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Abstract: Highly-skilled migrants and refugees finding employment in low-skill vocations, despite
professional qualifications and educational backgrounds, has become a global tendency, mainly
due to the language barrier. Employment prospects for displaced communities are mostly decided
by their knowledge of the sublanguage of the vocational domain they are interested in working.
Common vocational domains include agriculture, cooking, crafting, construction, and hospitality.
The increasing amount of user-generated content in wikis and social networks provides a valuable
source of data for data mining, natural language processing, and machine learning applications. This
paper extends the contribution of the authors’ previous research on automatic vocational domain
identification by further analyzing the results of machine learning experiments with a domain-specific
textual data set while considering two research directions: a. prediction analysis and b. data balancing.
Wrong prediction analysis and the features that contributed to misclassification, along with correct
prediction analysis and the features that were the most dominant, contributed to the identification of
a primary set of terms for the vocational domains. Data balancing techniques were applied on the
data set to observe their impact on the performance of the classification model. A novel four-step
methodology was proposed in this paper for the first time, which consists of successive applications
of SMOTE oversampling on imbalanced data. Data oversampling obtained better results than data
undersampling in imbalanced data sets, while hybrid approaches performed reasonably well.

Keywords: natural language processing; social text mining; machine learning; vocational domain
identification; vocational language; error analysis; class balancing

1. Introduction
1.1. Vocational Domains for Migrants and Refugees

Migrant employees face multiple challenges deriving from discrimination due to their
country of origin, nationality, culture, sex, etc. [1–4]. For women in particular, finding
employment in high-skill vocations, besides teaching and nursing, has been observed to be
especially difficult [1,2,5]. A deciding factor regarding the prospects of employment for
displaced communities, such as migrants and refugees, is the knowledge of not the language
of their host country in general, but specifically of the sublanguage of the vocational domain
they are interested in working. As a result, highly-skilled migrants and refugees finding
employment in low-skill vocations, despite their professional qualifications and educational
backgrounds, has become a global tendency, with the language barrier being one of the
most important factors [1–4,6].

The scope of vocational domains for displaced communities and analyses on their
situations in the host country and in their country of origin were examined in the recent
literature, which considered the impact on their work-life balance [2–4]. Both high-skill and
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low-skill vocations in hospitality, cleaning, manufacturing, retail, crafting, and agriculture
were the most common vocational domains in which migrants and refugees sought and found
employment, according to the findings of the recent research [1–3,6–8]. It is also important to
note that unemployment usually affects the displaced communities more than the natives [9].
Overworking, however, due to low-paid jobs, thrives, as migrants and refugees struggle to
increase their earnings in their efforts to maintain living standards, afford childcare, and be
able to send remittances to remaining family in their country of origin [2,7].

1.2. Wikipedia and Social Networks

Due to the expansion of the user base of wikis and social networks in the last decade,
user-generated content has increased in great amounts. This content provides a valuable
source of data for various tasks and applications in data mining, natural language process-
ing (NLP), and machine learning. Wikipedia (https://en.wikipedia.org/wiki/Main_Page,
accessed on 20 May 2023) is an open data wiki that covers a wide scope of topic-related
articles written in many languages [10]. Wikipedia’s content generation is a constant collec-
tive process derived from the collaboration of its users [11]; as of April 2023, there were
approximately 6.6 million Wikipedia articles written in English.

1.3. Class Imbalance Problem

Imbalanced data sets, in regard to class distribution among their examples, present
several challenges in data mining and machine learning tasks. More specifically, the
number of examples representing the class of interest is considerably smaller than the ones
of the other classes. As a result, standard classification algorithms have a bias towards the
majority class, and, consequently, they tend to misclassify the minority class examples [12].
Most commonly, the class imbalance problem is related to binary classification, although
it is not uncommon for it to emerge in multi-class problems (such as in this paper); since
there are more than one minority class, it is more challenging to solve. The class imbalance
problem is an issue that affects various aspects of real-world applications that are based on
classification due to the fact that the minority class examples are the most difficult to obtain
from real data, especially from user-generated content from wikis and social networks,
which has led a large community of researchers to examine ways to address it [12–18].

1.4. Contributions

This paper extends the contribution of the authors’ previous research [19] by exploring the
various potential directions deriving from it. The results of the machine learning experiments
with a domain-specific textual data set that was created and preprocessed as described in
[19] were further processed and analyzed with the consideration of two research directions:
a. prediction analysis and b. data balancing.

More specifically, regarding the prediction analysis, important conclusions were drawn
from examining which examples were classified wrongly for each class (wrong predictions)
by the Gradient Boosted Trees model, which managed to classify most of the examples
correctly, as well as which distinct features contributed to their misclassification. In the
same line of thought, regarding the correctly classified examples (correct predictions), the
examination of the features that were the most dominant and led to the correct classifications
for each class contributed to the identification of a primary set of terms highlighting the
terminology of the vocational domains.

Regarding the data balancing, oversampling, and undersampling techniques, both
separate techniques and combined techniques, as a hybrid approach, were applied on
the data set in order to observe their impact (positive or negative) on the performance
of the Random Forest and AdaBoost model. A novel and original four-step methodology
was proposed in this paper and used for data balancing for the first time, to the best of
the authors’ knowledge. It consists of successive applications of SMOTE oversampling
on imbalanced data in order to balance them by considering which class is the minority
class in each iteration. By running the experiments while following this methodology, the

https://en.wikipedia.org/wiki/Main_Page
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impact of every class distribution, from completely imbalanced to completely balanced
data, on the performance of the machine learning model could be examined thoroughly.
This process of data balancing enabled the comparison of the performance of this model
with balanced data to the performance of the same model with imbalanced data from the
previous research [19]. The findings derived from the machine learning experiments of
this paper are in accordance with those of the relevant literature [12,17] in terms that data
oversampling obtaining better results than data undersampling in imbalanced data sets,
while the hybrid approaches performed reasonably well.

1.5. Structure

The structure of this paper is as follows. Section 2 presents past related work on
a. domain identification on textual data, b. data scraping from social text, and c. data
oversampling, undersampling, and hybrid approaches. Section 3 describes the stages of
data set creation and preprocessing, as well as the feature extraction process. Section 4
presents the research direction of the prediction analysis, including both wrong and correct
predictions of the Gradient Boosted Trees model. Section 5 presents the research direction
of the data balancing, including the novel four-step methodology for successive SMOTE
oversampling, as well as experiments with data undersampling and a hybrid approach.
Section 6 concludes the paper, discusses the most important findings, and draws directions
for future work.

2. Related Work

In this Section, the recent literature on domain identification on textual data, including
news articles, technical text, open data, and Wikipedia articles, is presented. Research on
data scraping from social text, sourced from social networks and Wikipedia, is also de-
scribed. Finally, the findings of related work regarding data oversampling, undersampling,
and hybrid approaches are also analyzed.

2.1. Domain Identification on Textual Data

Domain identification performed on textual data, including news articles, social media
posts, and social text data sets in general, remains an open problem and a very challenging
task for researchers. The vast domain diversity, along with the particular sublanguage and
terminology, present several challenges when undertaking domain identification on textual
and linguistic data.

2.1.1. News Articles

Regarding domain identification on news articles, Hamza et al. [20] built a data
set containing news articles written in Urdu that were annotated with seven domains as
classes according to their topic. Their feature set consisted of unigrams, bigrams, and Term
Frequency–Inverse Document Frequency (TF-IDF) values. Following the stages of prepro-
cessing, namely, stopwords removal and stemming, they performed text classification to the
seven domains by employing six machine learning models; the Multi-Layered Perceptron
(MLP) reached the highest accuracy of 91.4%. Their findings showed that stemming did
not positively affect the performance of the models; however, stopwords removal had
worsened it. Another paper by Balouchzahi et al. [21] attempted domain identification on
fake news articles written in English that were annotated with six domains according to
their topic. Their ensemble of RoBERTa, DistilBERT and BERT managed up to 85.5% for the
F1 score.

