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Abstract: This article examines intrusion detection systems in depth using the CSE-CIC-IDS-2018
dataset. The investigation is divided into three stages: to begin, data cleaning, exploratory data
analysis, and data normalization procedures (min-max and Z-score) are used to prepare data for use
with various classifiers; second, in order to improve processing speed and reduce model complexity,
a combination of principal component analysis (PCA) and random forest (RF) is used to reduce
non-significant features by comparing them to the full dataset; finally, machine learning methods
(XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes) are applied to specific features and preprocessing
procedures, with the XGBoost, DT, and RF models outperforming the others in terms of both ROC
values and CPU runtime. The evaluation concludes with the discovery of an optimal set, which
includes PCA and RF feature selection.

Keywords: intrusion detection system; machine learning techniques; exploratory data analysis;
performance evaluation; feature selection; CSE-CIC-IDS-2018 dataset; three-phase models

1. Introduction

In today’s world, the Internet has become an invaluable tool, effortlessly integrated
into human life. People all over the world utilize it as a communication and information
exchange medium. Information and communication technology (ICT) is essential in both
business and daily life. However, in the age of big data, cyber-attacks on ICT systems
have become increasingly sophisticated and broad, making network risks a key issue in
modern life. Malicious attacks are continually developing, emphasizing the critical need
for improved network security solutions. Given the world’s growing reliance on digital
technologies such as computers and the Internet, building safe and reliable programs,
frameworks, and networks that can withstand these attacks is a critical task [1,2].

Intrusion detection systems (IDS) are critical for protecting computer networks. They
effectively recognize and respond to security threats. Intrusion is used to detect irregu-
larities in network traffic to improve security. Detection accuracy, detection times, false
alarm alerts, and the identification of unknown assaults are currently issues for IDS tech-
nology [3]. They are classified into three types: signature-based systems, anomaly-based
systems, and hybrid systems. Anomaly-based systems can detect unknown hostile actions
by recognizing deviations from a model based on typical behavior, whereas signature-based
systems can identify known assaults by employing established signatures. Signature-based
systems, on the other hand, have a high rate of false alarms [4]. Existing anomaly intrusion
detection systems have accuracy problems. Certain datasets lack network traffic diversity
and volume, others lack diverse or recent attack patterns, and still others lack crucial fea-
ture set metadata. The hybrid IDS, which includes both anomaly-based and misuse-based
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IDSs, proved to be a more robust and effective solution. Network intrusion detection
systems (NIDS) are critical in resolving security issues. NIDS monitors network traffic for
unusual activity, and then analyzes the data to discover security breaches such as invasions,
misuse, and anomalies. NIDS must deal with difficulties like large data dimensionality
and high traffic volumes [5]. While many research projects have used machine learning
techniques, approaches which are useful in NIDS, they have limits when confronted with
large amounts of network data. Feature selection (FS) has become widely used in selecting
relevant features for building strong models. It has significantly influenced the efficiency
and performance of IDS models [6]. As a result, three critical aspects of NIDS development
are preprocessing, feature reduction, and classifier methods. Nonetheless, network intru-
sion detection systems encounter issues such as managing massive amounts of data, high
false alarm rates, and skewed data.

Machine learning techniques (ML) have been used widely. They have been used in
the field of information security in recent years. ML have found widespread application
in network security during the last two decades [7]. ML approaches are becoming more
popular as a method of spotting anomalies [8]. ML includes automating the process of
learning from examples. It is used to build models that distinguish between regular and
aberrant classes [9].

The CSE-CIC-IDS-2018 dataset is used in this study to investigate the complexities
of IDS, with the goal of addressing the critical concerns connected with the complexity
and resource demands of IDS in the field of cybersecurity. The study is divided into
three stages: initial data preparation via data cleaning, exploratory data analysis, and
data normalization; subsequent reduction of non-significant features via a combination of
principal component analysis (PCA) and random forest (RF) to improve processing speed
and reduce model complexity; and application of various machine learning algorithms,
with XGBoost, decision trees (DT), and random forest emerging as top performers based
on ROC. The work closes with the discovery of an ideal feature set by PCA and RF feature
selection, providing a viable way to improve the efficiency and accuracy of intrusion
detection systems and thus bringing valuable insights to the cybersecurity arena.

The goal of this study was to find the most effective classifier by methods for pre-
processing and feature selection translated into machine learning approaches that are
extensively used by us in intrusion detection systems. Popular classification algorithms
such as extreme gradient boosting (XGBoost), classification and regression trees (CART),
decision tree (DT), k-nearest neighbors (KNN), multilayer perceptron (MLP), random
forest (RF), logistic regression (LR), and naïve Bayes (Bayes) are included. The evalua-
tion of performance encompasses several dimensions as nine important criteria: In k-fold
cross-validation, accuracy, precision, recall, F1 score, PCC/BA, MCC, ROC, and average
were calculated. Classification, central processing unit (CPU) time, and model size were
also explored.

The following are the main contributions of this study:

• Investigation of large amounts of data linked with harmful network activity;
• Identification of feature dimensions influencing classification performance in a labeled

dataset with both benign and malicious traffic, resulting in improved detection accuracy;
• Use of the CSE-CIC-IDS-2018 dataset for NIDS and testing of seven different machine

learning classifiers and scripts for identifying various sorts of assaults;
• In general, researchers frequently work with incomplete data. In contrast, this study

uses all accessible DDoS data in the experiment, correlating with reality by adopting
the concept of data imbalance;

• Presenting various performance assessments has many elements. Furthermore, the
evaluation considers CPU processing time, which is an important component in
intrusion detection, as well as the size of the experimentally obtained model, which
has the possibility for future extension.

The rest of the paper is structured as follows: Section 2 describes the research sequence,
as well as the research concept and process; the methodology and proposed framework
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are described in Section 3; the experimental setup is described and defined in Section 4;
the experiments and related discussions are presented in Section 5; finally, Section 6
concludes the essay by discussing the model’s strengths and flaws and suggesting future
study directions.

2. Related Work

There are very few datasets for network intrusion detection compared with datasets
for malicious code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation
of IDS. Numerous studies on ML-based IDS have been using KDD or the upgraded ver-
sions of KDD. In this work, we develop an IDS model using CSE-CIC-IDS-2018, a dataset
containing the most up-to-date common network attacks [10]. The Canadian Institute for
Cybersecurity’s CSE-CIC-IDS-2018 dataset incorporates the concept of profiles. The most
recent edition of this dataset provides versatility, allowing both agents and individuals to
generate network events. These profiles can be applied to a variety of network protocols
and topologies. Furthermore, the dataset has been updated by adding the standards used
in the development of CIC-IDS-2017. In addition to meeting the necessary requirements,
it provides the following benefits: minimum duplicate data, nearly no unclear informa-
tion, and the dataset is already in CSV format, making it ready for use without further
processing [11].

As data dimensionality grows, feature selection has become a critical preprocessing
step in the development of intrusion detection systems. Feature selection entails removing
irrelevant and superfluous features and picking the optimal subset that best characterizes
patterns in various classes. There are various advantages to feature selection. It reduces fea-
ture dimensionality, which leads to better algorithm performance. By removing redundant,
irrelevant, or noisy data, it improves data efficiency and thus learning technique perfor-
mance. It also improves the correctness of the output model and aids in understanding the
underlying operations that generated the data [12,13].

