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Abstract: In recent years, the number of similar software products with many common parts has
been increasing due to the reuse and plagiarism of source code in the software development process.
Pattern matching, which is an existing method for detecting similarity, cannot detect the similarities
between these software products and other programs. It is necessary, for example, to detect similarities
based on commonalities in both functionality and control structures. At the same time, detailed
software analysis requires manual reverse engineering. Therefore, technologies that automatically
identify similarities among the arge amounts of code present in software products in advance
can reduce these oads. In this paper, we propose a representation earning model to extract feature
expressions from assembly code obtained by statically analyzing such code to determine the similarity
between software products. We use assembly code to eliminate the dependence on the existence of
source code or differences in development anguage. The proposed approach makes use of Asm2Vec,
an existing method, that is capable of generating a vector representation that captures the semantics of
assembly code. The proposed method also incorporates information on the program control structure.
The control structure can be represented by graph data. Thus, we use graph embedding, a graph
vector representation method, to generate a representation vector that reflects both the semantics
and the control structure of the assembly code. In our experiments, we generated expression vectors
from multiple programs and used clustering to verify the accuracy of the approach in classifying
similar programs into the same cluster. The proposed method outperforms existing methods that
only consider semantics in both accuracy and execution time.

Keywords: representation earning; graph data; classification problems; software; security; machine earning

1. Introduction

In recent years, technologies for determining software similarity have been attracting
attention. This is due to the increase in the number of variants of malware that have been
modified from existing malware and the increase in the number of similar software products
that share common functions and control structures through the reuse and theft of source
code [1]. These variants of malware and similar software products cannot be detected by
existing matching methods. Therefore, it is necessary to conduct reverse engineering analysis to
identify the similarities in function and control structure. However, reverse engineering requires
manual work, and dynamic analysis of actual behavior requires an analysis environment such
as a sandbox [2]. Therefore, by automatically identifying similarities between software products
from static analysis results in advance, the software products that need to be reverse engineered
can be selected and the manual workload can be greatly reduced.

There are two approaches to detecting similarities between different programs, one
is targeting source code and the other is targeting binaries. In source-code-targeted ap-
proaches, code clones, which are pieces of code that match or are similar to each other
in the source code, are used [3,4]. Methods for detecting code clones include detecting
matching or similar sequences of characters or ines [5,6], matching or similar sequences
of tokens [7,8], and matching or similar abstract syntax trees [9]. However, this approach
requires source code, and software source code is not always available. It may also be
dependent on coding style and the development anguage.
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Binary-targeted approaches include binary difference comparison and similarity digests.
The binary difference comparison approach extracts and compares the common parts or dif-
ferences between two input binaries. For example, the ength of the ongest common segment
(LCS [10]) of an executable code sequence can be determined using a method that graphs the
control structure of a program and compares these features [11]. However, while binary differ-
ence comparison can reduce the number of analysis targets by extracting differences between
two binaries, it is unsuitable for comparing arge amounts of data at the same time due to its
characteristics. A similarity digest is a data digest that preserves the similarity of the input;
typical methods include ssdeep [12] and sdhash [13]. Since ssdeep generates digests while
dividing the input string, partial comparisons between inputs are possible. Meanwhile, sdhash
can compare the features it retains with a Bloom filter that stores the features extracted from the
input string. However, while similarity digests can handle arge amounts of data simultaneously,
their output is often a variable-length string. For ease of comparison and applicability to other
tasks, the output should be a fixed-length vector representation.

In this study, as a method for detecting similarities between different software prod-
ucts and programs, we use a distributed representation of assembly code obtained by
statically analyzing the executable code of software products and programs. Distributed
representation is a method for embedding discrete objects, such as inguistic symbols,
into a vector space and representing them as real-valued vectors; typical methods include
Word2Vec [14] for words, Doc2Vec [15] for sentences, and Code2Vec for snippets of program
code [16]. In the proposed method, the assembly code and the control flow graph (CFG)
(Figure 1), which represents the control structure of the program based on the assembly
code, are represented as vectors using a distributed representation of graph data known
as graph embedding [17–21], which is a distributed representation of graph data. This
enables a fixed-length vector representation that reflects the meaning and control structure
of the target. If the semantics and control structures of different programs are similar, the
generated vectors will be close in vector space. This allows the comparison of expression
vectors to identify similar software products and programs. In addition, by using assembly
code obtained from executable code, the approach is not dependent on the existence of
source code or a common development anguage by the target software products. In our
experiments, we evaluate the proposed method by classifying the obtained expression
vectors among programs derived from a single program that have partial modifications to
the source code of that program but no significant differences in the overall control flow.