2.1.2. Technical Text

There are certain researchers who performed domain identifications on technical text.
Hande et al. [22] classified scientific articles in seven computer science domains by using
transfer learning with BERT, RoBERTa, and SciBERT. They found that the ensemble reached
its best performance when the weights were taken into account. In the research of Dowla-
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gar and Mamidi [23], experiments with BERT and XLM-ROBERTa with a convolutional
neural network (CNN) on a multilingual technical data set obtained better results in compar-
ison to experiments with support vector machines (SVM) with TF-IDF and CNN. By select-
ing the textual data written in Telugu from the same data set, Gundapu and Mamidi [24]
obtained up to 69.9% for the F1 score with CNN and a self-attention-based bidirectional
long short-term memory (BiLSTM) network.

2.1.3. Open Data and Wikipedia Articles

Regarding domain identification on open data, Lalithsena et al. [25] performed au-
tomatic topic identification by using MapReduce combined with manual validation by
humans on several data sets from Linked Open Data. In order to designate distinct topics,
they used specialized tags for the annotation.

In the paper of Nakatani et al. [26], Wikipedia structural feature and term extraction
were performed with the aim to score both topic coverage and topic detailedness on
web search results that were relevant to the related search queries. Saxena et al. [27]
built domain-specific conceptual bases using Wikipedia navigational templates. They
employed a knowledge graph and then applied fuzzy logic on each article’s network
metrics. In the research of Stoica et al. [28], a Wikipedia article by topic extractor was
created. Preprocessing included parsing the articles for lower-casing, stopwords removal,
and embedding generation. The extractor obtained high precision, recall, and an F1 score
of up to 90% with Random Forest, SVM, and Extreme Gradient Boosting (XGBoost), along
with cross-validation.

In the authors’ previous research, Nikiforos et al. [19], automatic vocational domain
identification was performed. A domain-specific textual data set from Wikipedia articles
was created, along with a linguistic feature set with TF-IDF values. Preprocessing included
tokenization, removal of numbers, punctuation marks, stopwords and duplicates, and
lemmatization. Five vocational domains where displaced communities, such as migrants
and refugees, commonly seek and find employment were considered as classes. Machine
learning experiments were performed with Random Forest combined with AdaBoost and
Gradient Boosted Trees, with the latter obtaining the best performance of up to 99.93%
accuracy and a 100% F1-score.

In Table 1, the performance of the related work mentioned in this subsection is shown,
in terms of evaluation metrics such as accuracy and F1 score, and it considers the data sets
and models that procured the best results for each research paper.

Table 1. Performance per research paper. Data sets and models of related work with the best results.

Paper Classes Model Performance

Hamza et al. [20] 7 domains of Urdu news MLP Accuracy: 91.4%

Balouchzahi et al. [21] 6 domains of English
fake news

Ensemble: RoBERTa,
DistilBERT, BERT F1 score: 85.5%

Hande et al. [22] 7 computer science domains
of scientific articles

Ensemble: BERT, RoBERTa,
SciBERT Accuracy: 92%, F1 score: 98%

Dowlagar & Mamidi [23] 7 multilingual technical
domains BERT, XLM-ROBERTa, CNN F1 score (macro): 80.3%

Gundapu & Mamidi [24] 6 Telugu technical domains CNN, BiLSTM F1 score: 69.9%

Stoica et al. [28] 3 topic domains of Wikipedia BERT, Random Forest,
XGBoost F1 score: 90%

Nikiforos et al. [19] 5 vocational domains of
English Wikipedia Gradient Boosted Trees Accuracy: 99.9%,

F1 score: 100%
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2.2. Social Text Data Scraping

Data scraping and the analysis of textual data from social networks and Wikipedia
have been attempted in recent research. “Data analysis is the method of extracting solutions
to the problems via interrogation and interpretation of data” [29]. Despite the development
of numerous web scrapers and crawlers, social data scraping and analysis of high quality
still present a challenging task.

2.2.1. Social Networks

Several web scrapers were developed with Python. Scrapy, by Thomas and Mathur [29],
scraped textual data from Reddit (https://www.reddit.com/, accessed on 20 October 2022) and
stored them in CSV files. Another scraper, by Kumar and Zymbler [30], scraped the Twitter API
(https://developer.twitter.com/en, accessed on 20 October 2022) to download tweets regarding
particular airlines, which then were used as input for sentiment analysis and machine learning
experiments with SVM and CNN, and their results reached up to 92.3% accuracy.

2.2.2. Wikipedia

Other web crawlers, more focused on Wikipedia data, were built. iPopulator by
Lange et al. [10] used conditional random fields (CRF) and crawled Wikipedia to gather
textual data from the first paragraphs of Wikipedia articles and then used them to pop-
ulate an infobox for each article. iPopulator reached up to 91% in average extraction
precision with 1727 infobox attributes. Cleoria and a MapReduce parser were used by
Hardik et al. [11] to download and process XML files with the aim to evaluate the linkability
factor of Wikipedia pages.

In the authors’ previous research, Nikiforos et al. [19], a web crawler was developed
using the Python libraries BeautifulSoup4 and Requests. It scraped Wikipedia’s API by
downloading textual data from 57 articles written in English, wherein it considered as a
criterion their relevance to five vocational domains in which refugees and migrants com-
monly seek and find employment. The aim was to extract linguistic information concerning
these domains and perform machine learning experiments for domain identification.

2.3. Data Oversampling and Undersampling

Data sampling, either oversampling or undersampling, is one of the proposed solu-
tions to mitigate the class imbalance problem. Resampling techniques practically change
the class distribution in imbalanced data sets by creating new examples for the minority
class(es) (oversampling), removing examples from the majority class (undersampling), or
doing both (hybrid) [12,16].

Several researchers proposed data undersampling techniques. Lin et al. [13] proposed
two undersampling strategies in which a clustering technique was applied during prepro-
cessing; the number of clusters of the majority class was made equal to the number of data
points of the minority class. In order to represent the majority class, cluster centers and nearest
neighbors of the cluster centers were used by the two strategies, respectively. They performed
experiments on 44 small-scale and 2 large-scale data sets to result in the second strategy
approach, which combined with a single multilayer perceptron and a C4.5 decision tree and
performed better compared to five state-of-the-art approaches. Anand et al. [14] introduced an
undersampling technique and evaluated it by performing experiments on four real biological
imbalanced data sets. Their technique improved the model sensitivity compared to weighted
SVMs and other models in the related work for the same data. Yen and Lee [15] proposed
cluster-based undersampling approaches to define representative data as the training set
with the aim to increase the classification accuracy for the minority class in imbalanced data
sets. García and Herrera [16] presented evolutionary undersampling, which is a taxonomy
of methods that considers the nature of the problem and then applies different fitness func-
tions to achieve both class balance and high performance. Their experiments with numerous
imbalanced data sets showed that evolutionary undersampling performed better than other
state-of-the-art undersampling models when the imbalance was increased.

https://www.reddit.com/
https://developer.twitter.com/en
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Other researchers experimented with data oversampling and hybrid approaches.
Shelke et al. [18] examined class imbalance on text classification tasks with multiple
classes, thereby addressing the sparsity and high dimensionality of textual data. After
applying a combination of undersampling and oversampling techniques on the data, they
performed experiments with multinomial Naïve Bayes, k-Nearest Neighbor, and SVMs.
They concluded that the effectiveness of resampling techniques was highly data dependent,
while certain resampling techniques achieved better performance when combined with
specific classifiers. Lopez et al. [12] provided an extensive overview of class imbalance
mitigating methodologies, namely, data sampling, algorithmic modification, and cost-
sensitive learning. They discussed the most significant challenges regarding using data
intrinsic characteristics, namely, small disjuncts, lack of density in the training set, class
overlapping, noisy data identification, borderline instances, and the data set shift between
the training and the test distributions in classification problems with imbalanced data
sets. Their experiments on imbalanced data led to important observations on the reaction
of machine learning algorithms to data with these intrinsic characteristics. One of the
most notable approaches is that of Chawla et al. [17]. They proposed a hybrid approach
for classification on imbalanced data, which achieved better performance compared to
exclusively undersampling the majority class. Their oversampling method, also known as
SMOTE, produced synthetic minority class examples. Their experiments were performed
with C4.5, Ripper, and Naïve Bayes, while their method was evaluated with the area under
the receiver operating characteristic curve (AUC) and the receiver operating characteristic
(ROC) convex hull strategy. The SMOTE oversampling method has been used in this paper
to balance the data set (Section 5).