Following a study of relevant documents and research articles, it was discovered that
several studies used machine learning techniques in conjunction with the CEC-CIC-IDS-
2018 dataset to detect intrusions. The following is an overview of these findings, shown in
Table 1.

Table 1. An overview of research on network intrusion detection methods and findings.

Study Methodology/Findings

S. Ullah. et al. [14]
Compares machine learning algorithms (RF, Bayes, LR, KNN, DT)
and feature selection by RF (30 features) using CSE-CIC-IDS-2018
dataset. DT yielded the best results.

M. A. Khan. [15]

Develops HCRNNIDS, a hybrid convolutional recurrent neural
network-based NIDS, and compares it with machine learning
algorithms (DT, LR, XGBoost) and feature selection by RF (30
features) using CSE-CIC-IDS-2018 dataset. HCRNNIDS showed
superior results.

J. Kim. et al. [10]

Discusses IDS models using various machine learning algorithms
(ANN, SVM, CNN, RNN) and finds that CNN outperforms
traditional techniques when applied to
CSE-CIC-IDS-2018 dataset.

R. Qusyairi. et al. [3]

Proposes an ensemble learning technique incorporating LR, DT,
and gradient boosting after comparisons with single classifiers,
using the CSE-CIC-IDS-2018 dataset. Identified 23 significant
traits out of 80.
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Table 1. Cont.

Study Methodology/Findings

S. Chimphlee. et al. [4]

Focuses on IDS using the CSE-CIC-IDS-2018 dataset, employs
data preprocessing, feature selection, and seven classifier machine
learning algorithms (including MLP and XGBoost). MLP
provided the most successful outcomes.

A. Padmashree. et al. [16]

Addresses the industrial revolution’s IoT security challenges by
offering a robust model with efficient feature selection,
preprocessing, and DT-PCRFE for increased security. The model
achieves a stunning 99.2% accuracy using word embeddings and
a DNN, which is critical for protecting IoT devices in smart
city expansion.

S. Malliga. et al. [17]

Looks at denial of service (DoS/DDoS) attacks, focusing on how
attack patterns evolve. It examines contemporary
deep-learning-based detection algorithms since 2016, classifies
attack types, and assesses datasets. The findings indicate the need
for improved techniques to dealing with dynamic attacker
behavior, noting gaps in the existing literature and
recommending future research directions.

A. Alzaqebah. et al. [18]

Improves network intrusion detection systems by employing a
modified grey wolf optimization algorithm, with a focus on
enhanced detection of regular and anomalous traffic. With an
accuracy of 81%, an F1 score of 78%, and a G-mean of 84%, the
strategy combines filter and wrapper strategies to produce
excellent performance, notably in decreasing error rates. The
model beats previous meta-heuristic algorithms when tested on
the UNSWNB-15 dataset.

J. Toldinas. et al. [19]

Describes a novel approach for detecting network intrusions
using multistage deep learning image recognition. The suggested
method achieves exceptional accuracies of 99.8% for generic
attack identification on UNSW-NB15 and 99.7% for DDoS and
normal traffic detection on BOUN DDoS by transforming network
features into four-channel pictures and leveraging the
ResNet50 model.

R. Damasevicius. et al. [20]

Introduces LITNET-2020, a novel annotated network benchmark
dataset derived from a real-world academic network, addressing
the scarcity of realistic datasets for network intrusion detection.
With 85 network flow features and 12 attack types, the dataset
proves effective in identifying different attack classes, providing a
valuable resource for research purposes.

M. H. Ali. et al. [21]

Addresses IoT security using a sparse convolutional network for
intrusion detection, focusing on DDoS attacks. Trained with
intrusion data and characteristics, the network is optimized using
evolutionary techniques, effectively minimizing intrusion
involvement in IoT data transmission. Experimental results
demonstrate superior network security compared with
traditional methods.

As a result, previous researchers investigated a variety of techniques based on standard
machine learning for intrusion detection.

3. Methods

We learn about the problem and its solutions by studying information and relevant
research publications. This knowledge has been translated by us into a framework, which is
illustrated in Figure 1 and is divided into three distinct phases. The study makes use of stan-
dardized data and is primarily concerned with intrusion detection systems. It specifically
makes use of the CSE-CIC-IDS-2018 dataset [22]. Data cleaning, exploratory data analysis,
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and data normalization employing two techniques, min–max normalization and Z-score
normalization, are all part of the data preprocessing process in Phase 1. This is performed
to evaluate the effectiveness of these strategies when applied to different classifier models.
Following that, the research moves on to Phase 2, which involves assessing the significance
of each feature in the experimental dataset. The goal here is to reduce data complexity,
which improves both processing speed and model size. This is accomplished by combining
two techniques: principal component analysis (PCA) [23] and random forest (RF) [24]. The
investigation includes using the complete dataset without feature reduction, allowing for
a comparison of their efficiency when applied to multiple classifier models. In the final
phase, the dataset, which has undergone data preprocessing and feature selection based on
predetermined criteria, is used with machine learning algorithms chosen through common
classification techniques such as XGBoost [25], CART [26], DT [27], KNN [28], MLP [29],
RF [30], LR [31], and Bayes [32], which are used to assess performance across multiple
dimensions, as mentioned in the following section.
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4. Experimental Setup

This study used a 64-bit Windows operating system (Windows 11) with the following
specifications: an 11th Gen Intel(R) Core(TM) i7-11800H at 2.30 GHz, 32 GB of 2933 MHz
DDR4 memory. Because the amount of large data used in the test is substantial, the Python
3.11 environment was used, with periodic updates that included enhancements such as
enhanced language capabilities, faster performance, and the addition of additional libraries
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or modules. With each Python release, developers should expect continual improvements
in usability, performance, and overall usefulness. For data preparation, handling, prepro-
cessing, analysis, training, and evaluation metrics, the recommended model was built and
evaluated using Numpy, Pandas, and Scikit Learn. Pandas and Numpy were used for data
handling and preprocessing, while Scikit Learn was used for model training, evaluation,
and metrics evaluation. The Seaborn program and Matplotlib were used to visualize the
data. Subsequent subsections go into greater detail about the research.

4.1. CSE-CIC-IDS-2018 Data Set

The data set given for the CSE-CIC-IDS-2018 [22] was developed through a collabora-
tive project between the Communications Security Establishment (CSE) and the Canadian
Institute for Cybersecurity (CIC). It was created with the goal of evaluating intrusion
detection research, and it has now become a benchmark dataset for the evaluation of
IDSs. This dataset has been meticulously curated and developed to imitate real-world
cyber threats and attacks, resulting in a wide and comprehensive set of situations for
examination. Its significance arises from its capacity to replicate complicated network
environments, allowing academics and practitioners to successfully assess and improve
intrusion detection systems. The data was obtained through a ten-day period, eighty
columns, and there are fifteen sorts of attacks: FTP-Brute Force, SSH-Brute Force, DoS
attacks-GoldenEye, DoS attacks-Slowloris, DoS attacks-Hulk, DoS attacks-SlowHTTPTest,
DDoS attacks-LOIC-HTTP, DDOS attack-HOIC, DDOS attack-LOIC-UDP, Brute Force-Web,
Brute Force-XSS, SQL injection, infiltration, label, and bot. The study focuses on DDoS
intrusions, because of a tough form, difficult to mitigate [14]. From analyzing data over
a 10-day period, DDoS intrusions were found on the second day, namely 02-20-2018.csv
(84 features) and 02-21-2018.csv (80 features). Therefore, the researcher chose to use this
dataset for further investigation.