Figure 1. Control Flow Graph.
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2. Related Works
2.1. Representation Learning Model for Assembly Code

Asm2Vec [22] is an assembly code representation earning model created by Ding et
al. In this study, Ding et al. used an expression earning model based on the syntax of
assembly code examples to detect assembly functions in the same source code that have
been changed in syntax or control structure by compiler options or obfuscation as clones
based on semantic similarity.

Asm2Vec earns a representation of assembly code based on the PV-DM model [15]. In
contrast to plain text, which is placed sequentially, here, assembly code contains a specific
syntax and a structure different from the text. Therefore, Ding et al. represent the assembly
code of each assembly function in CFG, and create multiple sequences based on its syntax.
First, the approach selectively expands the calling function for a function call instruction
in an assembly function. Second, for the caller-extended CFGs obtained, sequences are
created by the following two methods:

2.1.1. Edge Coverage

In edge coverage, edges are sampled randomly until all the edges of the CFG are
covered, and the assembly code of the basic blocks at both ends are concatenated to create
a sequence.

2.1.2. Random Walks

Random walks randomly select movable blocks starting from the entrance block
and follow the CFG. The assembly code of the passed blocks are concatenated to make
a sequence.

The repository RP contains the assembly functions used to train the embedding. After
creating a sequence for each function in the repository RP, a neural network is used to
maximize the next og probability over the entire repository RP.

R = RPS( fs)I(seqi)T (inj)∑
fs

∑
seqi

∑
inj

∑
tc

log P(tc| fs, inj−1, inj+1) (1)

S( fs) =seq[1 : i], fs ∈ RP

I(seqi) =in[1 : j], seqi ∈ S( fs)

T (inj) =OP(inj)||A(inj), inj ∈ I(seqi)

tc ∈ T (inj)

RP : A repository containing the assembly functions;
S( fs): Set of sequences generated from the function fs in the repository RP;
I(seqi): Set of instructions contained in the i-th sequence seqi of function fs;
T (inj): Set of tokens (operands and opcodes) contained in the j-th instruction inj of the
sequence seqi;
OP(inj): Opcode of instruction inj;
A(inj): Set of operands in instruction inj;
tc: Current target token in instruction inj.

Equation (1) represents the og probability of detecting a token tc at the current in-
struction inj from adjacent instructions inj−1 , inj+1 for each sequence seqi of the assembly
function fs , in order. Maximizing this value means predicting the current instruction from
the embedding vector of the assembly function and adjacent instructions (Figure 2). Using
this model, Asm2Vec enables the creation of a distributed representation that captures the
semantics of pieces of assembly code. If the embedding vector of the token t is ~vt ∈ Rd,
then instruction i is treated as a concatenation of tokens, and the embedding vector is
~vi ∈ R2×d, and the embedding vector of function fs is ~θ fs ∈ R2×d. Furthermore, d is a
parameter specified by the user and represents the dimension of the embedding.
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Figure 2. Representation earning model of Asm2Vec.

3. Proposed Method
3.1. Overview

In many cases, similar programs derived from one program have only partial mod-
ifications, additions, or deletions from the original source code. The proposed method
aims for vector representations that are similar between programs that have many of these
common parts.

Asm2Vec uses a representation earning model based on the syntax of assembly code
to realize a distributed representation that captures the semantics of the code. In contrast,
in a static random walk, it is difficult to create a sequence that correctly reflects the number
of oop processes, actual behaviors such as I/O-based processing, and the overall control
structure. In addition, the accuracy and stability of the results depend on the number of
random walks, and increasing the number of random walks may increase the execution
time. Therefore, because CFGs are similar between similar programs with only partial
modifications, the proposed method solves these problems through embedding and graph
embedding for basic blocks and creating a distributed representation method for assembly
code that enables comparison of semantic and structural similarities. In this study, we use
only non-obfuscated assembly code. This maintains the integrity of the control flow and
the basic blocks of the assembly code.