3. Data Set Creation and Preprocessing

The data set which was used in the authors’ conference paper [19] was created by scraping
57 articles written in English from Wikipedia’s API (https://pypi.org/project/wikipedia/,
accessed on 5 June 2022) with Python (BeautifulSoup4 (https://pypi.org/project/beautifulso
up4/, accessed on 5 June 2022) and Requests (https://pypi.org/project/requests/, accessed
on 5 June 2022)). The criterion for selecting these specific articles was their relevance to five
vocational domains considered to be the most common for refugee and migrant employment
in Europe, Canada, and the United States of America [1,2,6–8].

The initial textual data set comprised of 6827 sentences extracted from the 57 Wikipedia
articles. The data set was preprocessed in four stages, namely:

1. Initial preprocessing and tokenization;
2. Numbers and punctuation mark removal;
3. Stopwords removal;
4. Lemmatization and duplicate removal.

The data set was initially tokenized to 6827 sentences and to 69,062 words; the sen-
tences were used as training–testing examples, and the words were used as unigram
features. Numbers, punctuation marks, and special characters were removed. Stopwords
(conjunctions, articles, adverbs, pronouns, auxiliary verbs, etc.) were also removed. Finally,
lemmatization was performed to normalize the data without reducing the semantic infor-
mation, and 912 duplicate sentences and 58,393 duplicate words were removed. For more
details on these stages of preprocessing, refer to [19].

Resulting from the preprocessing stages, the text data set comprised 5915 sentences
(examples) and five classes to be used in machine learning experiments. For each sentence,
the domain that was most relevant to each article’s topic, as shown in Table 2, was consid-
ered as its class, thus resulting in five distinct classes, namely: A. Agriculture, B. Cooking,
C. Crafting, D. Construction, and E. Hospitality. The distribution of the sentences to these
five classes is shown in Figure 1.

A RapidMiner Studio (version 9.10) process, as shown in Figure 2, was used to extract
the feature set with TF-IDF values and taking into consideration the feature occurrences by
pruning features, which rarely occur (below 1%) or very often occur (above 30%); this resulted

https://pypi.org/project/wikipedia/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/requests/
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in 109 unigram features. For more details on the operators and parameters of the feature
extraction process, refer to [19] and RapidMiner documentation (https://docs.rapidminer.
com/, accessed on 20 October 2022). It is important to note that the extracted features that
were used as inputs for the machine learning experiments in this paper were terms in the
form of single words—also known as unigrams. Unigrams are the most simple and generic
linguistic features that can be used in NLP tasks. Consequently, the methodology described in
this paper is not overspecified, meaning that it can be generalized and applied in any corpus,
and these features can be used as inputs for any machine learning model.

Table 2. Wikipedia articles that were scraped to create the data set, shown by domain categorization.

Agriculture Cooking Crafting Construction Hospitality
10 Articles 17 Articles 11 Articles 7 Articles 12 Articles

Agriculture
Glossary of agriculture

Farm
Farmer

Environmental impact
of agriculture

History of agriculture
Intensive farming

Plant breeding
Subsistence agriculture
Sustainable agriculture

Al dente
Al forno
Baking

Charcuterie
Chef

Chef’s uniform
Chocolate
Cooking

Cooking school
Cooking weights and

measures
Cuisine

Denaturation(food)
Garde manger
List of cooking

techniques
Mise en place

Outdoor cooking
Outline of food

preparation

Anvil
Blacksmith
Bladesmith

Coppersmith
Forge

Goldsmith
Gunsmith

Locksmithing
Metalsmith
Silversmith
Whitesmith

Building
Building design

construction
Carpentry

Construction
Constructor worker

Glossary of
construction costs

Home construction

Bellhop
Casino hotel

Check-in
Concierge

Doorman(profession)
Hostel
Hotel

Hotel manager
Maid

Receptionist
Resort

Tourism

2083

1620

922

519

771

E
13.0%

D
8.8%

C
15.6%

A
35.2%

B
27.4%

A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality

Distribution of Examples to Classes

Figure 1. Final distribution of sentences used as training–test examples for the 5 classes.

https://docs.rapidminer.com/
https://docs.rapidminer.com/
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Figure 2. Feature extraction. The Tokenize operator is nested in the Process Documents from Data operator.

Resulting from the feature extraction process, the final data set comprised 5915 exam-
ples, 109 features, and a class as label.

4. Predictions Analysis

The best results on domain identification were obtained with a Gradient Boosted Trees (http
s://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/gradient_boo
sted_trees.html, accessed on 20 October 2022) model and are shown in Table 3 in terms of ac-
curacy (Accuracy = TP+TN

TP+TN+FP+FN ), precision (Precision = TP
TP+FP ), recall (Recall = TP

TP+FN ),
and F1 score (F1 = 2TP

2TP+FP+FN ).

Table 3. Machine learning experiment results with Gradient Boosted Trees. Accuracy: 99.93%.

Class Precision Recall F1 Score

A 100% 100% 100%
B 100% 99.94% 99.97%
C 99.78% 99.89% 99.83%
D 99.81% 99.61% 99.70%
E 99.87% 100% 99.93%

Gradient Boosted Trees is a forward-learning ensemble of either regression or classifica-
tion models that depends on the task. It uses steadily improved estimations, thus resulting
in better predictions in terms of accuracy. More specifically, a sequence of weak prediction
models, in this case Decision Trees, creates an ensemble that steadily improves its predictions
based on the changes in data after each round of classification. This boosting method and
the parallel execution running on a H2O 3.30.0.1 cluster, along with the variety of refined
parameters for tuning, enable Gradient Boosted Trees to be a robust and highly effective
model that can overcome issues that are typical for other tree models (e.g., Decision Trees
and Random Forest), such as data imbalance and overfitting. Additionally, it has to be noted
that, despite the fact that other methods of tree boosting tend to decrease the speed of the
model and human interpretability of its results, the gradient boosting method generalizes
the boosting process and, thus, mitigates these problems while maintaining high accuracy.

Regarding the parameters for Gradient Boosted Trees, the number of trees was set to 50, the
maximal depth of trees was set to 5, min rows was set to 10, min split improvement was left at
the default, number of bins was set to 20, learning rate was set to 0.01, sample rate was set to 1,
and the distribution function of the training data was selected automatically as multinomial,
since the label was nominal for the specific task and data set. For more information on the
operators and parameters of the RapidMiner Studio (version 9.10) experiment with Gradient
Boosted Trees, as shown in Figure 3, refer to [19] and the RapidMiner documentation.

https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/gradient_boosted_trees.html
https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/gradient_boosted_trees.html
https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/gradient_boosted_trees.html
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Figure 3. Setup of machine learning experiment with Gradient Boosted Trees. The depicted process is
nested in a Cross Validation operator (10-fold cross validation with stratified sampling).

With regard to the high performance of this machine learning model, it is of interest to
examine which examples were classified wrongly for each class, as well as which distinct
features contributed to their misclassification. In the same line of thought, regarding the
correctly classified examples, the examination of the features that were the most dominant
and led to correct predictions would contribute to the identification of a primary set of
terms that highlighted the terminology of the vocational domains.

