deep learning models show
MSE (0.75) and MAPE (0.56), reaching better results in these metrics when compared to the
conventional ML approach. Nevertheless, the best performance for wind speed nowcasting
in the reviewed articles was achieved by Liu et al. [29], using a hybrid ensemble model.
The overall mean performance values based on all articles present an MAE below 1 m/s
with an MSE of 1.10 m/s and an MAPE lower than 7%.

It was concluded that the average performance of the reviewed articles is significantly
below the minimum accuracy established by the WMO. Therefore, it is possible to conclude
that ML-based algorithms are suitable for wind speed nowcasting, positively addressing
the formulated research question.

In a deepness analysis, deep learning models surpassed conventional methods with
a lower MSE (0.56) and MAPE (1.90), while the MAE was slightly higher, with a value
of 0.75. A statistical t-test was executed in all metrics and relevance was obtained in
MSE, suggesting that deep learning usage can be significantly capable of outperform-
ing conventional methods, and further investigation in the field is suggested to confirm
these findings.

Considering that all articles used wind features as input data, some researchers also
tried to include other weather variables. It was concluded that the input of weather
variables was not linked to better general results when accessing and comparing to most
reviewed articles.

It was found that there is a lack of research in wind direction nowcasting either in the
singular forecast or in a joint forecast with wind speed, demonstrated by the high percentage
(91.3%) of articles that only predict wind speed, as opposed to 4.3% that considered wind
direction nowcast.

Further investigation is suggested to include wind speed and direction at very high-
resolution temporal steps; according to the exhibited results, higher resolutions tend to
achieve better nowcasts. As weather-related variables other than the wind were not linked
to better outcomes, new research is also suggested to increase the number of wind inputs,
such as different spatial wind data, instead.

As previously stated by Wang et al. [35], there is no universal criterion for error
evaluation in the field, and Koutsandreas et al. [52] conclude that the variations among the
different error measures are minimal, particularly within each category of measures, such
as percentage, relative, or scaled. Within this, as most of the articles present MAE, MSE, and
MAPE metrics, it is suggested that further works publish these metrics to standardize how
results are evaluated for wind speed or direction nowcast with the use of an ML approach.

The main limitation of this study is that different works have considered data from
dissimilar locations. Hence, there is an inherent bias. Furthermore, some works have
not reported the same performance metrics, making their analysis unfeasible. Lastly, the
review only considered articles written in English; thus, it is possible that some works were
not included.
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