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Abstract: Commonly, regression for time series imputation has been implemented directly through
regression models, statistical, machine learning, and deep learning techniques. In this work, a novel
approach is proposed based on a classification model that determines the NA value class, and from
this, two types of interpolations are implemented: polynomial or flipped polynomial. An hourly
pm2.5 time series from Ilo City in southern Peru was chosen as a study case. The results obtained
show that for gaps of one NA value, the proposal in most cases presents superior results to techniques
such as ARIMA, LSTM, BiLSTM, GRU, and BiGRU; thus, on average, in terms of R2, the proposal
exceeds implemented benchmark models by between 2.4341% and 19.96%. Finally, supported by the
results, it can be stated that the proposal constitutes a good alternative for short-gaps imputation in
pm2.5 time series.

Keywords: time series imputation; classification; deep learning; polynomial interpolation; flipped
polynomial interpolation

1. Introduction

Time series forecasting is one of the most active research topics [1] in machine learning
and deep learning; it is used in different domains such as biology, finance, meteorology,
and social sciences [2], among others.

Missing values in time series is a common problem [2], and many machine and deep
learning techniques do not work with missing data [3], so time series imputation becomes
a very important task. It is also very important to mention that the quality of data for
time series forecasting is very important [4], hence the importance of a good time series
imputation process.

In this work, a novel approach for time series imputation is proposed, which combines
a math technique with a deep learning one. The imputation problem is approached as a
classification problem, and the proposal uses a classification model to determine the class
of NA value, and from the class, an interpolation technique is implemented. The main
motivation stems from the analysis of different short gaps of NA values in time series,
where it was possible to identify two classes. The first, according to Figure 1a, comprises the
NA values whose real values fit better to a polynomial interpolation. The second, according
to Figure 1b, comprises the NA values whose real values fit better to a flipped polynomial
interpolation. As can be seen in Figure 1, the NA value can be located above or below the
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line that joins the prior value (p0) with the next value (n0). Depending on the preceding
values p1, p0 and following n0, n1, and derivatives, the NA value could be estimated
more accurately with polynomial interpolation or flipped polynomial interpolation. The
classification model was trained with 12 features, including the aforementioned p1, p0, n0,
and n1, adding p2 and n2 and other derivatives of them that are described in detail in the
Section 3 of this work.
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Figure 1. Types of NA values. (a) Class 0 and (b) class 1.

The study case selected to validate the novel approach corresponds to hourly pm2.5
time series obtained from an environmental monitoring station in Ilo City in southern
Peru. The study case was chosen due to the importance of the analysis of the pm2.5 time
series since, as is known, long-term exposure to pm2.5 can cause diverse health issues,
including heart disease [5], lung cancer [6], chronic obstructive pulmonary disease [7],
lower respiratory infections (LRIs) [8], ischemic stroke [9], diabetes mellitus [10], and
others. However, the pm2.5 time series presents NA values due to multiple factors such as
equipment failure [11], power outages, etc., as occurs with the data from the monitoring
station chosen. Therefore, the importance of implementing imputation techniques in order
to recover lost data and made it available for the implementation of forecasting models.

The novel approach was compared with other state-of-the-art models for time series
imputation, such as long short-term memory (LSTM) [12], bidirectional LSTM [13], gated
recurrent unit (GRU) [14], bidirectional GRU, ARIMA, local average of nearest neighbors
(LANN) [15], and polynomial interpolation.

The main contributions of this work are cited next:

- A novel approach for pm2.5 time series imputation based on deep learning classification;
- An ensemble deep learning model for NA values classification;
- A comparative analysis between the proposal approach versus benchmark models.

The main limitations of this work are as follows: It is only focused on the analysis of
short gaps, gives NA sequences of a single value in pm2.5 time series, and the interpolations
are performed considering only four values: p1, p0, n0, and n1.

The rest of the paper is organized in Section 2 that briefly describes the work performed
for pm2.5 time series imputation; Section 3, where the complete process for implementation
of the proposal is described; and Section 4, where the achieved results are described and
discussed according to the pros and cons of proposal results. The paper ends with Section 5.
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2. Related Work

Some works for pm2.5 time series imputation where the use of machine learning and
deep learning techniques were proposed are listed below in chronological order.

Xiao et al., 2018 [16] proposed an ensemble model for pm2.5 time series imputation.
The proposal presents superior results to models such as random forest (RF), extreme
gradient boosting (XGBoosting), and the generalized additive model (GAM). Yuan et al.,
2018 [17] proposed the RNN long short-term memory (LSTM) for the imputation process
and compared this technique with two classic techniques: moving average and mean impu-
tation. The results show the enormous superiority of LSTM over the other two techniques.

Belachsen et al., 2022 [18] proposed a multivariate KNN technique for half-hourly
pm2.5 time series reaching an NMAE between 0.21 and 0.26. Saif-ul-Allah et al., 2022 [19]
proposed the recurrent neural network known as GRU, reaching an RMSE of 10.60 ug/m3

and surpassing other models such as SVM, LSTM, and BiLSTM. Alkabbani et al., 2022 [20]
proposed a multivariate random forest model for pm2.5 time series imputation, and the
results were compared only with linear interpolation, showing that random forest achieves
the best RMSE (3.756 ug/m3).