4.2. Data Preprocessing
4.2.1. Data Cleaning

This entailed cutting it down to 80 features by removing the first four: “Flow ID”,
“Src IP”, “Src Port”, and “Dst IP”. Both datasets, which differ in their feature counts,
were chosen for their importance. The dataset was standardized by homogenizing it to
80 features and removing the stated initial properties. The removed attributes from both
days were then combined to form a uniform dataset for further investigation. The “Label”
column has been converted to numerical values, with Label 0 denoting benign, Label 1
denoting DDoS attacks-LOIC-HTTP, Label 2 denoting DDOS attacks-HOIC, and Label 3
denoting DDOS attacks-LOIC-UDP.

4.2.2. Exploratory Data Analysis

The analysis included determining the minimum, maximum, standard deviation, and
mean values of the data for all 80 attributes, including the labels. We removed 10 fields
with constant zero values for each instance, including “Bwd PSH Flags”, “Fwd URG
Flags”, “CWE Flag Count”, “Fwd Byts/b Avg”, “Fwd Pkts/b Avg”, “Fwd Blk Rate Avg”,
“Bwd Pkts/b Avg”, and “Bwd Blk Rate Avg”. In addition, we removed the “Timestamp”
fields to prevent learners from discriminating between attack prediction and attack detec-
tion. After deleting the unnecessary features, the dataset is more usable for classification
applications. The experiment will yield 8,997,323 rows of data and 69 characteristics. Sev-
eral processes were required to ensure data quality, including removing “NaN” values
(36,767 rows), removing “+inf” and “-inf” values (22,686 rows), and deleting duplicate rows
(2,302,927 rows). The dataset was refined to 6,634,943 rows once these cleaning operations
were completed, making it appropriate for further research and use. The effect of data
cleaning on attack category distribution is shown in Table 2.
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Table 2. The effect of data cleaning on attack category distribution.

Type Original Data After Clean Data

Label Feature Record Percent Record Percent

Benign 7,733,390 85.95 5,858,988 88.31
DoS attacks-LOIC-HTTP 576,191 6.40 575,364 8.67
DDOS attack-HOIC 686,012 7.62 198,861 3.00
DDOS attack-LOIC-UDP 1730 0.02 1730 0.03

total 8,997,323 100.00 6,634,943 100.00

Table 2 displays data statistics before and after cleaning. Initially, there
were 8,997,323 rows grouped into different labels, with “Benign” accounting for 85.95%
of the records, “DDoS attacks-LOIC-HTTP” accounting for 6.40%, “DDOS attack-HOIC”
accounting for 7.62%, and “DDOS attack-LOIC-UDP” accounting for 0.02%. The dataset
was cleaned and reduced to 6,634,943 rows. “Benign” entries made up 88.31% of the
cleaned data, indicating a reduction from the original dataset. “DDoS attacks-LOIC-HTTP”
and “DDOS attack-HOIC” percentages increased somewhat, while “DDOS attack-LOIC-
UDP” remained at 0.03%. These modifications represent the effect of data cleansing on the
distribution of the various attack categories.

4.2.3. Data Normalization

Normalization is used in the data preparation step of machine learning to standardize
numerical column values and ensure they are on a consistent scale [33]. Normalization, a
transformation method, improves a model’s performance and accuracy greatly, especially
when the distribution of information is uncertain. Without a consistent pattern, effective
normalization relies on large datasets to smooth data by removing outliers. This technique,
which is critical in data preprocessing for network intrusion detection systems (NIDS),
standardizes data to a given scale, often ranging from 0 to 1. This ensures that all features
have consistent scales and ranges, thereby improving the performance and accuracy of
NIDS. Several normalization approaches are employed in data pre-processing. Some of the
most common are shown in [34].

The decision between min–max scaling and Z-score normalization in the study of
the CSE-CIC-IDS-2018 dataset is determined by the peculiarities of the cybersecurity data.
Min–max scaling may be useful in retaining the interpretability of feature values, especially
when precise ranges are important in the context of network intrusion detection. This
approach may be appropriate for checking that normalized features keep their associations
and stay within expected limitations. However, given the nature of cybersecurity datasets,
Z-score normalization may offer advantages due to the existence of outliers. Its resis-
tance to extreme values may be critical for improving the resilience of intrusion detection
models to aberrant network activity. Furthermore, Z-score normalization may contribute
to a more effective comparison of varied aspects inside the CSE-CIC-IDS-2018 dataset,
thereby increasing the effectiveness of machine learning algorithms built for cybersecurity
applications. Finally, empirical evaluations should be used to decide which normalization
technique best aligns with the specific characteristics and aims of the intrusion detection
task utilizing this dataset.

• Min–Max Normalization: This approach reduces the values of a feature to a range
between 0 and 1. It accomplishes this by subtracting the minimum value of the feature
from each data point and then dividing the result by the range of the feature. This
technique’s equivalent mathematical equation is shown as (1), where X is an original
value and X′ is the normalized value [35]:

X′ =
(X− Xmin)

(Xmax − Xmin)
(1)
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• Z-score Normalization: This method scales a feature’s values to have a mean of 0 and
a standard deviation of 1. This is accomplished by removing the feature’s mean from
each value and then dividing by the standard deviation. Mathematical equation for
this strategy is given as (2), where X is an original value and X′ is the normalized
value [36]:

X′ =
(X−mean)

std
(2)

4.3. Feature Selection

We compared two feature selection methods in this study: principal component
analysis (PCA) and fandom forest (RF). The following are the comparison’s specifics.

4.3.1. PCA

Principal component analysis is a sophisticated statistical approach used in data
analysis and machine learning to reduce complex datasets. Its major goal is to decrease the
amount of characteristics or dimensions in a dataset while retaining critical information.
PCA does this by changing the original variables into a new set of variables known as
principle components. These components, which are linear combinations of the original
features, are intentionally made uncorrelated in order to capture the maximum variation in
the data. PCA allows academics and data scientists to analyze high-dimensional data more
effectively, identify patterns, and maximize the performance of machine learning algorithms
by selecting the principal components that elucidate the most variability. PCA, in essence,
simplifies both data interpretation and processing by condensing the information into a
more comprehensible and insightful format [23].

4.3.2. RF

Random forest, in addition to being a powerful prediction model, is also a useful tool
for feature selection in machine learning. Random forest evaluates the value of each feature
throughout the training process by determining how much it contributes to lowering
impurity or inaccuracy in the model. Higher significance scores are ascribed to features
that play a substantial influence in decision making across multiple trees. Data scientists
can find the most influential aspects in their dataset by examining these ratings. This
inbuilt feature ranking capability simplifies the selection process, allowing practitioners
to focus on the factors that will have the greatest impact on their study. The capacity of
random forest to perform feature selection improves model efficiency, reduces overfitting,
and improves the general interpretability of machine learning systems [24].