4.1. Wrong Predictions

The Gradient Boosted Trees model showed high performance regarding all classes
(Table 3), with a precision ranging from 99.78% to 100%, a recall ranging from 99.61%
to 100%, and an F1 score ranging from 99.70% to 100%, and it misclassified a total of
four examples. In order to identify the misclassified examples, a RapidMiner Studio
(version 9.10) process, as shown in Figure 4, was designed and executed.

Figure 4. Setup of process to identify wrong and correct predictions with Explain Predictions operator
and Filter Examples operator. The depicted process is nested in a Cross Validation operator (10-fold
cross validation).

The Explain Predictions (https://docs.rapidminer.com/10.1/studio/operators/scor
ing/explain_predictions.html, accessed on 20 March 2023) operator was used to identify
which features were the most dominant in forming predictions. A model and a set of
examples, along with the feature set, were considered as inputs in order to produce a table
highlighting the features that most strongly supported or contradicted each prediction,
while also containing numeric details. For each example, a neighboring set of data points
was generated by using correlation to define the local feature weights in that neighborhood.
The operator can calculate model-specific weights though model-agnostic global feature
weights that derive directly from the explanations. Explain Predictions is able to work with
all data types and data sizes and can be applied for both classification and regression
problems.

In this case, in which the machine learning model (Gradient Boosted Trees) used supervised
learning, all supporting local explanations added positively to the weights for correct predic-
tions, while all contradicting local explanations added positively to the weights for wrong
predictions. Regarding the parameters for this operator, the maximal explaining attributes were
set to 3 and the local sample size was left at the default (500). The sort weights parameter was set
to true, along with the descending sort direction of the weight values, in order to apply sorting
to the resulting feature weights supporting and contradicting the predictions.

https://docs.rapidminer.com/10.1/studio/operators/scoring/explain_predictions.html
https://docs.rapidminer.com/10.1/studio/operators/scoring/explain_predictions.html
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The Filter Examples (https://docs.rapidminer.com/10.1/studio/operators/blending
/examples/filter/filter_examples.html, accessed on 20 March 2023) operator selects which
examples are kept and which are removed. In this case, only the misclassified examples
(wrong predictions) were kept. Regarding the condition class parameter for this operator,
it was set to wrong_predictions in order to only keep those examples where the class and
prediction were different, which meant that the prediction was wrong.

The four misclassified examples included the following:

1. WP1: building edifice structure roof wall standing permanently house factory;
2. WP2: typically whitesmiths product required decorative finish fire grate coldworking

screw lathed machine;
3. WP3: organic food;
4. WP4: traditional vernacular building method suit local condition climate dispensed

favour generic cookie cutter housing type.

In Table 4, detailed information is provided for these wrong predictions. Class is the
real class of the example, while Prediction is the wrongly predicted class for the example.
Confidence, with values ranging from 0 to 1, is derived from feature weights regarding
both Class and Prediction.

Table 4. Wrong predictions of Gradient Boosted Trees. Class is the real class of the example, and
Prediction is the wrongly predicted class for the example. Confidence, ranging from 0 to 1, and derived
from feature weights regarding both Class and Prediction, as is shown in the last 2 columns.

No. Class Prediction Confidence (Class) Confidence (Prediction)

WP1 D C 0.14 0.41
WP2 C D 0.12 0.48
WP3 B C 0.11 0.55
WP4 D E 0.17 0.31

The features that contributed to the wrong predictions for each class are shown in
Table 5. The effect of the value for each feature was denoted in consideration of whether it
supported, contradicted, or was neutral to the prediction. The typical value for the specific
feature for each class is also provided.

Table 5. Features that contributed to the wrong predictions of Gradient Boosted Trees. Effect denotes
whether the specific value of the specific feature supports, contradicts, or is neutral to the prediction.
Typical Value is the typical value for the specific feature for each class.

No. Feature(s) Value(s) Effect(s) Typical Value

WP1 building 1 Neutral
D: 0

C: 0 and some 1

WP2
typically

fire
product

1
0.66
0.54

Neutral
Contradict C & D: 0 and some 1

WP3
food

organic
0.50
0.86

Support
B: 0 & C: 1

B: 0 & C: 0 and some 1

WP4
local

method
type

0.56
0.47
0.46

Support D: 0 & E: 0 and some 1

4.2. Correct Predictions

The Gradient Boosted Trees model managed to correctly classify most of the examples.
Regarding class A, it is of particular interest that all of its examples were classified correctly,

https://docs.rapidminer.com/10.1/studio/operators/blending/examples/filter/filter_examples.html
https://docs.rapidminer.com/10.1/studio/operators/blending/examples/filter/filter_examples.html
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while none of the examples of the other classes were classified wrongly to class A. Conse-
quently, it is of significance to identify and examine which features were the most dominant
and led to the correct predictions for each class, thus contributing to the identification of a
primary set of terms for the vocational domains.

In order to identify the correctly classified examples, the same RapidMiner Studio
(version 9.10) process, as was used for wrong predictions (Figure 4), was used. The only
difference was that the Condition Class parameter for the Filter Examples operator was set to
correct_predictions in order to only keep those examples where the class and prediction
were the same, which meant that the prediction was correct.

The Confidence parameter, with values that can be from 0 to 1, was derived from
feature weights for each class: for class A, it ranged from 0.49 to 0.55; for class B, it ranged
from 0.37 to 0.55; for class C, it ranged from 0.48 to 0.55; for class D, it ranged from 0.47 to
0.55; and, for class E, it ranged from 0.54 to 0.55. The features that were the most dominant
and led to the correct predictions are shown in Table 6 in a descending order, along with
the global weights that were calculated for each one of them.

Table 6. Global weights per feature (descending order). Features with higher weights were more
dominant for the correct predictions of this model than features with lower weights.

No. Feature Weight No. Feature Weight

1 farmer 0.037 56 time 0.018
2 world 0.036 57 usually 0.018
3 blacksmith 0.034 58 cocoa 0.018
4 using 0.034 59 grain 0.017
5 produce 0.033 60 material 0.017
6 human 0.032 61 chef 0.017
7 developed 0.031 62 growing 0.017
8 plant 0.03 63 process 0.017
9 yield 0.029 64 water 0.017
10 food 0.029 65 form 0.017
11 project 0.029 66 industry 0.016
12 temperature 0.029 67 fat 0.016
13 environmental 0.028 68 field 0.016
14 ingredient 0.028 69 found 0.016
15 america 0.028 70 domesticated 0.015
16 technique 0.028 71 product 0.015
17 united 0.027 72 sometimes 0.015
18 design 0.027 73 europe 0.015
19 heat 0.027 74 crop 0.015
20 system 0.027 75 source 0.015
21 quality 0.026 76 anvil 0.014
22 iron 0.026 77 variety 0.014
23 breeding 0.026 78 various 0.013
24 local 0.025 79 livestock 0.013
25 vegetable 0.025 80 tourism 0.013
26 typically 0.025 81 farm 0.013
27 increase 0.025 82 construction 0.013
28 land 0.024 83 practice 0.013
29 cost 0.024 84 building 0.013
30 agricultural 0.024 85 people 0.012
31 sustainable 0.024 86 natural 0.012
32 common 0.023 87 example 0.012
33 called 0.023 88 level 0.012
34 service 0.023 89 animal 0.012
35 period 0.023 90 organic 0.012
36 cuisine 0.022 91 soil 0.011
37 trade 0.022 92 resort 0.011
38 production 0.022 93 cooking 0.011
39 operation 0.022 94 meat 0.011
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Table 6. Cont.

