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Abstract: There is a growing interest in finding new ways to address the difficult task of introducing
programming to secondary students for the first time to improve students’ computational thinking
(CT) skills. Therefore, extensive research is required in this field. Worldwide, new ways to address
this difficult task have been developed: visual execution environments and approaches by text
programming or visual programming are among the most popular. This paper addresses the complex
task by using a visual execution environment (VEE) to introduce the first programming concepts that
should be covered in any introductory programming course. These concepts include variables, input
and output, conditionals, loops, arrays, functions, and files. This study explores two approaches
to achieve this goal: visual programming (using Scratch) and text programming (using Java) to
improve CT. Additionally, it proposes an AI recommendation model into the VEE to further improve
the effectiveness of developing CT among secondary education students. This integrated model
combines the capabilities of an AI learning system module and a personalized learning module to
better address the task at hand. To pursue this task, an experiment has been carried out among
23 preservice secondary teachers’ students in two universities, one in Madrid, Spain, and the other
in Galway, Ireland. The overall results showed a significant improvement in the Scratch group.
However, when analyzing the results based on specific programming concepts, significance was
observed only in the Scratch group, specifically for the Loop concept.

Keywords: computational thinking; programming; secondary education; preservice teachers;
recommendation model with AI

1. Introduction

Teaching programming to secondary education students is doubtless very important
nowadays, not just to learn how to program a computer but to foster many other key
abilities related to learning how to code [1]. It has been a matter of study as to how to
better introduce it to primary and secondary students [2,3]. When examining the training
of teachers to undertake the complex and demanding task of teaching programming to
secondary students, it is evident that they require additional computer science education [4].
Research suggests that incorporating more emphasis on computational thinking (CT)
during their undergraduate degrees can effectively influence preservice teachers’ CT in
order to teach it afterward [5].

The number of educators qualified to teach computing is insufficient. In the USA, for
instance, there are only about 2300 teachers who teach high school AP Computer Science,
whereas there are around 25,000–30,000 high schools [6]. Although the numbers are higher
across the globe [7], they are still insufficient. This insufficiency has sparked a worldwide
interest in examining the impact of programming on fostering computational thinking
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(CT) and improving higher cognitive skills [8]. Additionally, there is a growing focus on
understanding human behavior based on computer science concepts [9]. This emphasis on
CT stems from its significance as a crucial skill in today’s world [10].

Papert said that by learning how to program, a child can acquire a better knowledge
of prospective behavior and how things work [11]. Other authors explain that in order to
acquire meaningful knowledge, the process has to affect the students [12]. Therefore, certain
innovations in the materials and methods by which the subject is taught by their teachers
may affect their students’ feelings of success and self-confidence. This notion aligns with
the principles of constructivism in teaching, as advocated by Piaget and Vygotsky [13–17].

To teach programming for the first time, many approaches and methodologies have
been used, such as mobile devices [18] or pair programming [19]. Additionally, many
studies deal with the misunderstanding and difficulties of the programming concepts
learned [20]. Following the pace of learning programming, CT students’ improvement
has also been studied by higher education educators and researchers with different inter-
ventions [21] or using game approaches [22]. Therefore, it is recommended to continue
improving and developing learning environments that foster CT, in preservice and in-
service teachers facilitating their use, and in investigations for improving CT [23].

Trying to achieve the complex task of applying the learned programming grammar
to produce a programming code that effectively solves a problem is what the authors [24]
have proposed with an AI with a deep learning recommendation system. It was found that
the university students who used the system for teaching programming and computational
thinking performed better regarding learning achievement and computational thinking
than those who did not. Thus, there can be an AI model built from the learning experience
gathered without the need for external data [24].

Most studies applied AI to the analysis of data results. The authors propose a model
for AI recommendations on the learning of programming for CT improvement in secondary
education students. The model is based on the data results of the usage of the TPACK
PrimaryCode VEE with their preservice teachers in two ways: block programming and
text programming. This study was conducted at two universities: one in Ireland and one
in Spain. The system already provides instant visual learning feedback to students, and
the AI model this paper proposes would help with difficult learning tasks that preservice
teachers have encountered.