3.2. Generate Target Graph

In this study, the entire executable code of the program is the target of embedding. The
following steps are then used to generate the graph to be embedded from the assembly code:

3.2.1. Function Call Expansion of Main Routine (Main Function)

In the main function, function calls are expanded recursively, and the function call
instruction is replaced with the destination (Figure 3). The recursive function may be
expanded no more than once. Standard ibrary functions are not expanded as they have
sufficient semantics for earning embedding and only user-defined functions that exist in
the executable code are targeted.
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Figure 3. Recursive call expansion.

3.2.2. Vector Representation of Each Basic Block of the Main Function

Using Asm2Vec, we obtain a vector representation of the d-dimension for each basic
block of the CFG of the main function that expands the function call. As the basic block
does not contain branches or branch destinations and each instruction is placed in order, it
can be treated as a sequence without randomness. Figure 4 shows the target graph of the
CFG of the main function thus obtained. Herein, each node of the CFG has a d-dimensional
vector representation of the basic block.

Figure 4. Generate target graph from CFG of the main function.

3.3. Graph Embedding Methods

The target graph to be embedded is a directed graph where each node has a vector
of dimension d as an attribute. We use the vector representation method of this graph
generated using FEATHER [23].

3.3.1. FEATHER

FEATHER [23] is a node-embedding method, created by Rozemberczki et al. that uses
a complex functional characteristic function [24] with random walk probability weights to
represent the feature distribution near a node. The characteristic function is a function that
shows the characteristics of the distribution of a random variable and is an analog of the
Fourier transform of the probability density.

FEATHER has the following features:

• It is possible to embed three types of information into the hybrid: neighbor node
information, structural roles, and node attributes (metadata possessed by the nodes);
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• The resulting vector representation of each node can be used as a representation of the
entire graph by pooling it with a permutation-invariant function.

Based on these features, we obtain the representation vectors of the nodes of the target
graph using FEATHER. Then, we calculate the representation vector of the whole graph
using the arithmetic mean of the vectors as a pooling function. This is used as a distributed
representation of the assembly code.

The following is the procedure for embedding a node.

3.3.2. Characteristic Functions and Node-Embedding on Graphs in FEATHER

There is an attributed graph, G = (V, E). The nodes of G have a random variable X
defined as a feature vector X ∈ R|V|, where Xv is the feature vector of node v ∈ V. When
the distribution of this feature is described in the neighborhood of u ∈ V, the characteristic
function of X of the source node u at the characteristic function evaluation point θ ∈ R is
defined by the following equation, where i is an imaginary unit:

E[eiθX |G, u] = ∑
w∈V

P(w|u) · eiθXw (2)

In Equation (2), the affiliation probability P(w|u) represents the strength of the rela-
tionship between the source node u and the target node w ∈ V. The real and imaginary
parts of Equation (2) are defined by the following equations, respectively.

Re(E[eiθX |G, u]) = ∑
w∈V

P(w|u) cos(θXw) (3)

Im(E[eiθX |G, u]) = ∑
w∈V

P(w|u) sin(θXw) (4)

Here, u and w are parameterized by the transition probabilities of random walks on
the r scale. Let {vj, vj+1, . . . , vj+r} be a sequence of nodes in a random walk on G. When
describing the distribution of features in the neighborhood of u ∈ V reachable by a random
walk (r scale) from u to r steps, we define each by the real and imaginary parts of the
characteristic function as follows:

Re(E[eiθX |G, u, r]) = ∑
w∈V

P(vj+r = w|vj = u) cos(θXw) (5)