Yldz et al., 2022 [21] proposed a transformer model for multivariate time series impu-
tation; they experimented with air quality (pm2.5) and healthcare time series. For pm2.5,
they worked with hourly data of 12 months, obtaining a MAE = 8.31 ug/m3 that exceeded
those obtained by benchmark models such as BRITS, RDIS, V-RIN, etc.

Lee et al., 2023 [22] proposed four machine learning models, namely GAIN, FCDNN,
random forest, and KNN, and the best results were obtained with the GAIN model with
R2 = 0.895.

Reviewing other related works for time series imputation, in general, it can be noted
that these address techniques ranging from moving averages: simple moving average
(SMA), linear weighted moving average (LWMA), exponential weighted moving average
(EWMA), and interpolation techniques (linear, spline, and Stinneman), all generally im-
plemented in the imputeTS library [2,18] of R. On the other hand, there were also deep
learning-based ones, including LSTM [23,24], GRU [25], and GAN [26] and some variants
such as BRITS [27], GRU-D [28], and B-CIPIT [29].

The main difference between the related works and the proposal is that these works to
estimate NA values generally apply a regression model in some cases associated with a
time series transformation. In our model, at the beginning, NA features were extracted and
labeled; then, features were normalized; next, a time series classification task with deep
learning models was performed, followed by the implementation of an ensemble model;
finally the class of an NA value was estimated, and from this, the proper polynomial
interpolation was performed to obtain the estimated NA value. Figure 2 summarizes
this process.
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3. Materials and Methods

The methodology used for the implementation of proposal approach is summarized
in Figure 3.
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3.1. Data Preparation

The hourly data used for this work were downloaded from OEFA’s server located at
http://fiscamb.oefa.gob.pe/vig_amb/ accessed on 2 May 2023, and they oscillate between
1 August 2020 and 30 April 2023, corresponding to the Pacocha environmental monitoring
station located at Ilo Province and Pacocha District in southern Peru. The downloaded
data present several missing values, so the days that presented some missing values were
discarded. After this process, the total available records numbered 56,424. As it is a
regression problem, the dataset was just split into two sets (training and test) [30]. For
training, 48,792 records were used (80%), and 7632 records were used for testing (20%).
Figure 4 shows a sample of 1000 h of the selected time series. Data normalization was
performed for extracted features during the implementation of classification models; it is
described in Section 3.2.3.

3.2. Implementation of Classification Models

For classification models, the dataset was split into three sets: training, validation,
and test. For the proposal, from 48,792 records corresponding to the training data, 70%
was used for training, 10% for validation, and the remaining 20% was used for testing the
classification models.

Therefore, at this stage, the first task we performed corresponds to feature extraction
and labeling of NA values, which is described below.

3.2.1. Feature Extraction and Labelling

The features that were extracted from the time series are described in Table 1.
The motivation to use the described features for NA values classification was the

method by which moving averages techniques work: they use a parameter k that corre-
sponds to the window size. The window size tells the technique how many values before
and after the NA value should be used for the corresponding estimation; thus, p2, p1, p0,
n0, n1, and n2 were obtained considering a window size k = 3. For future work, higher

http://fiscamb.oefa.gob.pe/vig_amb/
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values could be used. The rest of the features were derived or synthetic; that is, they were
generated to provide more information for model training.
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Table 1. Features for NA values.

Feature Description

p0 Prior value to NA
p1 Before p0
p2 Before p1
n0 Next value of NA
n1 After n0
n2 After n1

mid Mean between prior (p0) and next value (n0)
mid1 Mean between prior values (p1) and next value (p0)
mid2 Mean between next values (n0) and next value (n1)
diff Difference between prior and next values

slope1 Slope between p1 and p0
slope2 Slope between n0 and n1

label
Class of NA value.

0, corresponding to polynomial interpolation
1, corresponding to flipped polynomial interpolation.

Given a t time series, the features shown in Table 1 were extracted using the algorithm
shown in Figure 5.

The algorithm shown in Figure 5 received as an argument a time series t, which was
traversed from beginning to end. As can be seen, the feature extraction was quite simple:
p2, p1, p0, n0, n2, and n2 were estimated from the position of the NA value; mid, mid1, and
mid2 are averages of p1, p0, n0, and n1; diff, slope1, and slope2 are the differences between
p1, p0, n0, and n1. However, the estimation of the class or label is somewhat complex, and
it requires that certain conditions be met; these conditions are detailed in Table 2.

3.2.2. Feature Selection

For this task, a correlation matrix was implemented, which can be seen in Figure 6.
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According to the last row or last column of the correlation matrix, the relationship
between the input features and the target feature was not strong; thus, it would not be easy
to obtain good results in terms of accuracy, precision, recall, and f1-score. In this work, it
was decided to use all the input features for classification models.
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Table 2. Conditions for NA classes.

Class Conditions

0 (polynomial interpolation)

According to Figure 1a, the conditions to apply
polynomial interpolation are two cases:
Case 1: When na is below the line (p0 to n0), it can be
stated through the next conditions:

na ≤mid
p1 ≥ p0

Case 2: When na is above the line (p0 to n0). The two
conditions to be met are:

na > mid
p0 > p1

1 (flipped polynomial interpolation)

According to Figure 1b, the conditions to apply flipped
polynomial interpolation are two:
Case 1: When na is below the line (p0 to n0), it can be
stated through the next conditions:

na < mid
p1 < p0

Case 2: When na is above the line (p0 to n0). The two
conditions to be met are:

na > mid
p0 ≤ p1
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3.2.3. Normalization

Before the implementation of deep learning models, normalization is very important
in order to ensure their faster convergence. In this study, z-score normalization was used; it
can be implemented through Equation (1).