This research paper presents the following hypothesis (H): it is possible to produce a
recommendation model with artificial intelligence that recommends the best pace (order of
concepts) and provides aid ad hoc to students when using a VEE with a text programming
language or block-based programming. The aim is to introduce programming concepts
to secondary education students and improve their CT skills. The hypothesis is based on
their future teachers’ performance using the VEE. For this study, we asked 23 preservice
Computer Science teachers to follow a two-hour session on the TPACK PrimaryCode Visual
Execution Environment for learning programming concepts at a university in Ireland with
TPACK PrimaryCode VEE and block programming (Scratch) and in Spain with TPACK
VEE PrimaryCode and text language (Java). Based on this hypothesis, there were four
research questions:

RQ1: Did preservice teacher students significantly improve their understanding of
programming concepts to foster their CT when using VEE PrimaryCode with a text pro-
gramming language (Java)?

RQ2: Did preservice teacher students significantly improve their understanding of
programming concepts to improve their CT when using the VEE PrimaryCode with block
programming (Scratch)?

RQ3: If RQ1 is affirmative, were some concepts easier or better understood than others,
and therefore should an AI recommendation model suggest the order and provide aids
ad hoc to introduce them when using a text language to perform it, or maybe extra help
is needed?
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RQ4: If RQ2 is affirmative and some concepts are easier or better understood than
others, should an AI recommendation model suggest the order and provide aids ad hoc
to introduce them when using a block-based language to perform it, or maybe extra help
is needed?

This paper is organized as follows: Section 2 reviews the theoretical framework for
improving secondary students’ and preservice secondary teachers’ CT, visual execution
environments, and AI recommendation models; Section 3 outlines the proposed AI rec-
ommendation model; Section 4 explains the research method followed, the pedagogical
approach, participants, and measurement tool; Section 5 presents the results of the experi-
ment, both overall and by programming concepts; Section 6 includes the discussion and
limitations of the study; and Section 7 summarizes the conclusions and suggests lines of
future work.

2. Theoretical Framework
2.1. Improving Secondary Students’ CT

Children can learn skills such as abstract thought, problem-solving, pattern identifica-
tion, and logical reasoning through the practice of algorithms and programming, which is
the focus of computational thinking. Modern educational and infrastructure advancements,
such as “CS for All” (https://www.csforall.org/ (accessed on 24 May 2023)), ISTE’s Stan-
dards for Students in Computational Thinking (https://www.iste.org/explore/Solutions/
Computational-thinking-for-all?articleid=152 (accessed on 24 May 2023)), and Concepts
of Computational Thinking from the Computer Science Teachers Association (http://
advocate.csteachers.org/2014/09/15/computational-think) (accessed on 24 May 2023) [25].

Students traditionally find programming challenging and difficult [26]. Even re-
searchers have studied the improvement of mathematical ability, sequential, conditional,
and analytical thinking related to the study of programming in high school [27]. Thus,
programming allows for mastering multiple abilities.

Recent students have tried to find what programming paradigm would help better
improve students’ CT, such as block or text programming [28,29], robotics [30], or adaptive
scaffolding in middle school students [31]. In K–12 students, educational robots (ER) have
been shown to be effective at improving CT, with boys benefiting more than girls [32], and
they are being used more frequently as pedagogical tools to encourage students to learn
computer programming and CT. Research indicates that the approach of combining CT
with ER has the potential to develop students’ CT and programming skills [33].

2.2. Improving Preservice Secondary Teachers’ CT

Furthermore, looking at the preservice teachers’ training on CT, block programming for
mobile devices with AppInventor has been reported satisfactory [34], as have Scratch [35]
or unplugged approaches with storytelling such as [36]. Additionally, approaches using
robotics allow the development of preservice teachers CT [37]. However, even though
much has been improved in how to learn and teach CT, the best way to achieve it is still
unclear, even though most of the studies suggest training in programming skills [38].

Due to the high dropout and failure rates among university students, a web application
based on the Problem Analysis and Algorithmic Model (PAAM) was suggested. Results
indicate that male students valued the web application in the programming (1) course more
than female students did [39].