4.4. Classification Model

Classification predicts data classes, and, in the context of an intrusion detection system
(IDS), attacks are categorized as binary or multiclass to discern benign or malicious net-
work traffic. Binary classification involves two classes, while multiclass datasets can have n
classes. This complexity imposes a strain on algorithms in terms of computational power
and time, perhaps resulting in less effective algorithm outcomes. In the process of classi-
fication, each dataset is evaluated and categorized as either typical or unusual. Existing
structures are maintained, and new instances are generated. Classification is employed for
both identifying irregular patterns and detecting anomalies, although it is more frequently
utilized for recognizing misuse. In the current study, eight machine learning techniques
were applied, along with feature selection methods addressing class imbalances [37].

4.4.1. XGBoost

XGBoost is a very effective machine learning method noted for its high predicted
accuracy and speed. It is classified as ensemble learning since it combines predictions from
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numerous decision trees to generate strong models. What distinguishes XGBoost is its
emphasis on overcoming the constraints of existing gradient boosting methods, resulting
in a highly efficient algorithm. It accomplishes this by training simple models iteratively
to repair faults and optimize performance using techniques such as regularization and
parallelization. The capacity of XGBoost to handle complicated data relationships has
made it a popular choice in a variety of industries, winning multiple machine learning
competitions and finding applications in data science and finance [25].

4.4.2. CART

CART is a versatile machine learning approach that can solve classification and regres-
sion problems. It recursively divides the dataset depending on feature values, yielding
a tree structure with each node representing a feature and a split point. This action is
repeated until the halting requirements are met, resulting in the formation of a binary tree.
CART is well known for its ease of use and interpretability, making it a popular choice in a
variety of industries. It is particularly useful for finding non-linear correlations in data and
making accurate predictions for both categorical and numerical outcomes [26].

4.4.3. DT

A decision tree is a basic machine learning approach used for classification and
regression. It divides the dataset recursively into subsets based on the values of the input
features. These divisions are determined by choosing qualities and criteria that result in the
best class separation or most accurate predictions. Each internal node represents a feature
and a split point, and each leaf node represents the output, which is commonly a class label
for classification tasks or a numerical value for regression tasks. The method divides the
data until a stopping criterion, such as a maximum tree depth or a minimum number of
samples at a leaf node, is fulfilled. Because they are simple to read and illustrate, decision
trees are popular for exploratory analysis and decision-making processes [27].

4.4.4. KNN

KNN is a basic powerful machine learning method that may be used for classification
and regression problems. Predictions in KNN are based on the majority class or the average
of the k-nearest data points in the feature space. “K” represents the number of nearest
neighbors considered, and the method calculates distances between the query point and all
other points in the dataset to discover the closest ones. In classification, the most prevalent
class among these neighbors determines the forecast, whereas, in regression, the average
of the nearby values defines the prediction. KNN is non-parametric and instance-based,
which means it makes no assumptions about the underlying data distribution, making it
adaptable and simple to grasp. However, its performance can be affected by the option
selected [28].

4.4.5. Multilayer Perceptron (MLP)

MLP is a machine learning artificial neural network. It is made up of several intercon-
nected layers, including an input layer, one or more hidden layers, and an output layer.
Each node connection has a weight, and the network learns by altering these weights
during training in order to minimize the discrepancy between expected and actual outputs.
MLPs can describe complicated patterns and relationships in data, making them useful for
applications like classification, regression, and pattern recognition. They are very good
at handling huge and complex datasets because of their capacity to capture nonlinear
correlations, but they require careful tuning and a significant amount of training data to
avoid overfitting [29].

4.4.6. RF

RF is a machine learning technique that, during training, generates a set of decision
trees. Each tree in the ensemble is built with a random subset of the data and a random
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subset of the features. For regression tasks, the algorithm makes predictions by averaging
the forecasts of these individual trees, whereas for classification tasks, the algorithm takes a
majority vote. Random forest is well known for its precision, robustness, and ability to han-
dle complex data interactions. It reduces overfitting by pooling the predictions of several
trees, making it one of the most popular and powerful machine learning techniques [30]

4.4.7. LR

LR is a statistical technique used to perform binary classification tasks. Contrary to
its name, it is utilized for classification rather than regression. The algorithm calculates
the likelihood that a given input belongs to a specific class. The logistic function (also
known as the sigmoid function) is applied to the linear combination of input features and
their associated weights. The result is converted into a value between 0 and 1, signifying
the likelihood of the input falling into the positive category. If this probability exceeds a
certain threshold (typically 0.5), the input is considered positive; otherwise, it is considered
negative. Logistic regression is an essential tool in machine learning due to its simplicity,
interpretability, and efficiency for linearly separable data [31].

4.4.8. Bayes

Naive Bayes is a probabilistic machine learning technique that is used for classification
jobs. It is based on Bayes’ theorem, which assesses the likelihood of a certain event occurring
based on prior knowledge of factors that may be relevant to the occurrence. In the context of
naive Bayes, it is assumed that features in the dataset are conditionally independent, which
means that the presence of one feature does not affect the presence of another. Despite this
simplistic assumption (thus the term “Naive”), naive Bayes performs admirably in many
actual applications, particularly text classification and spam filtering. It is computationally
efficient, simple to implement, and performs well with huge datasets, making it a popular
choice for a variety of classification jobs [32].

4.5. Evaluation Model

This research evaluates an intrusion detection method using nine important criteria:
in k-fold cross-validation, accuracy, precision, recall, F1 score, PCC/BA, MCC, ROC, and
average were calculated. Classification, CPU time, and model size are also explored.

Evaluation accuracy, sometimes known as accuracy, is a fundamental parameter in
analyzing the performance of machine learning models, notably in classification tasks. It
computes the proportion of accurately predicted cases out of all instances in the dataset.
High accuracy shows that the model’s predictions closely match the actual outcomes.

• F1 score contains both recall and precision and the mathematical equation for this
strategy is given as (3)

F1 Score =
2× (Precision× Recall)
(Precision + Recall)

(3)

The F1 score provides more weight to the lower of the two values and is the harmonic
mean of precision and recall. This indicates that if either precision or recall is low,
the F1 score will be much lower as well. However, if both precision and recall are
strong, the F1 score will be close to 1. This can result in a biased outcome if one of the
measurements is significantly greater than the other [4].

• The Matthews correlation coefficient (MCC) is a more reliable statistical rate that
produces a high score only if the prediction performed well in all four confusion
matrix categories (true positives, false negatives, true negatives, and false positives),
proportionally to the size of positive and negative elements in the dataset. MCC’s
formula takes into account all of the cells in the confusion matrix. In machine learning,
the MCC is used to assess the quality of binary (2-class) classification. MCC is a
correlation coefficient that exists between the exact and projected binary classifications
and typically returns a value of 0 or 1. mathematical equation for this strategy is given
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as (4) [38], where TP as correctly predicted positives are called true positives, FN as
wrongly predicted negatives are called false negatives, TN actual negatives that are
correctly predicted negatives are called true negatives, and FP actual negatives that
are wrongly predicted positives are called false positives:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

• Receiver operating characteristic (ROC) as most indicators can be influenced by dataset
class imbalance, making it difficult to rely on a single indication for model differentia-
tion [39]. ROC curves are used to differentiate between attack and benign instances,
with the x-axis representing the false alarm rate (FAR) and the y-axis representing the
detection rate (DR).