Im(E[eiθX |G, u, r]) = ∑
w∈V

P(vj+r = w|vj = u) sin(θXw) (6)

where P(vj+r = w|vj = u) = P(w|u) in Equations (5) and (6) is the probability that a
random walk starting from source node u will reach target node w within r steps. If
the adjacency matrix of G is A and the order matrix is D, the normalized adjacency
matrix is defined as Â = D−1A. For a pair of source and target nodes u, w and a scale r,
P(vj+r = w|vj = u) can be represented by the r power of the normalized adjacency matrix.
That is, Âr

u,w = P(vj+r = w|vj = u). From this we obtain the following equation:

Re(E[eiθX |G, u, r]) = ∑
w∈V

Âr
u,w cos(θXw) (7)

Im(E[eiθX |G, u, r]) = ∑
w∈V

Âr
u,w sin(θXw) (8)

The characteristic functions expressed in Equations (7) and (8) have the following
properties

• The real part is an even function and the imaginary part is a radix;
• The range of both parts is [−1, 1];
• Nodes with different structural roles have different characteristic functions.
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For efficient computation, we extract d points from the domain of the characteristic
function and evaluate the characteristic function at the point described by the evaluation
point vector Θ ∈ R. We define the r-scaled random walk weight characteristic function
of the entire graph as the complex matrix-valued function CF (G, X, Θ, r)→ C|V|×d. The
real and imaginary parts of this function are described by the following matrix-valued
functions, respectively:

Re(CF (G, X, Θ, r)) = Âr cos(X⊗Θ) (9)

Im(CF (G, X, Θ, r)) = Âr sin(X⊗Θ) (10)

Each of these matrices corresponds to a node, and if two rows are similar, it means that
the corresponding nodes have similar distributions in scale r. This describes the feature
distribution around the node.

Next, the algorithm evaluates the characteristic function of the graph at all scales up
to r for each node and each feature when there are k node features, that is, when the set
of node features is defined as X = {X1, . . . , Xk}, the following Algorithm 1 evaluates the
characteristic function of the graph at all scales up to r for each node and each feature.
For simplicity, each value of the characteristic function evaluation vector Θi,r ∈ Rd, i ∈
{1, . . . , k} are assumed to be the same.

1. Initialize the real part ZRe and imaginary part ZIm of the embedding (lines 1 and 2);
2. Repeat for each of the k different node features on a scale up to r (lines 3 and 4);
3. At the first scale, compute the outer product H of the feature under consideration and

the corresponding evaluation point vectors (lines 6 and 7);
4. Take the cosine and sine of H (lines 8 and 9);
5. Using the normalized adjacency matrix, compute the real part HRe and imaginary

part HIm of the characteristic function evaluation (lines 10 and 11);
6. Add matrices to the real and imaginary parts of the embedding (lines 12 and 13);
7. Once the characteristic function of each feature is evaluated for each scale, concatenate

and return the real and imaginary parts of the embedding (lines 14 and 15).

Algorithm 1: Node-embedding algorithm on FEATHER.

Data: Â—Normalized adjacency matrix.
X = {x1, . . . , xk}—Set of node feature vectors.
Θ̃ = {Θ1,1, . . . , Θ1,r, Θ2,1, . . . , Θk,r}—Set of evaluation point vectors.
r—Scale of empirical graph characteristic function.

Result: Node-embedding matrix Z
1 ZRe ← Initialized Real Features()
2 ZIm ← Initialized Imaginary Features()
3 for i in 1 : k do
4 for j in 1 : r do
5 for l in 1 : j do
6 if l = 1 then
7 H← xi ⊗Θi,j

8 HRe ← cos(H)
9 HIm ← sin(H)

10 HRe ← ÂHRe

11 HIm ← ÂHIm

12 ZRe ← [ZRe |HRe]
13 ZIm ← [ZIm |HIm]

14 Z← [ZIm | ZRe]
15 Output Z.
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3.3.3. Pooling of Each Node

The real and imaginary parts of the mean pooled r-scale random-walk-weighted
characteristic function are defined by the following equation:

Re(E[eiθX |G, u, r]) = ∑
u∈V

∑
w∈V

Âr
u,w

cos(θXw)

|V| (11)

Im(E[eiθX |G, u, r]) = ∑
u∈V

∑
w∈V

Âr
u,w

sin(θXw)

|V| (12)

The functions expressed in Equations (11) and (12) allow characterization and compar-
ison based on the structural properties of the entire graph.