The level of computational thinking and digital competence among Spanish under-
graduate students is compared in [40], and it is shown that there is a correlation between
the two. However, women outperform men in terms of computational thinking. Addi-
tionally, computational thinking was incorporated into the design and application of the
programming subject [41] with a programming course in undergraduate degrees. Results
showed good reliability for Scratch and Tableau, and the use of visual and interactive
programming pedagogies increased the interest of novice and non-technical students in
learning technology [41].

https://www.csforall.org/
https://www.iste.org/explore/Solutions/Computational-thinking-for-all?articleid=152
https://www.iste.org/explore/Solutions/Computational-thinking-for-all?articleid=152
http://advocate.csteachers.org/2014/09/15/computational-think
http://advocate.csteachers.org/2014/09/15/computational-think
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2.3. Visual Execution Environment

The PrimaryCode (https://sites.google.com/view/primarycode-v3-english/inicio?pli=1
(accessed on 24 May 2023)) visual execution environment (VEE) proposed in this paper
utilizes pre-established Java or Scratch programs for each of the proposed lessons. It is
a Java-based application that can be installed on any PC (independently of its operating
system). Using pre-established coding environments, such as this one, prevents syntax
errors, and there is a guide to cover programming concepts incrementally (from easy to
difficult). Such environments make novice programmers feel confident while learning.

According to the Fogg model [42], the three elements designed to change human
behavior are motivation (towards acting either for rewards, recognition, fear, pleasure,
etc.), skill (the difficulty level experienced in carrying out the deed), and the trigger (the
agent that causes the action). This VEE provides for a dynamic where these three elements
converge at the same time, a successful teaching–learning strategy for new concepts, which
in this instance includes those related to an introduction to a programming course.

The Mishra and Koehler TPACK model [43] serves as a foundation for the VEE’s
integration of required knowledge and the creation of a practical tool for teaching pro-
gramming concepts [44]. TPACK identifies the areas in which technology is consistently
incorporated into instruction and the pupil’s learning experience is improved. Three fields
of knowledge converge in this area: content knowledge (programming ideas), pedagogical
knowledge (visualization of the script execution and on the other parts of the PC, such
as the screen, the memory, the files, etc.), and technological knowledge (executing scripts
with Java and Scratch). TPACK is located at the confluence of the three areas, as shown
in Figure 1.
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2.4. AI Recommendation Models

Nowadays, artificial intelligence (AI) is a current trend in many different fields since it
allows decision-making, prediction, and problem-solving [46,47].

For instance, it has been used in physics [48] and in data processing and speech and
image recognition [49], also in medicine to prevent eye diseases [50], smart cities [51], policy-
making [52], healthcare [53], agriculture [54], to learn from the emotional analysis of user
reviews on gadgets bought [55], in computational chemistry [56], image recognition [57],

https://sites.google.com/view/primarycode-v3-english/inicio?pli=1
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language translation [58], in log analysis of student interactions to predict answers to
difficult questions or grade of correctness [46], or to prevent student dropouts [59].

Artificial intelligence (AI) is a breakthrough technology, and in [60], it is suggested
to use program coding scaffoldings to introduce high school students to the foundations
and operation of two of the most well-known AI algorithms. It offers an alternative
perspective on AI by having students work on partial Scratch code while learning about
the computational reasoning that underlies AI processes.

The authors [24] have suggested using an AI with a deep learning recommendation
system to attempt the challenging task of using the learned programming grammar to write
programming code that successfully solves a problem. It was discovered that university
students who participated in the system for teaching programming and computational
thinking outperformed those who did not in terms of learning achievement and compu-
tational thinking. As a result, an AI model can be created using the learning experience
amassed without the requirement for outside data [24]. The authors [24] have recom-
mended using AI with deep learning to attempt the challenging task of using the learned
programming language to develop programming code that successfully solves a problem.

3. Prototype of an AI Recommendation Model

In this study, a Java platform is used for developing the AI recommendation system.
To enable Java scripts to acquire data from TPACK PrimaryCode VEE scripts written in Java,
it is built on Java Learning Agents based on the TensorFlow Java framework, which can run
on any JVM for building, training, and deploying machine learning models [61]. Recurrent
neural networks (RNNs) will be used to model dynamic and sequence data because they
can more precisely learn the characteristics of students and items to produce suggestions
for supervised learning path recommendations (see Figure 2). To improve students’ logic
and application of related programming languages (text with Java or blocks with Scratch),
the TPACK PrimaryCode VEE will combine AI technology to assess its relevance through
the operation process of students and recommend alternative learning tasks for students
who have difficulty understanding or find the learning process incomprehensible.
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The system will provide the following functions to the students as depicted in Figure 2
on the right, which illustrates the functions of the AI system [24]. It contains the following:
(1) Know-How: According to their own learning path, students can select from a variety of
lessons to read; (2) Common term: Provide students with commonly used programming
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language grammar (text or blocks); (3) Exam: Include questions for each instruction that
are pertinent.