No. Feature Weight No. Feature Weight

40 country 0.022 95 especially 0.01
41 farming 0.022 96 population 0.01
42 include 0.021 97 fire 0.01
43 global 0.021 98 hotel 0.01
44 effect 0.021 99 modern 0.009
45 increased 0.021 100 century 0.009
46 type 0.02 101 change 0.009
47 agriculture 0.02 102 chocolate 0.009
48 method 0.02 103 metal 0.008
49 fertilizer 0.02 104 including 0.008
50 amount 0.02 105 steel 0.008
51 baking 0.02 106 smith 0.007
52 tool 0.019 107 text 0.007
53 oven 0.019 108 management 0.006
54 worker 0.018 109 due 0.006
55 hot 0.018

4.3. Discussion

Regarding the wrong prediction analysis, the four misclassified examples were suc-
cessfully identified (WP1–WP4), as shown in Table 4. More specifically, two examples of
class D, namely, WP1 and WP4, were wrongly classified to classes C and E, respectively,
while one example of class C, WP2, was misclassified to class D, and one example of class
B, WP3, was misclassified to class C. It was observed that, for all wrong predictions, the
Confidence for the Class, which is the real class of the examples, ranged from 0.11 to
0.17 and was significantly lower than the Confidence for Prediction, which is the wrongly
predicted class of the examples and ranged from 0.31 to 0.55. This indicates that these
examples diverged significantly from the other examples of their class. By examining
Tables 5 and 6, this observation can be explained as described below.

For WP1, the value for the building feature was 1, while, typically for examples of
D (class), the values were 0 and, of C (prediction), they were mostly 0 and sometimes 1.
Considering that building was the only most dominant feature of WP1, with an assigned
feature weight of 0.013, its overall impact on the prediction being neutral was expected.

For WP2, the value for the typically feature was 1, for the fire feature was 0.66, and for
the product feature was 0.54, while, typically, the values of all these features for examples of
both C (class) and D (prediction) were mostly 0 and sometimes 1. Considering that typically
was the most dominant feature of WP2, with an assigned feature weight of 0.025, which is
high, its overall impact on the prediction being neutral was expected. The fire and product
features contradicted the prediction, though, due to their quite low feature weights of 0.01
and 0.015, respectively, their effects on the prediction were insignificant.

For WP3, the value for the food feature was 0.50 and for the organic feature was 0.86,
while, typically, for examples of B (class), the values were 0 for both features and, of C
(prediction), the value was 1 for the food feature and mostly 0 and sometimes 1 for the
organic feature. Considering that food was the most dominant feature of WP3, with an
assigned feature weight of 0.029, which is high, its overall impact on the prediction being
positive (support) was expected. The organic feature also supported the prediction, though,
due to its quite low feature weight (0.012), its effect on the prediction was insignificant.

For WP4, the value for the local feature was 0.56, for the method feature it was 0.47, and
for the type feature it was 0.46, while, typically, the values of all these features for examples
of D (class) were 0 and, for E (prediction), were mostly 0 and sometimes 1. Considering
that local was the most dominant feature of WP4, with an assigned feature weight of 0.025,
which is high, its overall impact on the prediction being positive (support) was expected.
The method and type features also supported the prediction, with quite high feature weights
of 0.02 for both, and they had a significant effect on the prediction.
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Overall, it became evident that the main factor that led the Gradient Boosted Trees model
to misclassify the examples was the lack of dominant features supporting the real class
more than the prediction in terms of feature weight.

Regarding the correct prediction analysis, it was observed that the confidence for the
correct predictions for all classes was considerably high, with the lowest being for class B
in a range from 0.37 to 0.55 and the highest for class E in a range from 0.54 to 0.55. This
means that the model could classify the examples of class E more confidently compared to
the examples of the other classes.

Additionally, the most dominant features, in terms of feature weights, which led to
the correct predictions for each class, were identified successfully and sorted in descending
order, as shown in Table 6. Features with higher weights were more dominant for the
correct predictions of this model than features with lower weights. A total of 51 features,
which were about half of the 109 features of the extracted feature set, had the highest feature
weights, which ranged from 0.02 up to 0.037. This indicates that the feature extraction
process, as described in Section 3 and [19], performed quite well, thus producing a robust
feature set with great impact on the correct predictions. Finally, it was also observed
that, among these features, terms that were relevant to all of the vocational domains were
included, thus yielding a primary set of terms for the vocational domains.

5. Data Balancing

Another machine learning experiment on domain identification was performed with a
Random Forest (https://docs.rapidminer.com/9.10/studio/operators/modeling/predictiv
e/trees/parallel_random_forest.html, accessed on 20 October 2022) and AdaBoost (https://
docs.rapidminer.com/9.1/studio/operators/modeling/predictive/ensembles/adaboost.ht
ml, accessed on 20 October 2022) model. The results of this experiment are shown in Table 7.

Table 7. Machine learning experiment results with Random Forest and AdaBoost. Accuracy: 62.33%.

Class Precision Recall F1 Score

A 49.06% 97.60% 65.29%
B 91.52% 51.30% 65.74%
C 95.05% 41.65% 57.92%
D 91.67% 31.79% 47.20%
E 98.21% 35.54% 52.19%

Random Forest is an ensemble of random trees that are created and trained on boot-
strapped subsets of the data set. For a random tree, each node constitutes a splitting rule
for one particular feature, while a subset of the features, according to a subset ratio criterion
(e.g., information gain), is considered for selecting the splitting rules. In classification
tasks, the rules are splitting values that belong to different classes. New nodes are created
repeatedly until the stopping criteria are met. Then, each random tree provides a prediction
for each example by following the tree branches according to the splitting rules and by
evaluating the leaf. Class predictions are based on the majority of the examples, and
estimations are procured through the average of values reaching a leaf, thus resulting in a
voting model of all created random trees. The final prediction of the voting model usually
varies less than the single predictions, since all single predictions are considered equally
significant and are based on subsets of the data set.

AdaBoost, aka Adaptive Boosting, is a meta-algorithm that can be used in combination
with various learning algorithms in order to improve their performance. Its adaptiveness is
due to the fact that any subsequent classifiers built are adapted in favor of the examples
that were misclassified by previous classifiers. AdaBoost is sensitive to noisy data and
outliers; however, in some tasks, it may be less susceptible to overfitting than most learning
algorithms. It is important to note that, even with weak classifiers (e.g in terms of error
rate), the final model is improved when its performance is not random. AdaBoost generates
and calls a new weak classifier in each of a series of rounds t = 1, . . . , T. For each call,

https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/parallel_random_forest.html
https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/parallel_random_forest.html
https://docs.rapidminer.com/9.1/studio/operators/modeling/predictive/ensembles/adaboost.html
https://docs.rapidminer.com/9.1/studio/operators/modeling/predictive/ensembles/adaboost.html
https://docs.rapidminer.com/9.1/studio/operators/modeling/predictive/ensembles/adaboost.html
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a distribution of weights D(t) is updated. This distribution denotes the significance of
examples in the data set for the classification task. During each round, the weights of each
misclassified example are increased, while the weights of each correctly classified example
are decreased, in order for the new classifier to focus on the misclassified examples.

Regarding the parameters for Random Forest, the number of trees was set to 100, the
maximal depth of trees was set to 10, information gain was selected as the criterion for feature
splitting, and confidence vote was selected as the voting strategy. Neither pruning nor
prepruning were selected, since it was observed that they did not improve the performance
of the model for this task. The maximum iterations for AdaBoost were set to 10. For more
information on the operators and parameters of the RapidMiner Studio (version 9.10)
experiment with Random Forest and AdaBoost, as shown in Figure 5, refer to [19] and the
RapidMiner documentation (https://docs.rapidminer.com/, accessed on 20 October 2022).

Figure 5. Setup of machine learning experiment with Random Forest and AdaBoost. The Random
Forest operator is nested in the AdaBoost operator. The depicted process is nested in a Cross Validation
operator (10-fold cross validation with stratified sampling).

Regarding the model’s accuracy of 62.33%, it is important to bear in mind that, despite
being considerably lower than the accuracy of the Gradient Boosted Trees model (99.93%), it
was significantly above the randomness baseline by 42.33%, considering that the random-
ness for a five-class problem was at 20%.