X′ =
x− −x
σ

(1)

where

x′: normalized vector;
x: original feature vector;
−
x: mean of the feature vector;
σ: standard deviation of the feature vector.

3.2.4. Deep Learning Classification Models

In this stage, four deep learning models were implemented, including deep neural
networks (DNN), convolutional neural networks (DNN), long short-term memory (LSTM),
and gated recurrent unit (GRU), whose architectures are described in Table 3.

Table 3. Architectures of deep learning classification models.

Model Hyperparameters

DNN (0, 20, 40, 10, 1), learning_rate: 0.0001, dropout_rate (0.1)
CNN (20, 50, 10, 1), learning_rate: 0.0001, dropout_rate (0.1)
LSTM (30, 30, 30, 1), learning_rate: 0.0001, dropout_rate (0.1)
GRU (30, 30, 30, 1), learning_rate: 0.0001, dropout_rate (0.1)

According to Table 3, all classification models use a learning rate of 0.0001 and dropout
rates of 0.1 after all layers except the output layer. The DNN presents an architecture with a
greater number of layers than the other models, all with relu as the activation function with
10 neurons in the input layer; 20, 40, and 10 in the hidden layers; and 1 neuron in the output
layer with sigmoid the as activation function. Regarding the CNN model, it presents its
first two Conv1-type layers with relu as activation function, followed by a MaxPooling1D
layer with pool_size = 2, then a dense layer of 10 neurons, and, finally, a dense layer with 1
neuron. The LSTM and GRU RNNs present identical architectures: one input layer with
30 neurons, two hidden layers with 30 neurons each, and an output layer of 1 neuron.

All models were compiled with Adam as optimizer, loss function: binary_crossentropy,
200 epochs, and batch_size = 1000. Jupyter and Tensorflow 2.9.0 were used.

3.2.5. Evaluation

The results of the classification models based on deep learning are shown in Table 4.
These are described in terms of accuracy (2), precision (3), recall (4), and f1-score (5).

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

f1− score =
2 ∗ Precision ∗ Recall
(Precision + Recall)

(5)
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Table 4. Results of deep learning classification models.

Model Accuracy Recall Precision F1-Score

DNN 0.5972 0.3083 0.5891 0.4048
CNN 0.5912 0.4223 0.5522 0.4786
LSTM 0.5859 0.3644 0.5513 0.4388
GRU 0.5859 0.4046 0.5458 0.4647

Once the classification models were compiled, they were evaluated in test data. The
respective confusion matrices are shown in Figure 7.

Computers 2023, 12, x FOR PEER REVIEW 9 of 21 
 

Table 3. Architectures of deep learning classification models. 

Model Hyperparameters 

DNN (0, 20, 40, 10, 1), learning_rate: 0.0001, dropout_rate (0.1) 

CNN (20, 50, 10, 1), learning_rate: 0.0001, dropout_rate (0.1) 

LSTM (30, 30, 30, 1), learning_rate: 0.0001, dropout_rate (0.1) 

GRU (30, 30, 30, 1), learning_rate: 0.0001, dropout_rate (0.1) 

According to Table 3, all classification models use a learning rate of 0.0001 and drop-

out rates of 0.1 after all layers except the output layer. The DNN presents an architecture 

with a greater number of layers than the other models, all with relu as the activation func-

tion with 10 neurons in the input layer; 20, 40, and 10 in the hidden layers; and 1 neuron 

in the output layer with sigmoid the as activation function. Regarding the CNN model, it 

presents its first two Conv1-type layers with relu as activation function, followed by a 

MaxPooling1D layer with pool_size = 2, then a dense layer of 10 neurons, and, finally, a 

dense layer with 1 neuron. The LSTM and GRU RNNs present identical architectures: one 

input layer with 30 neurons, two hidden layers with 30 neurons each, and an output layer 

of 1 neuron. 

All models were compiled with Adam as optimizer, loss function: binary_crossen-

tropy, 200 epochs, and batch_size = 1000. Jupyter and Tensorflow 2.9.0 were used. 

3.2.5. Evaluation 

The results of the classification models based on deep learning are shown in Table 4. 

These are described in terms of accuracy (2), precision (3), recall (4), and f1-score (5). 

Accuracy =
TP + TN

TP + FP + TN + FN
 (2) 

Precision =
TP

TP + FP
 (3) 

Recall =
TP

TP + FN
 (4) 

f1 − score =
2 ∗ Precision ∗ Recall

(Precision + Recall)
 (5) 

Once the classification models were compiled, they were evaluated in test data. The 

respective confusion matrices are shown in Figure 7. 

 
(a) 

 
(b) 

Computers 2023, 12, x FOR PEER REVIEW 10 of 21 
 

 
(c) 

 
(d) 

Figure 7. Confusion matrices of implemented classification models. (a) DNN, (b) CNN, (c) LSTM, 

and (d) GRU. 

From the confusion matrices and Equations (2) and (5)–(7), the metrics shown in Ta-

ble 4 were estimated. 

Table 4. Results of deep learning classification models. 