The AI system design is depicted in Figure 3, and it is primarily made up of a Java AI
learning system module and a personalized learning module [24]. (1) An AI recommen-
dation function that gives students more practice chances based on their learning process
is included in the AI learning system module. (2) learning materials and lessons, which
offer various AI learning tasks and materials for students to practice screenplay execution
in accordance with the studied learning lessons. The personalized learning module con-
sists of two parts: (1) a learning process that keeps track of how each student learns and
operates; and (2) code hints, where pertinent prompt information is given to the students
in accordance with the assignment.
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4. Research Method

Based on the principles of research-based learning, the didactic research method
for computing education used in this study was created to foster students’ foundational
programming concepts for the development of CT skills. There was a quasi-experimental
pre- and post-testing protocol used. The same evaluation measures were used for both
the pre- and post-tests conducted to assess programming concepts in seven introductory
programming lessons. However, in one group, the concepts were taught using block
programming (Scratch) at the University of Galway, Ireland, while in the other group,
text programming (Java) was utilized at the University Rey Juan Carlos of Madrid, Spain.
After 10 weeks of learning programming in both block and text programming, in both
settings, teachers’ students took a pretest on their initial knowledge. Subsequently, they
utilized the VEE PrimaryCode tool at their own pace for the duration of the learning period.
Following the completion of the programming curriculum, the students took a post-test to
evaluate their progress and understanding. Each test was completed individually by each
student at their respective location. Figure 4 shows the diagram of the experimental design
that followed.

4.1. Pedagogical Approach

The seven lessons corresponding to any introduction to programming course were
grouped under a menu option, which allows coherent sequencing without mixing concepts.
The TPACK PrimaryCode visual execution environment has pre-established programs,
which include prefixed scripts allowing the students to choose from several inputs to
practice incrementally on the scripts corresponding to the suggested lessons. This division
enables the instructor to, if required, use a different sequencing method than the one
suggested. Since some concepts require prior knowledge, it is essential, for example, to
comprehend conditions in order to explain how loops work. Table 1 lists the lessons, topics,
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and number of scripts for each lesson, with an average of 1.5 min per script. The time for
reviewing it all in Java or Scratch is also shown.
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Table 1. Proposal for sequencing topics in the PrimaryCode VEE.

Lesson Number Topic Number of Scripts Reviewing Time

Lesson 1. Input/Output and Variables 5 7.5′

Lesson 2. Conditionals 8 12′

Lesson 3. Loops 18 27′

Lesson 4. Arrays 12 18′

Lesson 5. Files 11 16.5′

Lesson 6. Functions 6 9′

Lesson 7. Recursion 6 9′

Each lesson was meticulously designed with the intention of promoting effective con-
cept assimilation. The instructional approach followed a sequence wherein the execution
of the script was first demonstrated on the left side of the screen. This was followed by a
visual representation on the right side, showcasing various elements such as memory boxes
or trunks, the PC screen, and an array depicted as a fruit box, among others. Furthermore,
the lessons incorporated multiple exercises and scripts, providing students with the oppor-
tunity to engage with different inputs. These inputs were conveniently accessible in the
lower left corner of the screen. Figure 5 shows two examples of script executions in Java,
for conditionals and loops, respectively. In both the script and the visual part, through the
combined interaction with the different inputs, the scripts offer instant feedback, enabling
assimilation and accommodating new ideas in Java (Figure 6) and Scratch (Figure 7).