Examining the model’s results (Table 7) more closely, it was noted that, despite its
precision for classes B, C, D, and E being high, which ranged from 91.52% to 98.21%, the
recall for these classes was low, which ranged from 31.79% to 51.30%. Also, considering its
low precision (49.06%) and high recall (97.60%) for class A, this examination highlighted
that a lot of the examples were classified wrongly to class A. As a result, it became evident
that the Random Forest and AdaBoost model tended to classify most of the examples to class
A. Due to the fact that the examples of class A consisted of the majority of the examples in
the data set (35.20%, Figure 1), this tendency could be attributed to the imbalance of data.

Consequently, it is of interest to examine whether applying data balancing techniques
on the data set (oversampling and undersampling), has any impact, whether positive or
negative, on the performance of the Random Forest and AdaBoost model.

5.1. Data Oversampling

As a first step towards addressing data imbalance, SMOTE oversampling [17] was
applied in a successive manner on the data set in order to balance the data using oversam-
pling, which pertained to the minority class each time. Consequently, a RapidMiner Studio
(version 9.10) process, as shown in Figure 6, was designed and executed four times. The
four derived oversampled data sets were then used as inputs for the machine learning
experiments with Random Forest and AdaBoost.

https://docs.rapidminer.com/
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Figure 6. Setup of SMOTE Upsampling.

The SMOTE Upsampling (https://docs.rapidminer.com/10.1/studio/operators/extensions
/Operator%20Toolbox/blending/smote.html, accessed on 20 March 2023) operator practically ap-
plies the Synthetic Minority Oversampling Technique, as defined in the paper by Chawla et al. [17].
More specifically, the algorithm considers only the examples of the minority class, and the k near-
est neighbors for each example are searched. Then, a random example and a random nearest
neighbor for this example are selected, thus resulting in the creation of a new example on the line
between the two examples.

Regarding the parameters for this operator, the number of neighbors was left at the
default (5), while normalize and round integers were set to true, and nominal change rate was
set to 0.5 in order to make the distance calculation solid. The equalize classes parameter was
set to true to draw the necessary amount of examples for class balance, and the auto detect
minority class was set to true to automatically upsample the class with the least amount of
occurrences.

The set of machine learning experiments with successive applications of SMOTE
oversampling, as described below, follows a novel and original methodology, since it was
defined and used for the specific task for the first time, to the best of the authors’ knowledge.
The methodology steps were the following:

1. Detect the minority class;
2. Resample the minority class with SMOTE oversampling;
3. Run the machine learning experiment;
4. Repeat steps 1–3 until the data set is balanced (no minority class exists).

By running the experiments following this methodology, the impact of every class
distribution, from completely imbalanced to completely balanced data, on the performance
of the machine learning model could be examined thoroughly. Consequently, this four-step
methodology was an important contribution of this paper.

In the first machine learning experiment, class D was the minority class, with its
examples representing merely 8.8% of the data set (Figure 1). After applying SMOTE,
class D represented 27.9% of the data set with 2083 examples (Figure 7). The results of the
Random Forest and AdaBoost with SMOTE are shown in Table 8.

2083

2083

1620

922

771

E
10.3%

C
12.3%

B
21.7%

A
27.9%

D
27.9%

A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality

Distribution of Examples to Classes after SMOTE 1

Figure 7. Distribution of examples to classes after applying SMOTE (1 time).

https://docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending/smote.html
https://docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending/smote.html
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Table 8. Machine learning experiment results with Random Forest and AdaBoost with SMOTE. Accu-
racy: 66.01%.

Class Precision Recall F1 Score

A 94.30% 69.13% 79.77%
B 92.67% 49.20% 64.27%
C 94.47% 38.94% 55.14%
D 46.65% 99.33% 63.48%
E 98.19% 35.28% 51.90%

In the second machine learning experiment, class E was the minority class, with its
examples representing 10.3% of the data set (Figure 7). After applying SMOTE, class E
represented 23.7% of the data set with 2083 examples (Figure 8). The results of the Random
Forest and AdaBoost with SMOTE (two times) are shown in Table 9.

2083

2083
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C
10.5%
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18.4%

E
23.7%

A
23.7%

D
23.7%

A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality

Distribution of Examples to Classes after SMOTE 2

Figure 8. Distribution of examples to classes after applying SMOTE (2 times).

Table 9. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (2 times).
Accuracy: 65.72%.

Class Precision Recall F1 Score

A 93.46% 67.93% 78.67%
B 92.20% 47.41% 62.62%
C 94.51% 37.31% 53.49%
D 60.50% 72.35% 65.89%
E 48.57% 83.68% 61.46%

In the third machine learning experiment, class C was the minority class, with its
examples representing 10.5% of the data set (Figure 8). After applying SMOTE, class C
represented 20.9% of the data set with 2083 examples (Figure 9). The results of the Random
Forest and AdaBoost with SMOTE (three times) are shown in Table 10.
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Figure 9. Distribution of examples to classes after applying SMOTE (3 times).

In the fourth machine learning experiment, class B was the minority class, with its
examples representing 16.3% of the data set (Figure 9). After applying SMOTE, class B
represented 20% of the data set with 2083 examples (Figure 10). The results of the Random
Forest and AdaBoost with SMOTE (four times) are shown in Table 11.

Table 10. Machine learning experiment results with Random Forest and AdaBoost with SMOTE
(3 times). Accuracy: 64.35%.

Class Precision Recall F1 Score

A 95.14% 66.73% 78.44%
B 91.72% 46.48% 61.69%
C 38.44% 96.54% 54.98%
D 89.68% 58.38% 70.72%
E 95.48% 49.64% 65.32%
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Figure 10. Distribution of examples to classes after applying SMOTE (4 times).
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Table 11. Machine learning experiment results with Random Forest and AdaBoost with SMOTE
(4 times). Accuracy: 64.09%.

Class Precision Recall F1 Score

A 95.52% 65.53% 65.29%
B 40.79% 85.84% 65.74%
C 58.84% 62.17% 57.92%
D 90.00% 58.33% 47.20%
E 96.20% 48.58% 52.19%

5.2. Data Undersampling

In another set of experiments, undersampling was applied to the data set, thereby
balancing the data by undersampling the classes represented by the most examples. Conse-
quently, a RapidMiner Studio (version 9.10) process, as shown in Figure 11, was designed
and executed. The derived undersampled data set was then used as the input for the
machine learning experiments with Random Forest and AdaBoost.

Figure 11. Setup of machine learning experiment with Random Forest and AdaBoost with Sample.
The Random Forest operator is nested in the AdaBoost operator, which is nested in a Cross Validation
operator (10-fold cross validation).

The Sample (https://docs.rapidminer.com/10.1/studio/operators/blending/examp
les/sampling/sample.html, accessed on 20 March 2023) operator has basic principles
that are common to the Filter Examples operator, wherein it takes a set of examples as
the input and procures a subset of it as output. However, while Filter Examples follows
previously specified conditions, Sample is centered on the number of examples and the class
distribution in the resulting subset, thus producing samples in a random manner.

Regarding the parameters for this operator, Sample was set to absolute in order for it
to be created to consist of an exact number of examples. The Balance Data parameter was
set to true in order to define different sample sizes (by number of examples) for each class,
while the class distribution of the sample was set with Sample Size Per Class. Examples of
classes A and B were reduced to 1183 for each one, which is the mean of the number of
all examples in the data set. The sample sizes for each class are shown in Figure 12. The
results of this experiment are shown in Table 12.

Table 12. Machine learning experiment results with Random Forest and AdaBoost with Sample. Accu-
racy: 62.84%.

Class Precision Recall F1 Score

A 94.34% 66.27% 77.85%
B 41.77% 96.53% 58.30%
C 94.94% 44.79% 60.86%
D 88.57% 41.81% 56.80%
E 96.40% 41.63% 58.14%

https://docs.rapidminer.com/10.1/studio/operators/blending/examples/sampling/sample.html
https://docs.rapidminer.com/10.1/studio/operators/blending/examples/sampling/sample.html
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Figure 12. Distribution of examples to classes after applying Sample.