Model Accuracy Recall Precision F1-Score 

DNN 0.5972 0.3083 0.5891 0.4048 

CNN 0.5912 0.4223 0.5522 0.4786 

LSTM 0.5859 0.3644 0.5513 0.4388 

GRU 0.5859 0.4046 0.5458 0.4647 

According to Table 4 and Figure 7, it can be seen that the results of the classification 

models are not good, and it can be seen that the main difficulty presented by the imple-

mented models is the low capacity to detect true positives (NAs of class 1); this is reflected 

in the recall below 43% and f1-score below 48%. 

In order to improve the results, the strategy of implementing an ensemble model 

based on average was used. For this, it was experimented by assembling all the models 

and combinations of three models. Figure 8 shows the respective ROC curves, and as it 

can be seen, the ensemble model based on DNN, CNN, and LSTM presented the best area 

under the curve (AUC of 0.611), which is why this ensemble model was chosen for the 

imputation process. In terms of accuracy, recall, precision, and f1-score, the ensemble 

model reached 0.5859, 0.4045, 0.5457, and 0.4647, respectively. 

Figure 7. Confusion matrices of implemented classification models. (a) DNN, (b) CNN, (c) LSTM,
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From the confusion matrices and Equations (2) and (5)–(7), the metrics shown in
Table 4 were estimated.

According to Table 4 and Figure 7, it can be seen that the results of the classification
models are not good, and it can be seen that the main difficulty presented by the imple-
mented models is the low capacity to detect true positives (NAs of class 1); this is reflected
in the recall below 43% and f1-score below 48%.

In order to improve the results, the strategy of implementing an ensemble model
based on average was used. For this, it was experimented by assembling all the models and
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combinations of three models. Figure 8 shows the respective ROC curves, and as it can be
seen, the ensemble model based on DNN, CNN, and LSTM presented the best area under
the curve (AUC of 0.611), which is why this ensemble model was chosen for the imputation
process. In terms of accuracy, recall, precision, and f1-score, the ensemble model reached
0.5859, 0.4045, 0.5457, and 0.4647, respectively.
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3.3. Imputation of NA Values

Once the classification model for NA class estimation was obtained, the pm2.5 time
series imputation process using the proposal was as described below.

3.3.1. Generation of NA Values in Test Data

NA values were generated considering gaps of a single NA value. Three different sets
of NA values were implemented: 19.98% (1525 items), 25.00% (1907 items), and 33.32%
(2543 items).

The NA values insertion mechanism was quite simple: to achieve 19.98% of NA values,
one NA value was inserted into the test data every four items. To achieve 25.00%, NA
values were inserted every three items, and to achieve 33.32%, NA values were inserted
every two items. In this way, for each set, it was possible to obtain different amounts and
configurations for the NA values. The partial result of this process can be visualized in
Figure 9.
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3.3.2. Class Estimation for NA Values

To estimate the class of each NA value in every NA set, a Python function was created.
The .h5 files correspond to DNN, CNN, and LSTM models that are part of the selected

ensemble model to estimate the classes of NA values. The Python function getClass receives
as the input parameter the characteristics of all NA values to be estimated, and then, it
returns the classes to which they correspond. Figure 10 shows such a function.
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3.3.3. Interpolation according to Class Estimation

For polynomial interpolation, the first step is to determine the coefficients of the
polynomial function; for this, there are various techniques, including the Lagrange method,
which is described below.

Given the n points (x0, y0), . . ., (xn−1, yn−1), the Lagrange polynomial is estimated
through Equation (6).

p(x) = ∑n−1
i=0 yi

∏j 6=i
(
x− xj

)
∏j 6=i

(
xi − xj

) (6)

From (6), the coefficients are obtained, and the polynomial function can be imple-
mented, and from it, any point can be estimated, in this case, the point corresponding to
the NA value. The polynomial function is similar to what is shown in Equation (7).

p(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1 (7)

The algorithm that implements the interpolations according to the estimated class is
shown in Figure 11.

According to Figure 10, the getNA procedure for NA estimation receives as parameters
the NA class and the vector y that contains the four values to be used by polynomial
interpolation: p1, p0, n0, and n1. The p0 and n0 are interpolated, and mid is obtained; then,
the coefficients of the polynomial function are obtained for the four values in y, and for this,
a polynomial procedure is used (See Figure 12). With the polynomial obtained, the value in
position 1.5 is estimated, which corresponds to the NA value according to Figure 1; for this,
the procedure interpolate is used (see Figure 13), and for na, this is the final result for NA
values of class 0. For the case of NA values of class 1, the na value is flipped; for this, the
absolute distance d between the na value and mid is determined, and depending on the
location of the na value according to mid, d is subtracted or added.
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The polynomial procedure receives as parameters the number of points (points) and
the vectors of values in x (Xs) and y (Ys). With these data, according to Equation (6), for
each point, Equation (8) is estimated, and from this, Equation (9) must be estimated.

temp =
yi

∏j 6=i
(
xi − xj

) (8)

term = temp ∗
(
∏
j 6=i

(
x− xj

))
(9)

Between lines 9 and 19 of the algorithm, Equation (8) is estimated, and Equation (9) is
estimated between lines 20 and 29. The last part of the algorithm generates the coefficients
of the polynomial function.

The interpolate procedure algorithm receives as parameters the coefficients of the
polynomial (poly) and the position of the value to be estimated (v = x = 1.5), which in
this case corresponds to the position of the NA value, and from this, Equation (7) is
implemented.