4.2. Research Participants

The research participants are two cohorts of preservice computer science teachers’
students, totaling 23. One cohort consisted of eight teacher students pursuing a Computer
Science and Mathematics undergraduate degree at the University of Galway, Ireland. Their
primary focus was on teaching Computer Science and Mathematics to secondary students.
This cohort comprised individuals with ages ranging from 20 to 22 years old and Irish
nationality. The second cohort comprised 15 teacher students enrolled in a Master of
Education program at Universidad Rey Juan Carlos in Madrid, Spain. Their specialization
was teaching Computer Science to secondary students. The students in this cohort ranged
in age from 23 to 25 years old and held Spanish nationality. None of the participants in
the experiment had previous experience teaching programming. All were enrolled in a
“Didactics of Computer Science and Technology” course during the first semester of the
academic year 2022–2023.
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Out of the total 23 university students, 8 (34.7%) belonged to the Computer Science and
Mathematics undergraduate degree program at the University of Galway, Ireland, and were
part of the Blocks Group in Scratch. Among these 8 students, there were 4 male students
(50%) and 4 female students (50%). The remaining 15 students (65.2%) were enrolled in the
Master of Education program at Universidad Rey Juan Carlos in Madrid, Spain. They were
part of the text group in Java, focusing on teaching Computer Science to secondary students.
Out of these 15 students, 11 were male (73.3%) and 4 were female (26.7%). The tutor, who
held a Ph.D. in Computer Science and more than 20 years of expertise instructing at the
university level, taught the module to the teachers of both groups of teachers’ students.

The introduction to teaching with the TPACK PrimaryCode VEE was made in the same
manner for the two classes. Both groups of students have previously studied block pro-
gramming with Scratch and text programming with different languages and backgrounds
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(Python, Java, etc.). In addition to the time needed to complete the pre- and post-tests, the
research study was completed in a single 2-h period.
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4.3. Measuring Tool

In this study, two similar questionnaires on programming concepts, but different in ap-
proach (block or test programming), pre- and post-tests were created to evaluate how learn-
ing exercises affected students’ learning outcomes and programming skills. The pre- and
post-test evaluations followed a consistent methodology for both the block/Scratch group
and the text/Java group. Each group was assessed using the same methodology, consisting
of 28 multiple-choice queries related to programming concepts. These concepts were specif-
ically addressed in Table 2 within each paradigm (text or block programming). The total
score for each test was 10 points. Experts with years of programming expertise created and
revised the pre-test and post-test questions. The scoring rubric graded automatically each
question that was answered correctly with 1 point and 0 when it was incorrectly answered.
Moreover, there are links to the tests in Scratch (https://tinyurl.com/4vny5x7p (accessed on
24 May 2023)) and Java (https://docs.google.com/forms/d/e/1FAIpQLSc_MAvOxvgrz9
wTrHbXEdn592t5FVjmhJa3GHl2LwWAYgBHZA/viewform (accessed on 24 May 2023)).

Table 2. Number of questions and concepts addressed on the multiple-choice pre- and post-test.

Lesson Number Number of Questions Concept Addressed

Lesson 1. Input/Output
and Variables 4 Input, output, input, and output

Lesson 2. Conditionals 2 Conditional and switch
Lesson 3. Loops 9 While, do-while, for
Lesson 4. Arrays 3 Search, read, write
Lesson 5. Files 3 Binary and text files
Lesson 6. Functions 4 Parts, return value, inputs
Lesson 7. Recursion 3 Linear and tale recursion

https://tinyurl.com/4vny5x7p
https://docs.google.com/forms/d/e/1FAIpQLSc_MAvOxvgrz9wTrHbXEdn592t5FVjmhJa3GHl2LwWAYgBHZA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc_MAvOxvgrz9wTrHbXEdn592t5FVjmhJa3GHl2LwWAYgBHZA/viewform
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In order to measure the reliability or internal consistency of the test used, Cronbach’s
α value is used [62]. The formula for Cronbach’s α is calculated as follows:

α =
N c

v + (N − 1)c

where N is the number of items in the questionnaire, c is the average covariance between
item pairs, and v is the average variance. Table 3 shows the internal consistency of the test
is acceptable since all values are greater than 0.7.

Table 3. Values of Cronbach’s alpha for Java and Scratch tests.