• The probability of correct classification (PCC) is a probability value between 0 and 1
that examines the classifier’s ability to detect certain classes. It is critical to understand
that relying only on overall accuracy across positive and negative examples might be
misleading. Even if our training data is balanced, performance disparities in different
production batches are possible. As a result, accuracy alone is not a reliable measure,
emphasizing the need of metrics such as PCC, which focus on the classifier’s accurate
classification probabilities for individual classes.

• Balanced accuracy (BA) is calculated as the average of sensitivity and specificity, or
the average of the proportion corrects of each individually. It entails categorizing
the data into two categories. The mathematical equation for this strategy is given
as (5). When all classes are balanced, so that each class has the same TN number of
samples, TP + FN TN + FP and binary classifier’s “regular” accuracy is approximately
equivalent to balanced accuracy:

BA = 0.5×
((

TP
(TP + FN)

)
+

(
TN

(TN + FP)

))
(5)

• ROC score handled the case of a few negative labels similar to the case of a few positive
labels. It is worth noting that the F1 score for the model is nearly the same because
positive labels are plentiful, and it only cares about positive label misclassification. The
probabilistic explanation of the ROC score is that a positive example and a negative
case are chosen at random. In this case, rank is defined by the order of projected values.

• Cross-validation (CV) is a statistic used to evaluate the performance of a machine
learning model. The dataset is partitioned into k subsets or folds in k-fold cross-
validation. The model is trained on one of these folds while being validated on the
others. This procedure is performed k times, with each fold only serving as validation
data once. To measure total accuracy, the accuracy ratings acquired from each fold
are averaged. This method ensures that the model is evaluated over numerous data
subsets, reducing the danger of overfitting and producing a more realistic estimate of
its performance on unseen data.

• In the context of evaluation, CPU time refers to the overall length of time it takes a
CPU to complete a certain job or process. When analyzing algorithms or models, CPU
time is critical for determining computational efficiency. Evaluating CPU time helps
determine how quickly a given algorithm or model processes data, making it useful
for optimizing performance, particularly in applications where quick processing is
required, such as real-time systems or large-scale data processing jobs. Lower CPU
time indicates faster processing and is frequently used to determine the efficiency and
practical applicability of algorithms or models.

• The memory space occupied by a machine learning model when deployed for predic-
tion tasks is referred to as model size in classification. Model size must be considered,
especially in applications with limited storage capacity, such as mobile devices or edge
computing environments. A lower model size is helpful since it minimizes memory
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requirements, allowing for faster loading times and more efficient resource utilization.
However, it is critical to strike a balance between model size and forecast accuracy;
highly compressed models may forfeit accuracy. As a result, analyzing model size
assures that the deployed classification system is not only accurate but also suited for
the given computer environment, hence increasing its practicality and usability.

Operating the receiver characteristic values and CPU runtime provides complimentary
information on several aspects of machine learning model performance. The area under
the ROC curve (AUC-ROC) and other ROC metrics provides a more sophisticated view of
a model’s discriminatory capacity. This statistic is useful when the balance of precision and
recall is critical. CPU runtime, on the other hand, is a practical statistic that addresses a
model’s computational efficiency, which is critical for real-time applications. It estimates
the time required for the model to create predictions, determining deployment feasibility
in time-critical applications. ROC values and CPU runtime provide a more thorough
evaluation and operational efficiency in the deployment of machine learning models
when compared with accuracy, which may not capture class imbalances or computational
efficiency. As a result, they are better suited for cases where the data is uneven.

5. Experimental Results and Discussions

In Phase 1, we performed preprocessing with data cleaning, exploratory data analysis,
and normalization. We double checked for duplicates after selecting features. The dataset
is divided into three sections: training, testing, and validation. To begin, the sample data is
divided into two parts: 80 percent train data and 20 percent test data (see Figure 2).
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Figure 2. Network traffic distribution.

After data cleaning and exploratory data analysis, we normalized the dataset and
converted the values of each feature to a specified scale, often ranging from 0 to 1. Min–max
normalization is a common method for this purpose, in which data are adjusted to fit
inside a given range by subtracting the minimum value and dividing by the range. Z-score
normalization is another strategy that standardizes features by subtracting the mean and
dividing by the standard deviation, resulting in a mean of 0 and a standard deviation of
1. Normalization is especially crucial for algorithms that are sensitive to varied feature
scales, since it ensures constant and fair comparisons of different qualities during the
training phase.

In Phase 2, we split the process into two parts. Firstly, they reduced the number of
features using PCA and RF techniques, and then fed the processed data into classification
models. Secondly, they used all the data without feature reduction and applied various
classification models to evaluate the outcomes of data classification, including CPU runtime
and model size.
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We used PCA to minimize the number of features depending on certain variance
ratios, resulting in several feature sets: 11 features as PCA11 for variance ratios greater
than or equal to 0.006586494, 9 features as PCA9 for variance ratios greater than or equal to
0.017037139, 7 features as PCA7 for variance ratios greater than or equal to 0.036543147,
5 features as PCA5 for variance ratios greater than or equal to 0.052597381, and 3 features
as PCA3 for variance ratios greater than or equal to 0.125926325. Figure 3 depicts the
importance of these variance ratios. Once these critical qualities were found, they were
employed in Phase 3 for data classification and further evaluation.
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Figure 3. Feature selection by using PCA considering variance ratios.

We used random forest (RF) to narrow down the feature set based on particular
variance ratios. The following criteria were used to choose the features: 22 features as
RF22 for variance ratios greater than or equal to 0.02, 13 features as RF13 for variance
ratios greater than or equal to 0.03, and 4 features as RF4 for variance ratios greater than or
equal to 0.05 (Figure 4). Following the identification of these essential features, they were
employed in Phase 3 for data classification and further evaluation.
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Figure 4. Feature selection by using RF considering variance ratios.

Phase 3 is the final stage in which the produced dataset is analyzed further. Methods
for preprocessing and feature selection are translated into machine learning approaches that
are extensively used by researchers in intrusion detection systems. Popular classification
algorithms such as XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes are set up with
precise parameter settings, as follows. Key parameters for XGBoost include a learning
rate of 0.2, 1000 estimators, a maximum depth of five, and other parameters such as
min_child_weight, subsample, and colsample_bytree set to one. CART uses requirements
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like squared error, no maximum depth, a minimum sample split of three, and a minimum
sample leaf of one. DT and CART have comparable characteristics, although KNN has
three neighbors, uniform weights, the “auto” algorithm, and a leaf size of 30. MLP employs
(100, 50) hidden layer sizes, 1000 maximum iterations, “relu” activation, and a random
state of 42. RF has 40 estimators, 3 maximal features, the “gini” criterion, no maximum
depth, and a random state of 42. Logistic regression has a maximum iteration of 8000, the
“l2” penalty, fit_intercept set to true, the “lbfgs” solver, and a random state of 42. Finally,
the Bayes employs default parameters, with priors set to none and var_smoothing set to
1 × 10−9. The evaluation of performance encompasses several dimensions, and the results
are summarized here in Table 3.

Table 3. Summary of classifier performance metrics using min–max and Z-score normalization.