The source code of the proposal can be downloaded from the next link: https://drive.
google.com/drive/folders/1qL-k80rXqjFVmi-4fubg6nFvQbj3-Xq6?usp=drive_link accessed
on 2 August 2023.

3.4. Implementation of Benchmark Models

Seven benchmark models were implemented in order to compare the proposal perfor-
mance; these models include polynomial interpolation, LANN, ARIMA, long short-term
memory (LSTM), bidirectional LSTM, gated recurrent unit (GRU), and bidirectional GRU.

Polynomial interpolation and ARIMA were implemented in R language using the
imputeTS library. For ARIMA, the auto.arima model was used.

Deep regression models were implemented in Python using tensorflow 2.9.0, and the
hyperparameters can be seen in Table 5.

Table 5. Hyperparameters for deep regression models.

Model Hyperparameters

LSTM architecture: [40, 30, 30, 40, 1], dropout_rate: 0.2
BiLSTM architecture: [30, 30, 30, 1], dropout_rate: 0.1

GRU architecture: [40, 30, 30, 40, 1], dropout_rate: 0.1
BiGRU architecture: [30, 30, 30, 1], dropout_rate: 0.1

All deep regression models use Adam as the optimizer, mean standard error (mse) as
the loss function, and 0.001 as learning rate. Also, the number of epochs used was 100, and
the batch_size was 100, too. Finally, all layers used relu as the activation function except
the output one-neuron layer, which used sigmoid as the activation function.

https://drive.google.com/drive/folders/1qL-k80rXqjFVmi-4fubg6nFvQbj3-Xq6?usp=drive_link
https://drive.google.com/drive/folders/1qL-k80rXqjFVmi-4fubg6nFvQbj3-Xq6?usp=drive_link
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3.5. Evaluation

The proposal is evaluated in terms of root mean squared error (RMSE), mean absolute
percentage error (MAPE), and R2, which are implemented through Equations (10)–(12)

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(10)

MAPE =
1
n∑n

i=1

∣∣∣∣ (Oi − Pi)

Oi
∗ 100

∣∣∣∣ (11)

R2 = 1−
( n

∑
i=1

(
Oi − Pi

)2
/ n

∑
i=1

(
Oi −

−
O
)2) (12)

where

n: Number of observed/predicted values;
Pi: Vector of predicted values;
Oi: Vector of observed values;
−
O: Mean of observed values.

4. Results and Discussion

This section describes the results achieved by the proposal, comparing them with
other models in the literature.

4.1. Results

The results achieved by the proposal are described below; likewise, these are compared
with other techniques and models of the literature and the state of the art.

According to Table 6 and Figure 14a, it can be seen that, in terms of RMSE, the lowest
error was reached by the proposal in one of the three NA sets; it was the best in the third
NA set (33.32%) with 6.8134 ug/m3. For the first NA set (19.98%), the best technique was
ARIMA with RMSE = 6.7654 ug/m3, followed by LANN with RMSE = 6.8123 ug/m3,
and with the proposal with RMSE = 6.9148 ug/m3 in third place. For the second NA
set (25.00%), the best technique was LANN with RMSE = 6.7088 ug/m3, followed by the
proposal with RMSE = 6.7137 ug/m3, and with polynomial interpolation in third place
with RMSE = 6.7912 ug/m3.

Table 6. RMSEs of implemented models.

Model 19.98% NAs 25.00% NAs 33.32% NAs Avg

Polynomial Interpolation 6.9916 6.7912 6.9028 6.8852 ± 0.0866
ARIMA 6.7654 7.0014 7.2092 6.9920 ± 0.2220
LANN 6.8123 6.7088 6.8150 6.7787 ± 0.0606
LSTM 7.7294 8.5795 9.0225 8.4438 ± 0.6571

BiLSTM 7.6487 9.9728 10.2524 9.2913 ± 1.4294
GRU 8.1990 8.0098 9.3725 8.5271 ± 0.7382

BiGRU 7.6487 9.8169 8.5198 8.6618 ± 1.0910
Proposal 6.9148 6.7136 6.8134 6.8139 ± 0.1005

In terms of MAPE, according to Table 7 and Figure 14b, in all sets of NAs, the polyno-
mial interpolation model presented the best results, surpassing all implemented models,
including the proposal. For the first NA set (19.98%), LANN was in second place with
MAPE = 21.9548, and the proposal was in third place with MAPE = 22.0901. For the second
NA set, (25.00%), the proposal was in second place with MAPE = 21.0242%, and in third
place was LANN with MAPE = 21.0718. For the third NA set (33.32%), LANN was in
second place with MAPE = 21.1710, followed by the proposal with MAPE = 21.1758.
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Table 7. MAPEs of implemented models.

Model 19.98% NAs 25.00% NAs 33.32% NAs Avg

Polynomial interpolation 21.9339 20.9743 21.0103 21.3061 ± 0.5439
ARIMA 23.4291 24.1574 24.8961 24.1609 ± 0.7335
LANN 21.9548 21.0718 21.1710 21.3992 ± 0.4837
LSTM 26.5726 25.3866 25.6597 25.8730 ± 0.6211

BiLSTM 25.9940 28.1648 27.7320 27.2970 ± 1.1489
GRU 26.4241 24.9054 26.2472 25.8589 ± 0.8305

BiGRU 25.9940 25.5355 25.1984 25.5760 ± 0.3993
Proposal 22.0902 21.0242 21.1759 21.4301 ± 0.5767

In terms of R2, according to Table 8 and Figure 14c, the proposal model outperformed
all benchmark models in two of three NA sets. In the first NA set (19.98%), LANN was
the best with R2 = 0.6911, followed by the proposal and polynomial interpolation with
0.6879 and 0.6861, respectively. In the second NA set (25.00%), the proposal was the best
with R2 = 0.6941, followed by LANN and polynomial interpolation with 0.6916 and 0.6859,
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respectively. Finally, in the third NA set, the proposal was also the best with R2 = 0.7072,
followed by LANN and polynomial interpolation with 0.7062 and 0.7018, respectively.