Cronbach’s Alpha Value

Pre-Test Post-Test

Global 0.781 0.784
Scratch 0.818 0.874

Java 0.808 0.800

4.4. Variables

The dependent variables in pre- and post-tests were related to learning results from
a general point of view and were named Java and Scratch (see Table 4), scaled from 0 to
10. Furthermore, Table 2 provides detailed information on seven new dependent variables
that were introduced to measure different dimensions or lessons. These variables include
input/output, loops, conditionals, functions, arrays, recursion, and files. Each of these
variables corresponds to specific aspects of programming education. Additionally, the
factor “group” is included as a binary variable, representing the utilization of either Scratch
or Java programming languages in the study.

Table 4. Summary of variables, type (DV-dependent variables, IV-independent variable), name,
and description.

Aspect Type Variable Name

Learning programming DV Scratch Scratch
DV Java Java

Learning programming concepts

DV Input/Output I/O
DV Loops Loops
DV Conditionals Condit
DV Functions Function
DV Array Array
DV Recursion Recursion
DV Files File

Methodological factor IV Use of Scratch/Java Group

5. Results

First, the study presents general results about possible differences in the scores using
Java and Scratch. For that, scores in the pre-test and post-test are evaluated.

Second, the possible improvement is focused on the different programming
concepts learned.

5.1. Overall Results

To measure the possible improvement, the differences between the pre-test and post-
test for Java and Scratch are quantified. As a first approximation, Table 5 shows the main
descriptive measures, mean and median, as centralization statistics, and standard deviation
(SD), as scatter statistics, for each of them. As can be seen, both the mean and the median
lower their values from pre-test to post-test in the case of Java (from 6.75 to 6.29 for the
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mean and from 7.24 to 6.55 for the median). The dispersion of the data in the case of
Java remains similar, being, in both cases, very high, so it can be noted that it was a very
heterogeneous group in terms of knowledge in the pre-test. In addition, the intervention
with Java has not reduced this dispersion (there are still subjects with very different levels
of learning). However, in the case of Scratch, the pre-test values are lower than those
of Java (mean 5.56 and median 5.34) but increase in the post-test, becoming 7.49 for the
mean and 7.07 for the median. In addition, an accomplishment observed in the case of
Scratch is that despite the initial wide dispersion of scores in the pre-test (stemming from
a heterogeneous group), the utilization of Scratch for learning purposes has significantly
reduced this dispersion. Although the value in the table shows a slight increase from
1.86 to 1.97, it is important to note that this is influenced by an outlier in the post-test. Due
to the small sample size, the outlier has not been eliminated from the analysis. Thus, it can
be said that a more homogeneous level has been achieved throughout the class.

Table 5. Descriptive analysis in the pre- and post-tests for Java and Scratch.

Pre-Test Post-Test

Java Scratch Java Scratch

Mean 6.75 5.56 6.29 7.49
Median 7.24 5.34 6.55 7.07

SD 1.98 1.86 1.96 1.97

Figure 8 shows box plots for the Java and Scratch groups, visually confirming what
was said above.
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Now, let us see if these differences between the post-test and pre-test (negative in the
case of Java and positive in the case of Scratch) are statistically significant. For this, and
since the sample is small and lacks normality (p < 0.01 in the Shapiro–Wilk test for both
samples), we will use non-parametric tests.

The Wilcoxon signed-rank test for paired samples is used, as it is the most powerful
for this type of data. Z is the test statistic.

As can be seen in Table 6, in the case of Java, the p-value is non-significant (p-value > 0.05),
so it can be concluded that there is no significant difference. In the case of Scratch, this
p-value is significant (p-value = 0.012), so it can be concluded that, in the case of Scratch,
there is a significant improvement.
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Table 6. A non-parametric test (Wilcoxon test) for pre- and post-tests in the Java and Scratch groups.

Pre-Post Java Pre-Post Scratch

Z −0.882 −2.524
p-value 0.372 0.012

5.2. Results by Programming Concepts

The study now focuses on studying the possible gains in scores by concepts (Table 6).
The descriptive analysis presented in Table 7 reveals some noteworthy findings. Specifically,
in the Java group, the centralization statistics such as mean and median exhibit a decrease in
their value across various dimensions, except for I/O, where the values remain consistent.
Additionally, there is a slight increase in the file dimension. The dispersion, on the other
hand, does not have a fixed pattern, increasing or decreasing depending on the concept.