Classifiers Accuracy Precision Recall F1 Score PCC/BA MCC ROC CV 5
CPU
Time

(S)

Model Size
(KB)

Min–Max
XGBoost 0.999950 0.975427 0.982578 0.978946 0.982578 0.999765 0.991281 0.999930 92.86 590.85

CART 0.999917 0.967775 0.960877 0.964270 0.960877 0.999609 0.980424 0.997995 112.79 57.31
DT 0.999911 0.958447 0.960853 0.959643 0.960853 0.999580 0.980413 0.999889 65.41 68.74
RF 0.999631 0.956304 0.982593 0.968626 0.982593 0.998260 0.991064 0.999560 131.67 7860.20

Bayes 0.950489 0.747992 0.984988 0.831505 0.984988 0.820660 0.986005 0.950566 7.02 6.65
LR 0.992956 0.898140 0.989497 0.937082 0.989497 0.967303 0.992159 0.989964 860.09 4.58

MLP 0.999835 0.938870 0.993869 0.962856 0.993869 0.999221 0.996879 0.998905 2220.53 291.93
KNN 0.999848 0.947640 0.963627 0.955322 0.963627 0.999281 0.981772 0.999815 6460.54 2,861,321.35

Z-score
XGBoost 0.999948 0.977524 0.977526 0.977525 0.977526 0.999755 0.988754 0.999934 89.12 581.15

CART 0.999921 0.968903 0.964489 0.966674 0.964489 0.999626 0.982229 0.997749 151.42 56.89
DT 0.999918 0.960671 0.967360 0.963963 0.967360 0.999612 0.983669 0.999881 76.50 68.93
RF 0.999739 0.966118 0.982353 0.973918 0.982353 0.998769 0.991008 0.999603 153.25 17,055.20

Bayes 0.949471 0.752121 0.984739 0.834724 0.984739 0.817708 0.985739 0.950838 7.43 6.65
LR 0.996893 0.912855 0.994199 0.947252 0.994199 0.985584 0.996643 0.995351 6920.85 4.58

MLP 0.998974 0.923494 0.998375 0.954336 0.998375 0.995160 0.998676 0.998805 1167.41 291.81
KNN 0.999840 0.945759 0.967207 0.955923 0.967207 0.999246 0.983554 0.999803 11,468.02 2,861,321.35

Table 3 contains two sections: normalized data using the min–max and Z-score. The
min–max normalization section presents the performance metrics of various classifiers.
XGBoost outperforms in all categories, including accuracy (0.999950), precision (0.975427),
recall (0.982578), and F1 score (0.978946). It also has a high MCC and area under the ROC
curve, showing that it performs well overall. DT and CART classifiers outperform XGBoost
in terms of accuracy and balanced metrics, but with smaller model sizes and cheaper
computing costs. RF has a high recall rate (0.982593) but a much greater model size and
computational load. The recall of Bayes is impressive (0.984988), but it comes at the sacrifice
of precision and overall accuracy. LR achieves an excellent balance of precision and recall,
whereas MLP and KNN, respectively, specialize in high precision and recall. The classifier
should be chosen based on specific needs such as accuracy, computational efficiency, or
the trade-off between precision and recall, while also taking into account aspects such as
model size and processing time. The performance metrics of the classifiers based on Z-score
scaling are reported in this investigation. XGBoost delivers high accuracy (0.999948) as well
as high precision, recall, F1 score, and MCC. DT and CART classifiers outperform XGBoost
in a variety of metrics while being more computationally efficient and requiring smaller
model sizes. RF has a high recall rate (0.982353), but it has a much greater model size and a
higher computational cost. Bayes excels in recall at the expense of precision and overall
accuracy. LR achieves a good mix of accuracy and recall, whereas MLP has a high recall
and KNN has a high precision. Specific needs, like accuracy, computational efficiency, or
trade-offs between precision and recall should be considered when selecting a classifier, as
should model size and processing time.

Because of the multiple evaluation criteria available, we chose to consider the ROC
values, as well as the CPU time and model size. Among these factors, we chose three
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classifiers: DT, XGBoost, and RF, all of which produced very comparable evaluation
findings. This choice was made when conducting feature selection trials.

Following that, the model was used in conjunction with feature selection approaches
such as PCA and RF. Table 4 displays the results of these tests.

Table 4. A comparison of classifier performance with different feature selection and
normalization techniques.

Classifiers Accuracy Precision Recall F1 Score PCC/BA MCC ROC CV 5
CPU
Time

(S)

Model
Size
(KB)

Min-Max
RF-PCA11 0.996154 0.925325 0.960638 0.942236 0.960638 0.982109 0.979327 0.997329 135.52 31,307.31
RF-PCA9 0.996145 0.926899 0.960586 0.943059 0.960586 0.982067 0.979291 0.997325 131.46 31,335.76
RF-PCA7 0.996159 0.927997 0.960655 0.943677 0.960655 0.982134 0.979337 0.997324 137.16 31,305.15
RF-PCA5 0.972420 0.869089 0.770071 0.789002 0.770071 0.863637 0.859193 0.991191 168.64 55,616.56
RF-PCA3 0.958392 0.832067 0.652148 0.655230 0.652148 0.788547 0.787589 0.977432 197.05 334,645.57
RF-RF22 0.999870 0.955205 0.975940 0.965073 0.975940 0.999385 0.987934 0.999761 188.84 10,281.29
RF-RF13 0.999920 0.960641 0.970969 0.965681 0.970969 0.999623 0.985472 0.999881 154.06 5400.85
RF-RF4 0.999837 0.913762 0.983025 0.942297 0.983025 0.999232 0.991467 0.999819 129.30 1241.54

DT-PCA11 0.996097 0.925248 0.940889 0.932627 0.940889 0.981836 0.969390 0.997278 8.67 1173.92
DT-PCA9 0.996098 0.925831 0.940891 0.932914 0.940891 0.981840 0.969392 0.997278 6.77 1174.43
DT-PCA7 0.996099 0.925985 0.941614 0.933358 0.941614 0.981843 0.969753 0.997283 6.20 1174.20
DT-PCA5 0.971348 0.861854 0.743431 0.769738 0.743431 0.858021 0.844684 0.981260 5.35 2028.59
DT-PCA3 0.957864 0.829175 0.643716 0.647520 0.643716 0.785412 0.782492 0.959822 5.95 12,713.26
DT-RF22 0.999918 0.961201 0.963030 0.962111 0.963030 0.999612 0.981504 0.999884 40.10 83.07
DT-RF13 0.999916 0.960222 0.964468 0.962324 0.964468 0.999602 0.982222 0.999882 25.03 84.21
DT-RF4 0.999836 0.913430 0.983022 0.942066 0.983022 0.999224 0.991465 0.999816 5.47 42.21

XGBoost-
PCA11 0.997706 0.920757 0.988790 0.949388 0.988790 0.989180 0.993236 0.997635 50.74 660.01

XGBoost-PCA9 0.997705 0.920756 0.988784 0.949385 0.988784 0.989177 0.993233 0.997634 46.13 667.18
XGBoost-PCA7 0.997705 0.920752 0.988784 0.949383 0.988784 0.989177 0.993233 0.997631 44.52 661.26
XGBoost-PCA5 0.994354 0.902693 0.982245 0.936947 0.982245 0.973601 0.988806 0.994281 45.00 787.88
XGBoost-PCA3 0.984300 0.858634 0.938125 0.893717 0.938125 0.927370 0.961847 0.983735 44.21 741.86
XGBoost-RF22 0.999940 0.969710 0.981110 0.975265 0.981110 0.999719 0.990545 0.999933 54.15 572.66
XGBoost-RF13 0.999917 0.956144 0.974560 0.964956 0.974560 0.999609 0.987267 0.999916 44.84 573.72
XGBoost-RF4 0.999812 0.912773 0.976517 0.939387 0.976517 0.999111 0.988202 0.999809 40.56 564.10