4. Experiment and Results
4.1. Experiment Overview

In our experiments, we use an experimental dataset to classify similar programs and
evaluate the results. The experimental dataset consists of assembly code generated from
the publicly available solution source code of the programming contest “Kyopuro tenkei
90 mon [25]”. The solution code for the same problem by the same author have many
common parts due to reuse, and their control flows are similar. Therefore, we perform
K-means clustering with cos similarity as the distance function on the set of expression
vectors obtained from the experimental dataset, and measure the accuracy with which the
solutions of the same creator are classified into the same cluster.

4.2. Experimental Data Sets

The experimental dataset consists of 32 assembly source files generated from the
solution code.

Each assembly source file is written in assembly code and named according to the
following naming convention:

• One capital alphabet etter to indicate the solution creator;
• Issue no.;
• Sequential numbers for multiple solutions;
• File extension (.s).

Each assembly code is output from the source code of the solution method written in
C, using the x-86-64gcc12.2 compiler, without using any compiler options.

Each value in Table 1 is the similarity between the assembly code of each file in the
dataset, expressed by the following equation.

Similarity: S = (1−Normalized Levenshtein distance)

The Levenshtein distance [26] is defined as the minimum number of steps required
to transform one string into another by inserting, deleting, or replacing a single character
in one of the two strings, and is the distance that indicates the difference between the two
strings. The normalized Levenshtein distance is normalized to a value between 0 and 1
by dividing the Levenshtein distance by the number of characters in the onger of the two
strings. Similarity S takes a value between 0 and 1 and represents the degree of agreement
between the two strings.

From Table 1, it can be seen that the similarity between the assembly code generated
from the solutions of the same author is higher than that of different authors, and the
solutions of the same author are similar.
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Table 1. Similarity of the assembly code for each file in the data set.

A_1_0.s B_1_0.s C_1_0.s D_2_0.s E_2_0.s F_3_0.s G_3_0.s

A_1_0.s 1.0 0.59 0.71 0.65 0.56 0.66 0.64
A_1_1.s 0.95 0.60 0.71 0.65 0.57 0.66 0.63
A_1_2.s 0.93 0.60 0.71 0.65 0.57 0.66 0.63
A_1_3.s 0.86 0.59 0.73 0.64 0.50 0.65 0.65
A_1_4.s 0.85 0.59 0.74 0.64 0.50 0.65 0.65

B_1_0.s 0.59 1.0 0.58 0.60 0.51 0.56 0.55
B_1_1.s 0.59 1.0 0.58 0.60 0.51 0.56 0.55
B_1_2.s 0.57 0.92 0.56 0.58 0.48 0.56 0.53
B_1_3.s 0.57 0.88 0.55 0.57 0.49 0.53 0.53

C_1_0.s 0.71 0.58 1.0 0.66 0.49 0.64 0.64
C_1_1.s 0.70 0.58 0.99 0.66 0.49 0.64 0.64
C_1_2.s 0.72 0.58 0.98 0.66 0.50 0.64 0.64
C_1_3.s 0.71 0.57 0.96 0.65 0.49 0.63 0.63
C_1_4.s 0.72 0.58 0.98 0.66 0.51 0.65 0.64

D_2_0.s 0.65 0.60 0.66 1.0 0.50 0.61 0.61
D_2_1.s 0.65 0.60 0.66 0.99 0.50 0.61 0.61
D_2_2.s 0.65 0.60 0.66 0.99 0.50 0.61 0.61
D_2_3.s 0.65 0.59 0.65 0.97 0.51 0.61 0.60

E_2_0.s 0.56 0.51 0.49 0.50 1.0 0.54 0.50
E_2_1.s 0.55 0.50 0.50 0.50 0.93 0.53 0.49
E_2_2.s 0.55 0.50 0.50 0.50 0.93 0.54 0.49
E_2_3.s 0.54 0.51 0.49 0.50 0.97 0.53 0.50