Table 8. R2s of implemented models.

Model 19.98% NAs 25.00% NAs 33.32% NAs Avg

Polynomial interpolation 0.6862 0.6896 0.7019 0.6925 ± 0.0083
ARIMA 0.6877 0.6590 0.6721 0.6721 ± 0.0097
LANN 0.6911 0.6916 0.7063 0.6963 ± 0.0087
LSTM 0.5857 0.4950 0.4935 0.5248 ±0.0527

BiLSTM 0.5964 0.4344 0.4596 0.4968 ± 0.0872
GRU 0.5545 0.5524 0.4857 0.5309 ± 0.0391

BiGRU 0.5964 0.4519 0.5495 0.5326 ± 0.0737
Proposal 0.6880 0.6941 0.7072 0.6964 ± 0.0098

On average, according to the above, there is a notable difference between the proposal
and the benchmarks models based on deep learning, such as LSTM, BiLSTM, GRU, and
BiGRU; in terms of RMSE, the difference is between 1.6298 ug/m3 and 2.4773 ug/m3;
in terms of MAPE, it is between 4.1459% and 5.8669%; and in terms of R2, it is between
16.3818% and 19.9618%.

However, comparing the proposal with benchmark models such as LANN, polynomial
interpolation, and ARIMA, the difference is smaller. On average, in terms of RMSE, LANN
alone is better than the proposal by a small 0.03527 ug/m3. In terms of MAPE, only
polynomial interpolation and LANN are better than the proposal by 0.1239% and 0.0309%,
respectively. In terms of R2, the proposal is better than polynomial interpolation, LANN,
and ARIMA by 0.3898%, 0.0134%, and 2.4341%, respectively.

Graphically, Figure 15 shows the results of the best benchmark models and the pro-
posal for the first 100 items of ground truth for the different sets of NAs.
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4.2. Discussions

Through analysis of the results, it can be seen that the closer models to the proposal
model are LANN and polynomial interpolation. Polynomial interpolation served as the
basis for the proposal, as it was used to estimate the NA values of class 0. In the pro-
posal, thanks to the implementation of the flipped polynomial interpolation for NA class
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1, the proposal outperformed the polynomial interpolation benchmark on average by
0.0712 ug/m3 and 0.3898% in terms of RMSE and R2, respectively.

The good results obtained in the estimation of NA values even though the classi-
fication models did not achieve good performances, according to Figure 1, prove that
both interpolations have similar estimates, so the class estimation errors do not affect
them greatly.

Despite what is mentioned in the preceding paragraph, the main weakness of the
proposal is the complexity of the classification task to estimate the NA class since it was
not possible to identify good input features that have a higher correlation with the target
feature. The classification models in most of the evaluation metrics present values below
60%; this can be improved by using a larger amount of data for the training phase and
generating or obtaining better input features. A better classification rate would make it
possible to identify the NA classes with greater accuracy and, from this, obtain better NA
value estimations, reducing the RMSE and MAPE and increasing the R2 coefficient.

Another aspect that should be analyzed for future work lies in the distance between
the real NA value and the value that can be estimated by polynomial interpolation. If the
real NA value is further from the polynomial curve, the estimation error will be larger. This
constitutes a limitation of this type of technique to estimate more complex values. This
type of technique is good for NA values that are close to the line between p0 and n0. For
this reason, LANN produces good results, too.

Also, even though in most cases the proposal presented higher R2s than the benchmark
ones, the R2 coefficient has to be improved, as in two of three NA sets, the proposal
presented a value below 0.7, and just in one set, it presented an R2 above 0.7. As was
mentioned in the previous case, improving the classification rate will improve the R2 of the
proposal, too.

On the other hand, considering that related works used other datasets, and each
dataset presents different characteristics, the comparison is carried out only for reference.
According to Table 9, it can be seen that in terms of RMSE, the proposal is only below the
work [20], which obtained an RMSE of 3.756 ug/m3; in terms of R2, the proposal with R2

of 0.6946 is below the work [22], which reported an R2 of 0.895; and in terms of MAE, the
proposal with MAE = 3.4944 ug/m3 exceeded the work [21] with MAE = 8.31 ug/m3.

Table 9. Results of related work models.