Z-score
RF-PCA11 0.997387 0.939662 0.948200 0.943840 0.948200 0.987658 0.972616 0.997016 139.92 40,746.06
RF-PCA9 0.997396 0.940383 0.955569 0.947705 0.955569 0.987658 0.976323 0.996991 145.87 40,614.20
RF-PCA7 0.997396 0.939566 0.953297 0.946201 0.953297 0.987702 0.975172 0.997000 143.99 40,533.90
RF-PCA5 0.991311 0.933681 0.913607 0.922487 0.913607 0.958517 0.949896 0.991049 183.93 69,791.18
RF-PCA3 0.962557 0.854850 0.692485 0.724899 0.692485 0.812001 0.813312 0.978074 222.77 353,408.88
RF-RF22 0.999882 0.958170 0.977381 0.967350 0.977381 0.999441 0.988660 0.999794 202.37 12,587.54
RF-RF13 0.999918 0.957692 0.977453 0.967121 0.977453 0.999612 0.988714 0.999879 192.22 5940.48
RF-RF4 0.999837 0.913762 0.983025 0.942297 0.983025 0.999232 0.991467 0.999817 130.35 1221.85

DT-PCA11 0.997312 0.941784 0.940745 0.941254 0.940745 0.987290 0.968679 0.996832 9.58 1290.92
DT-PCA9 0.997311 0.941636 0.940022 0.940820 0.940022 0.987286 0.968317 0.996831 7.39 1289.56
DT-PCA7 0.997311 0.942492 0.938582 0.940528 0.938582 0.987286 0.967597 0.996835 6.65 1289.70
DT-PCA5 0.990910 0.931768 0.896305 0.912423 0.896305 0.956527 0.940553 0.990634 5.99 2385.40
DT-PCA3 0.958382 0.839611 0.655594 0.670713 0.655594 0.788676 0.789885 0.977744 6.86 13,686.38
DT-RF22 0.999913 0.959644 0.960858 0.960249 0.960858 0.999591 0.980417 0.999889 45.22 84.20
DT-RF13 0.999916 0.959630 0.964470 0.962023 0.964470 0.999605 0.982224 0.999882 29.13 82.90
DT-RF4 0.999836 0.913430 0.983022 0.942066 0.983022 0.999224 0.991465 0.999816 6.44 41.84

XGBoost-
PCA11 0.997698 0.920740 0.988776 0.949373 0.988776 0.989142 0.993227 0.997635 50.89 667.12

XGBoost-PCA9 0.997693 0.920721 0.988770 0.949360 0.988770 0.989117 0.993225 0.997634 45.37 668.91
XGBoost-PCA7 0.997697 0.920736 0.988770 0.949367 0.988770 0.989138 0.993223 0.997633 42.65 673.14
XGBoost-PCA5 0.994341 0.902696 0.982201 0.936926 0.982201 0.973534 0.988765 0.994289 42.59 784.36
XGBoost-PCA3 0.984288 0.858767 0.939827 0.894489 0.939827 0.927392 0.962789 0.983736 42.28 732.69
XGBoost-RF22 0.999943 0.968946 0.984719 0.976556 0.984719 0.999733 0.992350 0.999935 52.72 573.66
XGBoost-RF13 0.999918 0.956262 0.975282 0.965350 0.975282 0.999612 0.987628 0.999916 44.31 573.12
XGBoost-RF4 0.999812 0.912765 0.976521 0.939385 0.976521 0.999111 0.988207 0.999809 40.07 563.23

Table 4 compares the efficacy of DT, XGBoost, and RF classifiers. The comparison is
based on the use of both the min–max and Z-score normalization methods, as well as the
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deployment of feature selection approaches. The major goal is to shorten CPU runtime and
reduce model size. It can be explained as follows.

In the min–max normalization and feature selection with PCA and RF section, the
data presented provides a full comparison of various classifier settings as well as their
performance indicators. Higher PCA dimensions often lead to greater accuracy, precision,
and recall when assessing RF models with various feature selection approaches (PCA) and
dimensions. Notably, RF-PCA11 and RF-PCA9 have accuracy levels more than 0.996145,
illustrating the efficiency of feature selection in improving model performance. DT models
combined with PCA also provide competitive accuracy, particularly at higher PCA dimen-
sions. When the RF and XGBoost models are coupled, they exhibit extraordinary precision
and recall, making them strong options for applications requiring balanced performance.
When determining the best configuration for a given task, it is critical to consider the
trade-offs between accuracy, computational complexity (as measured by CPU time), and
model size. This study emphasizes the significance of carefully selecting feature selec-
tion strategies and classifier combinations to produce best results tailored to individual
needs. To improve understanding of model performance evaluation metrics, the researcher
showed the data in the form of a radar graph, as shown in Figure 5.

Computers 2023, 12, x FOR PEER REVIEW 17 of 22 
 

extraordinary precision and recall, making them strong options for applications requiring 

balanced performance. When determining the best configuration for a given task, it is   

critical to consider the trade-offs between accuracy, computational complexity (as meas-

ured by CPU time), and model size. This study emphasizes the significance of carefully 

selecting feature selection strategies and classifier combinations to produce best results 

tailored to individual needs. To improve understanding of model performance evaluation 

metrics, the researcher showed the data in the form of a radar graph, as shown in Figure 5. 

 

Figure 5. Radar chart for classification performance with feature selection and min–max normaliza-

tion. 

The data supplied demonstrates a thorough evaluation of multiple classifiers’ per-

formance measures using Z-score scaling. When examining RF models in conjunction 

with principal component analysis (PCA) at various dimensions, greater PCA dimensions 

typically result in improved accuracy, precision, and recall. Specifically, RF-PCA11 and 

RF-PCA9 exhibit outstanding accuracy above 0.997387, demonstrating PCA’s usefulness 

in optimizing model outputs. DT models paired with PCA also perform well, especially 

with larger PCA dimensions. Furthermore, combining RF and XGBoost with PCA results 

in good precision and recall, making them solid candidates for applications requiring bal-

anced performance. However, when choosing the optimal model configuration, it is criti-

cal to carefully analyze the trade-offs between accuracy and computational complexity, as 

indicated by CPU time and model size. This analysis emphasizes the importance of choos-

ing appropriate PCA dimensions and classifier combinations to produce optimal and per-

sonalized outcomes based on unique job requirements. To improve the understanding of 

model performance evaluation metrics, the researcher showed the data in the form of a 

radar graph, as shown in Figure 6. 

Figure 5. Radar chart for classification performance with feature selection and min–max
normalization.