F_3_0.s 0.66 0.56 0.64 0.61 0.54 1.0 0.77
F_3_1.s 0.67 0.56 0.64 0.60 0.55 0.98 0.79
F_3_2.s 0.66 0.56 0.63 0.61 0.55 0.94 0.77
F_3_3.s 0.67 0.56 0.64 0.61 0.55 0.95 0.78
F_3_4.s 0.67 0.56 0.64 0.61 0.55 0.95 0.78

G_3_0.s 0.64 0.55 0.64 0.61 0.50 0.77 1.0
G_3_1.s 0.65 0.55 0.64 0.61 0.51 0.78 0.98
G_3_2.s 0.65 0.56 0.63 0.61 0.50 0.76 0.95
G_3_3.s 0.65 0.56 0.64 0.61 0.51 0.77 0.96
G_3_4.s 0.64 0.54 0.64 0.60 0.49 0.77 0.96

Bolded numbers in the table indicate the similarity of assembly codes generated from the same author’s solution,
which is higher than the others.

4.3. Used Models

The following models(Tables 2 and 3) are used in the experiments (Figure 5). All these
models take as input the CFG of the calling expanded main function in each assembly file.

1. Model_1

• Embedded target: CFG with node attributes;
Each node has the following node features:

• Node neighborhood: Normalized adjacent matrix;
• Structural information: Logarithmic transformation of the order of

each node and clustering coefficients;
• Node attribute: 400-dimensional (each token: 200 dimensions) repre-

sentation vector obtained from the corresponding basic block using
Asm2Vec (Reduced to 16 dimensions using the Python ibrary Scikit-
Learn’s Truncated SVD [27]).

• Embedding method: Pooling on the arithmetic mean after each node embed-
ding using FEATHER;

• Embedded dimension: 4000-dimensional;
• Number of evaluation points Θ: 25;
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• Scale of random walk r: 5.

2. Model_2

• Embedded target: CFG without node attribute;
Each node has the following node features:

• Node neighborhood: Normalized adjacent matrix;
• Structural information: Logarithmic transformation of the order of

each node and clustering coefficients.

• Embedding method: Pooling on the arithmetic mean after each node embed-
ding using FEATHER;

• Embedded dimension: 500-dimensional;
• Number of evaluation points Θ: 25;
• Scale of random walk r: 5.

3. Model_3

• Embedded target: CFG without node attribute;
Each node has the following node features:

• Node neighborhood: Normalized adjacent matrix;
• Structural information: Logarithmic transformation of the order of

each node and clustering coefficients.

• Embedding method: Pooling on the arithmetic mean after each node embed-
ding using FEATHER;

• Embedded dimension: 4000-dimensional;
• Number of evaluation points Θ: 25;
• Scale of random walk r: 40.

4. Model_4

• Embedded target: Assembly Code;
• Embedding Method: Asm2Vec;
• Embedded dimension: 500-dimensional(each token: 250-dimensional);
• Number of random walks n: 10 .

5. Model_5

• Embedded target: Assembly Code;
• Embedding Method: Asm2Vec;
• Embedded dimension: 4000-dimensional(each token: 2000-dimensional);
• Number of random walks n: 10.

6. Model_6

• Embedded target: Assembly Code;
• Embedding Method: Asm2Vec;
• Embedded dimension: 500-dimensional (each token: 250-dimensional);
• Number of random walks n: 50.

The clustering coefficients are a measure of the ratio of edges between adjacent nodes
of a node, and the higher the average of the cluster coefficients of all nodes in a graph, the
denser the network. The following equation expresses the cluster coefficient cu of a node u
in an edge-unweighted graph.

cu =
2T(u)

deg(u)(deg(u)− 1)
(13)

deg(u): Order of u;
T(u): Number of triangles formed by connecting u and the edges of adjacent nodes
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Table 2. Details of each model (Model_1, 2, 3).

Model_1 Model_2 Model_3

Embedded target CFG with node
attributes

CFG without
node attribute

CFG without
node attribute

Embedding method FEATHER FEATHER FEATHER

Embedded dimension 4000 500 4000

Number of evaluation points 25 25 25

Scale of random walk 5 5 40

Table 3. Details of each model (Model_4, 5, 6).