Work Technique Data Frequency Metric Value

Yuan et al., 2018 [17] LSTM 30,700 Hourly RMSE 17.78
Belachsen et al., 2022 [18] KNN 140,256 Half-hourly NMAE [0.21–0.26]

Saif-ul-Allah et al., 2022 [19] GRU 2514 Daily RMSE 10.60
Alkabbani et al., 2022 [20] Random forest RMSE 3.756

Yldz et al., 2022 [21] Transformers 8760 Hourly MAE 8.31
Lee et al., 2023 [22] GAIN 26,281 Hourly R2 0.895

Proposal 56,424 Hourly RMSE 6.8140
R2 0.6964

MAE 3.4944

5. Conclusions and Future Work
5.1. Conclusions

Although the classification rate of the types or classes of NA values did not exceed
60% in most of the analyzed metrics, the estimation results of NA values obtained in terms
of RMSE, MAPE, and R2 are very promising because when compared with the results
of benchmark models, the proposal managed to widely outperform the state-of-the-art
models, such as LSTM, BiLSTM, GRU, BiGRU and ARIMA, demonstrating that for short
gaps, the proposal is a good alternative.
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5.2. Future Work

As previously mentioned, this work experimented only with short gaps—gaps of
one NA value. For future work, it would be important to adapt the proposal for gaps of
more than one value. Likewise, as mentioned above, the classification models only reached
accuracies, recalls, precisions, and f1-scores below 60%, which indicates that there is still a
wide margin for improvement; in this sense, other architectures of deep learning could be
implemented, offering a greater number of layers and different configurations of neurons,
among others. Also, the dataset could be enriched through data augmentation techniques
for time series classification in order to generate a greater diversity of rows that could help
to improve the performance of the models. Also, LANN could be exploited through the
creation of a new class (2), which could contain the NA values that can be estimated with
greater accuracy with linear interpolation instead of polynomial interpolation.

On the other hand, fractal theory could help to find other time series features that
could improve the time series classification process. Likewise, the proposal approach of
this work can also be adapted for time series of similar contexts, such as pm10, SO2, etc.,
and other different ones like meteorology, biology, finance, etc.

Author Contributions: Conceptualization, A.F., H.T.-C. and D.C.-V.; methodology, A.F.; software,
A.F.; validation, A.F., H.T.-C. and A.E.-E.; formal analysis, A.E.-E.; investigation, A.F.; resources,
D.C.-V.; data curation, A.F. and H.T.-C.; writing—original draft preparation, A.F.; writing—review
and editing, H.T.-C. and D.C.-V.; visualization, A.F.; supervision, A.E.-E.; project administration,
H.T.-C.; funding acquisition, A.E.-E. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding and the APC was funded by Universidad
Nacional de Moquegua.

Data Availability Statement: Data are available at “http://fiscamb.oefa.gob.pe/vig_amb/ (accessed
on 2 May 2023)” or by contact to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spadon, G.; Hong, S.; Brandoli, B.; Matwin, S.; Rodrigues, J.F., Jr.; Sun, J. Pay Attention to Evolution: Time Series Forecasting with

Deep Graph-Evolution Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5368–5384. [CrossRef] [PubMed]
2. Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207–218. [CrossRef]
3. Peker, N.; Kubat, C. A Hybrid modified deep learning data imputation method for numeric datasets. Int. J. Intell. Syst. Appl. Eng.

2021, 9, 6–11. [CrossRef]
4. Chen, C.; Xue, X. A novel coupling preprocessing approach for handling missing data in water quality prediction. J. Hydrol. 2023,

617, 128901. [CrossRef]
5. Oh, J.; Choi, S.; Han, C.; Lee, D.-W.; Ha, E.; Kim, S.; Bae, H.-J.; Pyun, W.B.; Hong, Y.-C.; Lim, Y.-H. Association of long-term

exposure to PM2.5 and survival following ischemic heart disease. Environ. Res. 2023, 216, 114440. [CrossRef] [PubMed]
6. Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A

meta-analysis. Oncotarget 2017, 8, 43322–43331. [CrossRef] [PubMed]
7. Su, J.; Ye, Q.; Zhang, D.; Zhou, J.; Tao, R.; Ding, Z.; Lu, G.; Liu, J.; Xu, F. Joint association of cigarette smoking and PM2.5 with

COPD among urban and rural adults in regional China. BMC Pulm. Med. 2021, 21, 87. [CrossRef]
8. Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates

from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [CrossRef]
9. Chen, Z.; Liu, P.; Xia, X.; Wang, L.; Li, X. The underlying mechanism of PM2.5-induced ischemic stroke. Environ. Pollut. 2022,

310, 119827. [CrossRef]
10. Lee, M.; Ohde, S. PM2.5 and diabetes in the Japanese population. Int. J. Environ. Res. Public Health 2021, 18, 6653. [CrossRef]
11. Liu, Q.; Liu, W.; Mei, J.; Si, G.; Xia, T.; Quan, J. A New Support Vector Regression Model for Equipment Health Diagnosis with

Small Sample Data Missing and Its Application. Shock. Vib. 2021, 2021, 6675078. [CrossRef]
12. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
13. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition. In

Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; Lecture Notes
in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; pp. 799–804. [CrossRef]

14. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555.

http://fiscamb.oefa.gob.pe/vig_amb/
https://doi.org/10.1109/TPAMI.2021.3076155
https://www.ncbi.nlm.nih.gov/pubmed/33905327
https://doi.org/10.32614/RJ-2017-009
https://doi.org/10.18201/ijisae.2021167931
https://doi.org/10.1016/j.jhydrol.2022.128901
https://doi.org/10.1016/j.envres.2022.114440
https://www.ncbi.nlm.nih.gov/pubmed/36208782
https://doi.org/10.18632/oncotarget.17313
https://www.ncbi.nlm.nih.gov/pubmed/28487493
https://doi.org/10.1186/s12890-021-01465-y
https://doi.org/10.1016/j.envres.2021.111123
https://doi.org/10.1016/j.envpol.2022.119827
https://doi.org/10.3390/ijerph18126653
https://doi.org/10.1155/2021/6675078
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1007/11550907_126