The data supplied demonstrates a thorough evaluation of multiple classifiers’ per-
formance measures using Z-score scaling. When examining RF models in conjunction
with principal component analysis (PCA) at various dimensions, greater PCA dimensions
typically result in improved accuracy, precision, and recall. Specifically, RF-PCA11 and
RF-PCA9 exhibit outstanding accuracy above 0.997387, demonstrating PCA’s usefulness
in optimizing model outputs. DT models paired with PCA also perform well, especially
with larger PCA dimensions. Furthermore, combining RF and XGBoost with PCA results
in good precision and recall, making them solid candidates for applications requiring
balanced performance. However, when choosing the optimal model configuration, it is
critical to carefully analyze the trade-offs between accuracy and computational complexity,
as indicated by CPU time and model size. This analysis emphasizes the importance of
choosing appropriate PCA dimensions and classifier combinations to produce optimal and
personalized outcomes based on unique job requirements. To improve the understanding
of model performance evaluation metrics, the researcher showed the data in the form of a
radar graph, as shown in Figure 6.
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Following that, the models were used in conjunction with feature selection approaches
such as PCA and RF. When used in conjunction with XGBoost, feature selection using PCA
employing 11 features produced the best performance (considering ROC values combined
with CPU run time). This was true whether the data was standardized using min–max
or Z-score approaches, because the evaluation findings and CPU processing times were
extremely similar (insignificant differences). As a result, both methodologies can be used
effectively. Table 5 displays the PCA features that were chosen, a total of 11 variables.

Table 5. List of features and importance scores with PCA11.

Feature Name Importance Score

Dst Port 0.391406787
Protocol 0.170200700

Flow Duration 0.125926325
Tot Fwd Pkts 0.076885293
Tot Bwd Pkts 0.052597381

TotLen Fwd Pkts 0.042883536
TotLen Bwd Pkts 0.037560629
Fwd Pkt Len Max 0.036543147
Fwd Pkt Len Min 0.017037139

Fwd Pkt Len Mean 0.014007651
Fwd Pkt Len Std 0.012034106

Compares various models to the CSE-CIC-IDS-2018 dataset, measuring their accuracy,
training time, and other performance measures. S. Ullah et al. [14] employed a decision tree
(DT) with random feature selection (30 features) to achieve an astounding 0.9998 accuracy
in a very low training period (0.18 s). M. A. Khan. [15] used random feature selection to
implement an HCRNNIDS model, obtaining 0.9775 accuracy in 200–250 s. F1 score and
precision values were not specified. J. Kim. et al. [10] used a convolutional neural network
(CNN) with manual feature extraction. In a training duration ranging from 300 to 900 s, we
achieved an accuracy of 0.960. F1 score, precision, and recall measures were not provided in
detail. R. Qusyairi. et al. [3] applied an ensemble model with 23 randomly chosen features.
Although the accuracy was 0.988, no precise F1 score, precision, or recall statistics were
provided. S. Chimphlee. et al. [4] used min–max normalization, random forest feature
selection, and class balance (SMOTE), as well as multi-layer perceptron (MLP). A high
accuracy of 0.99462 was achieved, with significant precision and recall values.

In our Model 1 and Model 2, both models used XGBoost with principal component
analysis (PCA) to pick features. Our Model 1 was 0.997706 accurate, while our Model 2
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was 0.997698 accurate. Both models performed well across multiple parameters, including
F1 score, precision, recall, ROC, and MCC. Our findings differ from those of S. Ullah.
et al. [14], particularly in terms of CPU runtime and accuracy. They applied the SMOTE
balance strategy, which resulted in a smaller dataset that was only focused on CPU runtime
during training in a binary class environment. In contrast, we used the entire dataset for
training and testing without using separate balance methods, multiple classification classes,
or reporting combined CPU runtimes. These methodological variations are most likely
responsible for the disparities in CPU runtime and accuracy results between our study and
theirs. In conclusion, the proposed models demonstrate a variety of approaches, with PCA
being particularly helpful in lowering feature dimensions while maintaining high accuracy.
The models yield remarkable results in intrusion detection, reflecting the ongoing progress
in the field of machine learning applied to cybersecurity. A comparison of the results of the
intrusion detection model employing dataset CSE-CIC-IDS-2018 is shown in Table 6.

Table 6. Comparison of intrusion detection models using the CSE-CIC-IDS-2018 dataset.

Study Method Feature
Selection

CPU Time
(s) Accuracy F1

Score Precision Recall ROC MCC PCC/BA

S. Ullah. et al. [14]
DT

Class Balance
(SMOTE)

RF
(30 features)

0.18
(Train
Time)

0.9998 n/a n/a n/a n/a n/a n/a

M. A. Khan. [15] HCRNNIDS RF
200–250
(Train
Time)

0.9775 0.976 n/a n/a n/a n/a n/a

J. Kim. et al. [10] CNN
Manual
Feature

Extraction

300–900
(Train
Time)

0.960 n/a n/a n/a n/a n/a n/a

R. Qusyairi. et al. [3] Ensemble Model

Chi-Square and
Spearman’s

Rank (23
Features)

n/a 0.988 0.979 n/a n/a n/a n/a n/a

S. Chimphlee. et al. [4]

MLP
(Min–Max

Normalization,
Class Balance

(SMOTE)

RF
(16 Features) n/a n/a 0.99462 n/a n/a 0.99311 0.98151 0.99334

Our Model 1
XGBoost

(Min–Max
Normalization)

PCA
(11 Features)

50.09
(All Time)
Train and
Test Time

0.997706 0.949388 0.920757 0.98879 0.993236 0.989180 0.98879

Our Model 2
XGBoost
(Z-score

Normalization)

PCA
(11 Features)

50.89
(All Time)
Train and
Test Time

0.997698 0.949373 0.92074 0.988776 0.993227 0.989142 0.988776

6. Conclusions

After examining the data, it was discovered that three models, namely XGBoost, DT,
and RF, had remarkable performance in terms of both ROC values and CPU runtime. As a
result, these models were evaluated further in conjunction with feature selection techniques
combining PCA and RF. Finally, the combination of XGBoost for classification and feature
selection with PCA, resulting in 11 features, produced the best ROC and CPU runtime
values. Interestingly, the usefulness of these values remained consistent regardless of
whether normalization approaches such as min–max or Z-score were used; the changes
seen were not significant. Machine learning classification techniques, as is widely accepted,
can be used to assess and anticipate infiltrations. The algorithm performed admirably after
preprocessing tactics and feature selection approaches were applied. Although this strategy
outperformed others, its utility may be limited in some cases. We argue that the trained
models are not yet ready for use in real-world scenarios. Existing models must be improved,
and new algorithms developed to address the issues given by unbalanced datasets.

Despite their success in tackling infiltration prediction tasks after preprocessing and
feature selection, these models’ applicability in specific contexts may be limited. The study
recognizes the need for future enhancements to existing models, particularly to address
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the issues given by unbalanced datasets. Furthermore, the lack of dynamic testing with
multiple types of infiltration raises concerns about the models’ adaptability to diverse and
changing real-world settings. While the method performed admirably under controlled
conditions, its application in real-world settings necessitates refining and thorough testing
to assure robustness and broader applicability.

In the future, we intend to examine the impact of deep learning on increasing time com-
plexity and model size, consequently boosting the efficiency of network intrusion detection
in real-time settings. Furthermore, the study broadens its scope to handle dataset balancing
issues and investigates deployment utilizing the LITNET-2020 and BOUN DDoS datasets.
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