Model_4 Model_5 Model_6

Embedded target Assembly Code Assembly Code Assembly Code

Embedding method Asm2Vec Asm2Vec Asm2Vec

Embedded dimension 500 4000 500

Number of random walks 10 10 50

For all Asm2Vec training, the number of iterations is 10. The exit condition of the
random walk in Asm2Vec is the arrival at the exit block of the CFG or the arrival at the
basic block that has already been passed.

Figure 5. Flow of each model.

4.4. Evaluation Index

We evaluate whether the proposed method can embed vectors generated from similar
programs in close proximity in the vector space.

The following are used as evaluation indices.
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4.4.1. Precision Measure and Recall Measure

To evaluate the clustering results, we calculate precision and recall measure over pairs of
cluster elements [28]. Precision and recall measure are expressed by the following equations:

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

TP: Number of pairs of elements with the same abel that are classified into the same cluster
as a result of clustering;
FP: Number of pairs of elements with different abels that are classified into the same cluster
as a result of clustering;
FN: Number of pairs of elements with the same abel that are classified into different
clusters as a result of clustering.

Precision is calculated as the fraction of pairs correctly put in the same cluster, and
recall is the fraction of actual pairs that were identified.

4.4.2. Normalized Mutual Information

The amount of information H(U), H(V) for objects U and V with the same N elements
is expressed by the following equations:

H(U) =−
|U|

∑
i=1

P(i) log(P(i)) (16)

H(V) =−
|V|

∑
j=1

P(j) log(P(j)) (17)

P(i) =
|Ui|
N

, P(j) =
|Vj|
N

(18)

When the probability that a randomly selected object is classified into both classes Ui
and Vj is P(i, j) = |Ui ∩Vj|/N, the mutual information MI(U, V) and normalized mutual
information NMI(U, V) are expressed as follows:

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

P(i, j) log
(

P(i, j)
P(i)P(j)

)
(19)

NMI(U, V) =
MI(U, V)

mean(H(U), H(V))
(20)

Mutual information content is a function that measures the agreement between two
assignments, ignoring permutations, and normalized mutual information content is the
normalized mutual information content with the score scaled between 0 (no mutual infor-
mation) and 1 (perfect correlation). This index evaluates how well the expected number of
clusters and the number of elements in each cluster agree with the correct answer.

4.4.3. Execution Time

The execution time is the elapsed time from the input of the CFG of the main function
to the output of the clustering result.

4.5. Results of the Experiments

Table 4 shows the results of clustering with the number of clusters k = 7. Each value
is the average of five runs.
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Table 4. Results of the experiments.

Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Precision measure 0.85 0.79 0.812 0.507 0.506 0.621

Recall measure 0.929 0.844 0.862 0.635 0.633 0.707

Normalized Mutual Information 0.954 0.895 0.929 0.657 0.673 0.785

Execution time (s) 35.239 0.0359 0.0657 153.044 462.574 774.089

From Table 4, it can be seen that the proposed method, Model_1, has the highest
values for the precision measure, the recall measure, and the amount of normalized mutual
information; while, in terms of execution time, Model_2 was the fastest.

5. Evaluation and Discussion

As the results presented in Table 4 show, the proposed method, Model_1, has the
highest values for the precision measure, the recall measure, and the amount of normalized
mutual information. The results also show that the desired clustering results are obtained.
This means that, with the proposed method, the representation vectors of similar pieces
of assembly code are mapped most closely in the vector space. Furthermore, in each
model, the recall measure was higher than the precision measure. This is because the False
Negative (FN) value was ower than the False Positive (FP) value in each case. This means
that cases in which elements of the same cluster are missed are ess ikely to occur than cases
in which elements of different clusters are detected incorrectly.