Computers 2023, 12, 165 19 of 19

15. Flores, A.; Tito, H.; Silva, C. Local average of nearest neighbors: Univariate time series imputation. Int. J. Adv. Comput. Sci. Appl.
2019, 10, 45–50. [CrossRef]

16. Xiao, Q.; Chang, H.H.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model To Predict Historical PM2.5 Concentrations in
China from Satellite Data. Environ. Sci. Technol. 2018, 52, 13260–13269. [CrossRef]

17. Yuan, H.; Xu, G.; Yao, Z.; Jia, J.; Zhang, Y. Imputation of missing data in time series for air pollutants using long short-term
memory recurrent neural networks. In Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Singapore, 8–12 October 2018; pp. 1293–1300. [CrossRef]

18. Belachsen, I.; Broday, D.M. Imputation of Missing PM2.5 Observations in a Network of Air Quality Monitoring Stations by a New
kNN Method. Atmosphere 2022, 13, 1934. [CrossRef]

19. Saif-Ul-Allah, M.W.; Qyyum, M.A.; Ul-Haq, N.; Salman, C.A.; Ahmed, F. Gated Recurrent Unit Coupled with Projection to Model
Plane Imputation for the PM2.5 Prediction for Guangzhou City, China. Front. Environ. Sci. 2022, 9, 816616. [CrossRef]

20. Alkabbani, H.; Ramadan, A.; Zhu, Q.; Elkamel, A. An Improved Air Quality Index Machine Learning-Based Forecasting with
Multivariate Data Imputation Approach. Atmosphere 2022, 13, 1144. [CrossRef]

21. Yldz, A.Y.; Koc, E.; Koc, A. Multivariate Time Series Imputation with Transformers. IEEE Signal Process. Lett. 2022, 29, 2517–2521.
[CrossRef]

22. Lee, Y.S.; Choi, E.; Park, M.; Jo, H.; Park, M.; Nam, E.; Kim, D.G.; Yi, S.-M.; Kim, J.Y. Feature extraction and prediction of fine
particulate matter (PM2.5) chemical constituents using four machine learning models. Expert Syst. Appl. 2023, 221, 119696.
[CrossRef]

23. Yang, J.; Lai, X.; Zhang, L. Auto-Associative LSTM for Multivariate Time Series Imputation. In Proceedings of the 2022 41st
Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022. [CrossRef]

24. Li, D.; Li, L.; Li, X.; Ke, Z.; Hu, Q. Smoothed LSTM-AE: A spatio-temporal deep model for multiple time-series missing imputation.
Neurocomputing 2020, 411, 351–363. [CrossRef]

25. Zaman, M.A.U.; Du, D. A Stochastic Multivariate Irregularly Sampled Time Series Imputation Method for Electronic Health
Records. Biomedinformatics 2021, 1, 166–181. [CrossRef]

26. Zhang, W.; Luo, Y.; Zhang, Y.; Srinivasan, D. SolarGAN: Multivariate solar data imputation using generative adversarial network.
IEEE Trans. Sustain. Energy 2020, 12, 743–746. [CrossRef]

27. Cao, W.; Zhou, H.; Wang, D.; Li, Y.; Li, J.; Li, L. BRITS: Bidirectional recurrent imputation for time series. In Proceedings of the
Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018.

28. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing
Values. Sci. Rep. 2018, 8, 6085. [CrossRef]

29. Guo, Y.; Poh, J.W.J.; Wong, C.S.Y.; Ramasamy, S. Bayesian Continual Imputation and Prediction For Irregularly Sampled Time
Series Data. In Proceedings of the ICASSP 2011—IEEE International Conference on Acoustics, Speech and Signal Processing,
Singapore, 23–27 May 2022; pp. 4493–4497. [CrossRef]

30. Brownlee, J. Ensemble Learning Algorithms with Python. Machine Learning Mastery. 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14569/IJACSA.2019.0100807
https://doi.org/10.1021/acs.est.8b02917
https://doi.org/10.1145/3267305.3274648
https://doi.org/10.3390/atmos13111934
https://doi.org/10.3389/fenvs.2021.816616
https://doi.org/10.3390/atmos13071144
https://doi.org/10.1109/LSP.2022.3224880
https://doi.org/10.1016/j.eswa.2023.119696
https://doi.org/10.23919/ccc55666.2022.9902442
https://doi.org/10.1016/j.neucom.2020.05.033
https://doi.org/10.3390/biomedinformatics1030011
https://doi.org/10.1109/TSTE.2020.3004751
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1109/icassp43922.2022.9746342

	Introduction 
	Related Work 
	Materials and Methods 
	Data Preparation 
	Implementation of Classification Models 
	Feature Extraction and Labelling 
	Feature Selection 
	Normalization 
	Deep Learning Classification Models 
	Evaluation 

	Imputation of NA Values 
	Generation of NA Values in Test Data 
	Class Estimation for NA Values 
	Interpolation according to Class Estimation 

	Implementation of Benchmark Models 
	Evaluation 

	Results and Discussion 
	Results 
	Discussions 

	Conclusions and Future Work 
	Conclusions 
	Future Work 

	References