Table 7. Descriptive analysis of the sample by concepts.

Pre-Test Post-Test

Java Scratch Java Scratch

Mean 9.16 5.93 9.16 7.81
I/O Median 10 7.50 10 7.50

SD 1.81 2.29 1.21 1.6

Mean 6.44 4.16 5.70 6.25
Loop Median 7.78 3.88 5.56 6.11

SD 3.31 1.76 2.94 2.14

Mean 9.33 9.37 10 10
Condition Median 10 10 10 10

SD 2.58 1.77 0 0

Mean 6.50 6.87 6 8.75
Function Median 7.50 7.50 7.50 8.75

SD 2.46 3.20 2.46 1.33

Mean 7.77 5 6.22 5.41
Array Median 10 5 6.67 5

SD 3.01 3.08 3.31 3.53

Mean 4.89 3.33 4 4.58
Recursion Median 6.67 3.33 3.33 3.30

SD 3.53 3.08 3.14 3.05

Mean 6.22 4.58 6.66 5.41
File Median 6.67 5 6.67 6.67

SD 3.39 4.34 3.56 2.48

In the case of the Scratch group, the mean and median increase in all cases, especially
in files, loops, and functions. The standard deviation has similar behavior in the Scratch
group. Figure 9 visually represents these results, highlighting, in this case, the median, the
measure of centralization chosen due to the asymmetry of the data.

Table 8 shows which of these changes between the pre-test and post-test of the Java
and Scratch groups are statistically significant. Thus, using the non-parametric test based
on a Wilcoxon test, it can be verified that only in the Scratch group, for the Loop concept,
the improvement is statistically significant.
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Table 8. Wilcoxon test between pre- and post-tests in the Java and Scratch groups.

Java Scratch

Z p-Value Z p-Value

I/O 0.000 1.000 −1.511 0.131
Loop −0.669 0.504 −2.388 0.017

Condition −1.000 0.317 −1.000 0.317
Function −0.542 0.588 −1.667 0.096

Array −1.196 0.232 −0.322 0.748
Recurs −1.192 0.233 −0.736 0.461

File −0.135 0.892 0.461 0.398

6. Discussion

Due to its ability to facilitate decision-making, prediction, and problem-solving, AI is
currently a popular trend in a wide range of industries [45,46]. For instance, it has been
applied to physics [47], data processing, speech, and image recognition [48], medicine to
prevent eye diseases [49], smart cities [50], policy-making, healthcare [52], agriculture [53],
learning from the emotional analysis of user reviews on gadgets purchased [54], computa-
tional chemistry [55], image recognition [56], language translation [57], and log analysis of
student interactions to predict answers to challenging questions [58].

It is advised in [59] to use program coding scaffolding to introduce high school pupils
to the principles and workings of two of the most well-known AI algorithms. AI is a
ground-breaking technology, and letting students work on incomplete Scratch code while
learning about the computational reasoning that forms the basis of AI processes provides
a different viewpoint on AI. Other studies [24] have suggested using an AI with a deep
learning recommendation system to attempt the challenging task of using the learned
programming grammar to write programming code that successfully solves a problem.
It was discovered that university students who participated in the system for teaching
programming and computational thinking outperformed those who did not in terms of
learning achievement and computational thinking.

As stated before, most studies applied AI to the analysis of data results. In this
paper, the authors propose a model for AI recommendation to enhance the learning of
programming and improve CT skills among secondary education students. The model
is based on the data results of the use of the TPACK PrimaryCode VEE with their pre-
service teachers. This study investigates two approaches: block programming and text
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programming, implemented in two universities, one in Ireland and one in Spain. It is
acknowledged as a limitation of the study that the number of preservice teachers’ students
is small, totaling 23 participants. Another limitation is the absence of secondary education
students, who are the primary target of the AI recommendation model aimed at enhancing
CT. These limitations will be addressed in future research endeavors to ensure a more
comprehensive investigation.