Figures 6–8 visualize the most frequent results among the clustering results of Model_1,
Model_3, and Model_4. Each representation vector is dimensionally reduced to two dimen-
sions using principal component analysis, and plotted with coloring for each cluster. From
the results of Model_4 and 5, Asm2Vec did not show a significant performance change
between 500 and 2000 embedding dimensions, and Model_1, 2, and 3 outperformed the
random-walk-based Asm2Vec in all indices for the same embedding dimensions. Compar-
ison between Model_4 and Model_6 shows that increasing the number of random walk
sequences improves performance, but increases the execution time roughly approximately
inearly. Asm2Vec was used to retrieve the attributes in Model_1, and embedding by basic
blocks can be performed in a shorter time than embedding from the whole CFG. Thus,
applying graph embedding to CFGs for the classification of similar programs whose overall
control flow is not significantly changed, as carried out in this experiment, is effective.

We also compared Model_1, 2, and 3. A comparison of the results of Model_1 and
Model_3 shows that adding attributes to the nodes and incorporating them into the em-
bedding process results in better embedding than in the case where only the information
obtained from the graph (neighborhood and structural information) is considered. Mean-
while, the extraction of attributes and their dimension reduction increase the execution
time significantly. In addition, from the comparison between Model_2 and Model_3, it can
be seen that the accuracy of embedding can be improved by increasing the random walk
scale r in FEATHER, as more neighborhood and structural information can be incorporated.
Here, in FEATHER, when the number of node features is multiplied by n and the scale is
multiplied by m, the dimension of embedding becomes n×m times arger. As the embed-
ding dimension increases, the number of computations required for comparison between
representation vectors increases, which may increase the time required for comparison or
make comparison difficult. Therefore, when increasing the scale r in a graph with node
attributes, it is important to appropriately reduce the dimension of the node feature matrix.

One of the concerns of the proposed method is that Asm2Vec, which is used to extract
node attributes, is designed for a single assembly anguage and cannot be applied to
different architectures. Therefore, in terms of execution time and generality, embedding
without considering node attributes may be superior in some cases.
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Thus, the proposed method can identify similar programs with similar source code
that have not undergone major changes in the control flow. Furthermore, the recall measure
has a higher value than the precision measure, which is useful in situations where we want
to reduce oversights rather than false positives. Thus, the proposed approach can be used
to detect source code copying and variants of malware derived from existing malware.

Figure 6. Visualization of the most frequent results in Model_1. Dots of the same color are in the
same cluster.

Figure 7. Visualization of the most frequent results in Model_3. Dots of the same color are in the
same cluster.
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Figure 8. Visualization of the most frequent results in Model_4. Dots of the same color are in the
same cluster.

6. Conclusions

In this study, we created a distributed representation method of assembly code that
can be used to detect similar programs and software products, the occurence of which
has increased in recent times due to source code reuse and plagiarism. The proposed
method combines Asm2Vec, an existing assembly code distributed representation method,
with FEATHER, a graph embedding method, based on the fact that the CFG of each
program is similar between similar programs. Asm2Vec performs embedding based on a
earning model based on the syntax of assembly code, capturing the semantics of assembly
code. FEATHER is also capable of hybrid embedding that incorporates information on
neighboring nodes of the graph, structural information, and metadata possessed by each
node. Therefore, we used Asm2Vec to create a vector representation of the basic blocks
corresponding to each node of the CFG, and FEATHER and a vector representation of
the graph with these basic blocks as node attributes. In the experiment, we performed
vector representation of the assembly code generated from solution code submitted to a
programming contest using multiple distributed representation methods including the
proposed method. Next, we performed clustering of the obtained representation vectors to
measure the ratio of solutions by the same creator that are classified into the same cluster.
Then, we used precision measure, recall measure, and normalized mutual information as
evaluation indices of clustering accuracy. The experimental results show that the clustering
accuracy and execution time of the proposed method are better than those of the random-
walk-based Asm2Vec, indicating the effectiveness of graph embedding. Furthermore,
the recall measure was higher than the precision measure. Thus, the proposed method
can determine similarity based on the semantics and control structure of software and
programs, independent of the existence of source code or the use of different development
anguages. This approach can be applied to identify variants of malware derived from
existing malware or plagiarized software. However, it should be noted that assembly code
is always required to generate CFGs and acquire node attributes; thus, if accurate assembly
code cannot be obtained due to software obfuscation, the proposed method will not work
correctly. In the future, we will implement obfuscation measures and validate the utility of
the proposed approach with more data.
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