A hybrid approach combining data oversampling and undersampling was also tested.
In this experiment, both the SMOTE Upsampling operator and the Sample operator were
applied on the data set to balance the data by undersampling the classes represented by the
most examples and oversampling the classes represented by the least examples, respectively.
Consequently, a RapidMiner Studio (version 9.10) process, as shown in Figure 13, was
designed and executed. The derived undersampled data set was then used as the input for
the machine learning experiments with Random Forest and AdaBoost.

Figure 13. Setup of machine learning experiment with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. The Random Forest operator is nested in the AdaBoost operator, which is nested
in a Cross Validation operator (10-fold cross validation).

Regarding the parameters for Sample and SMOTE Upsampling, they were set in the
same way as in the previous experiments. After applying them, examples of classes A and
B were reduced to 1183 for each one, which is the mean of the number of all examples in
the data set, while examples of class D were added to also result in 1183 for this class. The
sample sizes for each class are shown in Figure 14. The results of this experiment are shown
in Table 13.
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Figure 14. Distribution of examples to classes after applying Sample and SMOTE.

Table 13. Machine learning experiment results with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. Accuracy: 63.35%.

Class Precision Recall F1 Score

A 95.29% 66.69% 78.46%
B 39.79% 95.52% 56.17%
C 93.62% 44.58% 60.39%
D 83.27% 57.23% 67.83%
E 97.52% 40.73% 57.46%

5.3. Discussion

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with SMOTE oversampling, it was observed that the accuracy and overall performance,
as shown in Tables 8–11, improved compared to those of Random Forest and AdaBoost
with imbalanced data, as shown in Table 7. More specifically, the accuracy increased from
62.33% up to 66.01%, and the F1 score increased from 65.29% up to 79.77% for class A,
maintained up to 65.74% for class B, maintained up to 57.92% for class C, increased from
47.20% up to 70.72% for class D, and increased from 52.19% up to 65.32% for class E. It is
also noteworthy that, despite the overall performance of the model becoming slightly worse
with each iteration (each added SMOTE oversampling), it was still significantly better than
the performance of the experiment with completely imbalanced data; even the lowest
accuracy (64.09%), which was that of the fourth machine learning experiment with SMOTE,
was quite higher than the accuracy (62.33%) of the experiment with completely imbalanced
data. Additionally, the values of precision, recall, and F1 score seemed to be distributed
more evenly among the classes with each iteration, thus mitigating any emerging bias of the
model towards one particular class. Another important observation from these experiments
is that, in a classification task where one of the five vocational domains may be considered
as the class of interest, e.g., for trying to exclusively detect articles of a specific vocational
domain from a corpus to filter relevant content, the application of SMOTE oversampling
for the class of interest had a positive effect on the results of this classification task.

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with Sample, it was observed that the accuracy and overall performance, as shown in
Table 12, improved slightly compared to those of Random Forest and AdaBoost with im-
balanced data, as shown in Table 7. More specifically, accuracy increased from 62.33% to
62.84%, and the F1 score increased from 65.29% to 77.85% for class A, reduced from 65.74%
to 58.30% for class B, increased from 57.92% to 60.86% for class C, increased from 47.20% to
56.80% for class D, and increased from 52.19% to 58.14% for class E. Compared to the results
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obtained with SMOTE oversampling (Tables 8–11), undersampling had worse performance
in terms of accuracy, class precision, recall, and F1 score.

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with Sample and SMOTE oversampling (hybrid approach), it was observed that the accuracy
and overall performance, as shown in Table 13, marginally improved compared to those
of Random Forest and AdaBoost with Sample only (Table 12). More specifically, the accuracy
increased from 62.84% to 63.35%, and the F1 score increased from 77.85% to 78.46% for class
A, reduced from 58.30% to 56.17% for class B, reduced from 60.86% to 60.39% for class C,
increased from 56.80% to 67.83% for class D, and reduced from 58.14% to 57.46% for class
E. In any case, the performance of this experiment was better than that of the experiment
with completely imbalanced data. Overall, these experiments indicate that, when applying
both data undersampling and oversampling in a hybrid approach, the results were better
than only applying undersampling but were worse than only applying oversampling for
this data set.

The findings derived from the machine learning experiments of this paper are in accor-
dance with those of the relevant literature [12,17], with the results that data oversampling
obtained better results than data undersampling in imbalanced data sets, while hybrid
approaches performed reasonably well. The performance of all the machine learning
experiments performed in this research is shown in Table 14.

Table 14. Performance of all the machine learning experiments performed in this research. GBT:
Gradient Boosted Trees, RF: Random Forest.

Experiment Accuracy Precision
(Average)

Recall
(Average)

F1 Score
(Average)

GBT 99.93% 99.89% 99.88% 99.88%
RF + AdaBoost 62.33% 85.10% 51.57% 57.66%
RF + AdaBoost – SMOTE 1 66.01% 85.25% 58.37% 62.91%
RF + AdaBoost – SMOTE 2 65.72% 77.84% 61.73% 64.42%

RF + AdaBoost – SMOTE 3 64.35% 82.09% 63.55% 66.23%
RF + AdaBoost – SMOTE 4 64.09% 76.27% 64.09% 57.66%
RF + AdaBoost – Undersampling 62.84% 83.20% 58.20% 62.39%
RF + AdaBoost – Undersampling + SMOTE 63.35% 81.89% 60.95% 64.06%

6. Conclusions

Displaced communities, such as migrants and refugees, face multiple challenges in
seeking and finding employment in high-skill vocations in their host countries, which
derive from discrimination. Unemployment and overworking phenomena usually affect
the displaced communities more than the natives. A deciding factor for their prospects
of employment is the knowledge of not the language of their host country in general, but
specifically of the sublanguage of the vocational domain they are interested in working.
Consequently, more and more highly skilled migrants and refugees worldwide are finding
employment in low-skill vocations, despite their professional qualifications and educational
backgrounds, with the language barrier being one of the most important factors. Both high-
skill and low-skill vocations in agriculture, cooking, crafting, construction, and hospitality,
among others, consist of the most common vocational domains in which migrants and
refugees seek and find employment according to the findings of the recent research.

In the last decade, due to the expansion of the user base of wikis and social networks,
user-generated content has increased exponentially, thereby providing a valuable source of
data for various tasks and applications in data mining, natural language processing, and
machine learning. However, minority class examples are the most difficult to obtain from
real data, especially from user-generated content from wikis and social networks, thereby
creating a class imbalance problem that affects various aspects of real-world applications
that are based on classification. Especially for multi-class problems, such as the one
addressed in this paper, they are more challenging to solve.
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This paper extends the contribution of the authors’ previous research [19] on automatic
vocational domain identification by further processing and analyzing the results of machine
learning experiments with a domain-specific textual data set, wherein we considered
two research directions: a. prediction analysis and b. data balancing.

Regarding the prediction analysis direction, important conclusions were drawn from
successfully identifying and examining the four misclassified examples (WP1–WP4) for
each class (wrong predictions) using the Gradient Boosted Trees model, which managed to cor-
rectly classify most of the examples, as well as identify which distinct features contributed
to their misclassification. An important finding is that the misclassified examples diverged
significantly from the other examples of their class, since, for all wrong predictions, the
confidence values for class, which is the real class of the examples, were significantly lower
(from 0.11 to 0.17) than the confidence values for prediction (from 0.31 to 0.55), which
indicates the wrongly predicted class of the examples. More specifically, the feature values
of WP1–WP4 were the main factors for their misclassification, by either being neutral or by
supporting the wrong over the correct prediction. Even when they contradicted the wrong
prediction, such as the features of WP2 and WP3, they did not have a significant effect
due to their feature weights being quite low. In conclusion, the main factor that led the
Gradient Boosted Trees model to misclassify the examples was the lack of dominant features
supporting the real class more than the prediction in terms of feature weight.