7. Conclusions

The findings of this study, carried out with 23 preservice Computer Science teachers,
provide positive confirmation of the formulated hypothesis (H): The results demonstrate
that it is indeed feasible to develop an artificial intelligence recommendation model that
suggests the optimal sequence of programming concepts and offers tailored assistance
to students. This model utilizes a VEE with either a text programming language or a
block-based programming approach. The ultimate objective is to introduce programming
concepts to secondary education students and enhance their CT skills, building upon the
performance of their prospective teachers. This paper introduces a proposition for the
integration of an AI recommendation model into the VEE to enhance the development of
CT among secondary education students. The AI system module offers several functions,
including: (1) Know-How: According to their own learning path, students can select from
a variety of lessons to read; (2) Common term: Provide students with commonly used
programming language gram-mar (text or blocks); (3) Exam: Include questions for each
instruction that are pertinent. Additionally, this study proposes a personalized learning
module: (1) An AI recommendation function that gives students more practice chances
based on their learning process is included in the AI learning system module. (2) learning
materials and lessons, which offer various AI learning tasks and materials for students
to practice screenplay execution in accordance with the studied learning lessons. The
personalized learning module consists of two parts: (1) a learning process that keeps track
of how each student learns and operates; and (2) code hints, where pertinent prompt
information is given to the students in accordance with the assignment. Based on this
hypothesis, there were four research questions:

The first one (RQ1) was: did preservice teacher students significantly improve their
understanding of programming concepts to foster their CT when using the VEE Prima-
ryCode with a text programming language (Java)? The dispersion of the data in the case of
Java remains similar, being, in both cases, very high, so it can be noted that it was a very
heterogeneous group in terms of knowledge in the pre-test. In addition, the intervention
with Java has not reduced this dispersion (there are still subjects with very different levels
of learning). Additionally, in the case of Java, the p-value is non-significant (p-value > 0.05),
so it can be concluded that there is no significant difference.

The second one (RQ2) was: did preservice teacher students significantly improve
their understanding of programming concepts to improve their CT when using the VEE
PrimaryCode with block programming (Scratch)? In the case of Scratch, the pre-test values
are lower than those of Java but increase in the post-test for the mean and the median.
In addition, an important achievement observed in the case of Scratch is the significant
reduction in the dispersion of scores among students. Initially, the pre-test scores exhibited
considerable variation due to the heterogeneous nature of the group. However, as the
students engaged in learning through the Scratch platform, this dispersion was greatly
reduced. Thus, it can be said that a more homogeneous level has been achieved throughout
the class. In the case of Scratch, this p-value is significant (p-value = 0.012), so it can be
concluded that, in the case of Scratch, there is a significant improvement.

Thus, the AI recommendation system should include more learning aids (more practice
chances, learning materials, and lesson code hints) for students on the text programming
side than on the block programming side.

The third one (RQ3) was: If RQ1 is affirmative, were some concepts easier or better
understood than others, and therefore should an AI recommendation model suggest the
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order and provide aids ad hoc to introduce them when using a text language to perform
it, or maybe extra help is needed? RQ1 was not affirmative; therefore, in almost all the
concepts, the values decrease; only in the case of input/output are the values maintained,
and in the case of files, they increase slightly. Therefore, as before, the AI recommendation
system should include extensive aid in almost all programming concepts.

The fourth one (RQ4) was: If RQ2 is affirmative, were some concepts easier or better
understood than others, and therefore should an AI recommendation model suggest the
order and provide aids ad hoc to introduce them when using a block-based language to
perform it, or maybe extra help is needed? In the case of the Scratch group, the mean
and median increased in all cases, which means they improved in their learning of all
programming concepts, but especially files, loops, and functions. Thus, it can be verified
that only in the Scratch group, for the Loop concept, the improvement is statistically
significant. Therefore, even if there are improvements in all the programming concepts, it
is only statistically significant for loops in the Scratch group; thus, the AI recommendation
system should include extensive aid in all the concepts, but probably for loops and, more
importantly, according to the experimentation results, in recursion and arrays, where the
improvement is smaller.

Further work should encompass a broader evaluation of the study’s final target, which
pertains to secondary students seeking to improve their CT abilities. Additionally, efforts
should be made to validate the proposed AI recommendation model using a diverse cohort
of secondary students from different countries. This comprehensive analysis would enable
the identification and examination of strengths and weaknesses among the students. The
AI recommendation model included on the TPACK VEE PrimaryCode will be offered to
the community for free to be installed on any JVM, as it is now for this version.
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