In the same line of thought, the examination of the correctly classified examples
(correct predictions) resulted in several findings. The confidence values for the correct
predictions for all classes were considerably high, with the lowest being from class B (from
0.37 to 0.55) and the highest being from class E (from 0.54 to 0.55), which means that the
model could classify the examples of class E more confidently compared to the examples
of the other classes. Additionally, the most dominant features, in terms of feature weight,
led to the correct predictions for each class being identified successfully and sorted in
a descending order; features with higher weights were more dominant for the correct
predictions of this model than features with lower weights. Another important finding
concerning the most dominant features is the fact that about half of the features of the
extracted feature set had the highest feature weights (from 0.02 up to 0.037), therefore
indicating that the feature extraction process, as described in Section 3 and [19], performed
quite well and produced a robust feature set with great impact on the correct predictions.
It is important to note that, among these features, terms relevant to all of the vocational
domains were included, thus yielding a primary set of terms for the vocational domains.

Regarding the data balancing direction, oversampling and undersampling techniques,
both separately and in combination as a hybrid approach, were applied to the data set in
order to observe their impacts (positive or negative) on the performance of the Random
Forest and AdaBoost model. A novel and original four-step methodology was proposed
in this paper and used for data balancing for the first time, to the best of the authors’
knowledge. It consisted of successive applications of SMOTE oversampling on imbalanced
data in order to balance them while considering which class was the minority class in each
iteration. By running the experiments while following this methodology, the impact of
every class distribution, from completely imbalanced to completely balanced data, on the
performance of the machine learning model could be examined thoroughly. This process of
data balancing enabled the comparison of the performance of this model with balanced data
to the performance of the same model with imbalanced data from the previous research [19].

More specifically, the machine learning experiments’ results with Random Forest and
AdaBoost with SMOTE oversampling obtained significantly improved overall performance
and accuracy values (up to 66.01%) compared to those of Random Forest and AdaBoost with
imbalanced data, all while maintaining or surpassing the achieved F1 scores per class. A
major finding is that, despite the overall performance of the model becoming slightly worse
with each iteration (each added SMOTE oversampling), it was still significantly better
than the performance of the experiment with completely imbalanced data; even the lowest
accuracy (64.09%), which was that of the fourth machine learning experiment with SMOTE,
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was quite higher than the accuracy (62.33%) of the experiment with completely imbalanced
data. Moreover, the values of precision, recall, and F1 score seemed to be distributed more
evenly among the classes with each iteration, thus mitigating any emerging bias of the
model towards one particular class. Another important finding is that, in a classification
task where one of the five vocational domains was considered as the class of interest, e.g.,
for trying to exclusively detect articles of a specific vocational domain from a corpus to
filter relevant content, the application of SMOTE oversampling for the class of interest had
a positive effect on the results of this classification task.

The machine learning experiments’ results with Random Forest and AdaBoost with Sam-
ple showed slightly improved overall performance and accuracy values (62.84%) compared
to those of Random Forest and AdaBoost with imbalanced data, all while surpassing the
achieved F1 scores per class, except for from class B. Compared to the results obtained with
SMOTE oversampling, undersampling had worse performance in terms of accuracy, class
precision, recall, and F1 score. The machine learning experiments’ results with Random
Forest and AdaBoost with Sample and SMOTE oversampling (hybrid approach) showed
marginally improved overall performance and accuracy values (63.35%) compared to those
of Random Forest and AdaBoost with Sample only, all while surpassing the achieved F1 scores
for classes A and D. However, the performance of this experiment was better than that of
the experiment with completely imbalanced data. In conclusion, these experiments indicate
that, when applying both data undersampling and oversampling in a hybrid approach, the
results were better than only applying undersampling but were worse than only applying
oversampling for this data set. The findings derived from the machine learning experi-
ments of this paper are in accordance with those of the relevant literature [12,17] regarding
the conclusion that data oversampling obtains better results than data undersampling in
imbalanced data sets, while hybrid approaches perform reasonably well.

In Table 15, the performance of related work (Section 2 and Table 1) is compared
to the performance of this paper in terms of accuracy and F1 score, which considers the
data sets and models that obtained the best results for each research. The performance
of the Gradient Boosted Trees model was quite high when compared to the performance
of the models applied in related work. It is important to note that Hamza et al. [20] and
Balouchzahi et al. [21] worked with data sets consisting of news articles. Hande et al. [22]
used scientific articles, and Dowlagar & Mamidi [23] and Gundapu & Mamidi [24] used
sentences from technical reports and papers. As a result, their data sets consist of more
structured text compared to the social text of the data set created in this paper, which
consists of sentences from Wikipedia. Consequently, the fact that the performance of the
models of this paper was the same or higher than the performance of the models of the
aforementioned papers is noteworthy. Stoica et al. [28], on the other hand, used Wikipedia
articles as the input for their models, while sole sentences were used as the input for the
models in this paper. Consequently, the fact that the performance of the models of this
paper was higher than their performance is also noteworthy. Regarding Random Forest,
they combined it with XGBoost and obtained much better results (90% F1 score) compared
to the results (79.77% F1 score) of the combination with AdaBoost used in this paper, thus
indicating that the boosting algorithm is crucial to the performance of the models. Another
observation is that the performance of Random Forest and AdaBoost was improved with
SMOTE oversampling compared to the authors’ previous research [19]. More specifically,
the accuracy increased from 62.33% to 66.01%, and the F1 score increased from 65.74% to
79.77%, thus indicating that oversampling had a positive effect on the performance of the
model.
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Table 15. Performance per research paper. A comparison of related work to this paper in terms of
data, models, and best results.

Paper Data Model Performance

Hamza et al. [20] News articles in Urdu MLP Accuracy: 91.4%

Balouchzahi et al. [21] Fake news articles in English Ensemble: RoBERTa,
DistilBERT, BERT F1 score: 85.5%

Hande et al. [22] Scientific articles of computer
science

Ensemble: BERT, RoBERTa,
SciBERT Accuracy: 92%, F1 score: 98%

Dowlagar & Mamidi [23] Multilingual sentences of
technical domains BERT, XLM-ROBERTa, CNN F1 score (macro): 80.3%

Gundapu & Mamidi [24] Sentences in Telugu of
technical domains CNN, BiLSTM F1 score: 69.9%

Stoica et al. [28] Wikipedia articles BERT, RF, XGBoost F1 score: 90%

Nikiforos et al. [19] Sentences from Wikipedia
articles in English GBT, RF + AdaBoost

Accuracy: 99.9%, F1 score:
100%, Accuracy: 62.33%, F1

score: 65.74%

This paper Sentences from Wikipedia
articles in English

GBT, RF + AdaBoost –
SMOTE 1

Accuracy: 99.9%, F1 score:
100%, Accuracy: 66.01%, F1

score: 79.77%

Potential directions for future work include the automatic extraction of domain-specific
terminology to be used as a component of an educational tool for sublanguage learning
regarding specific vocational domains in host countries with the aim to help displaced
communities, such as migrants and refugees, overcome language barriers. This terminology
extraction task could use the terms (features) that were identified in this paper as the most
dominant for vocational domain identification in terms of feature weight. Moreover, a more
vocational domain-specific data set could be created to perform a more specialized domain
identification task in vocational subdomains, especially considering the set of dominant
terms identified in this paper. Another direction for future work could be performing
experiments with a larger data set, wherein they consist of either more Wikipedia articles
or even textual data from other wikis and social networks as data sources, in order to
examine the impact of more data on the performance of the models. Using a different
feature sets, e.g., with n-grams and term collocations, or using features that are more
social-text-specific could also be attempted to improve performance. Additionally, machine
learning experiments with more intricate boosting algorithms and sophisticated machine
learning models could be performed. Finally, another potential direction could be the
application of the novel methodology of successive SMOTE oversampling proposed in this
paper in combination with undersampling techniques on other imbalanced data sets in
order to test its performance in different class imbalance problems.
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CNN Convolutional Neural Network
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Extreme Gradient Boosting XGBoost
FN False Negative
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