
Citation: Horvath, K.; Abid, M.R.;

Merino, T.; Zimmerman, R.; Peker, Y.;

Khan, S. Cloud-Based Infrastructure

and DevOps for Energy Fault

Detection in Smart Buildings.

Computers 2024, 13, 23. https://

doi.org/10.3390/computers13010023

Academic Editors: Dario Bruneo and

Antonio Puliafito

Received: 3 November 2023

Revised: 2 December 2023

Accepted: 5 December 2023

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Cloud-Based Infrastructure and DevOps for Energy Fault
Detection in Smart Buildings
Kaleb Horvath * , Mohamed Riduan Abid *, Thomas Merino * , Ryan Zimmerman, Yesem Peker
and Shamim Khan

TSYS School of Computer Science, Turner College of Business, Columbus State University,
Columbus, GA 31907, USA
* Correspondence: horvath_kaleb@students.columbusstate.edu (K.H.); abid_riduan@columbusstate.edu (M.R.A.);

merino_thomas@students.columbusstate.edu (T.M.)

Abstract: We have designed a real-world smart building energy fault detection (SBFD) system on a
cloud-based Databricks workspace, a high-performance computing (HPC) environment for big-data-
intensive applications powered by Apache Spark. By avoiding a Smart Building Diagnostics as a
Service approach and keeping a tightly centralized design, the rapid development and deployment of
the cloud-based SBFD system was achieved within one calendar year. Thanks to Databricks’ built-in
scheduling interface, a continuous pipeline of real-time ingestion, integration, cleaning, and analytics
workflows capable of energy consumption prediction and anomaly detection was implemented and
deployed in the cloud. The system currently provides fault detection in the form of predictions and
anomaly detection for 96 buildings on an active military installation. The system’s various jobs all
converge within 14 min on average. It facilitates the seamless interaction between our workspace and
a cloud data lake storage provided for secure and automated initial ingestion of raw data provided by
a third party via the Secure File Transfer Protocol (SFTP) and BLOB (Binary Large Objects) file system
secure protocol drivers. With a powerful Python binding to the Apache Spark distributed computing
framework, PySpark, these actions were coded into collaborative notebooks and chained into the
aforementioned pipeline. The pipeline was successfully managed and configured throughout the
lifetime of the project and is continuing to meet our needs in deployment. In this paper, we outline the
general architecture and how it differs from previous smart building diagnostics initiatives, present
details surrounding the underlying technology stack of our data pipeline, and enumerate some of the
necessary configuration steps required to maintain and develop this big data analytics application in
the cloud.

Keywords: data pipelining; big data analytics; smart buildings; energy efficiency; Databricks; ADLS;
Apache Spark; Jupyter notebooks

1. Introduction

The proliferation of energy concerns globally mandates the implementation of quick
and robust energy efficiency measures via the promotion of renewable energy integration
and the deployment of Energy Management Systems (EMSs) [1]; a smart building fault
detection system (BFD) is integral to this process. BFD continuously tracks energy consump-
tion and production levels to create energy usage alerts and prevent energy incidents. This
task requires the implementation of adequate data acquisition and ingestion mechanisms,
as well as appropriate predictive data analytics [1].

The cloud-based management of smart building fault detection and other analytical
processes concerned with building diagnostic data is not itself a novel concept. Nader
Mohamed and Sanja Lazarova-Molnar propose a service-based architecture involving a
distributed network of devices organized into a hierarchy of tiers, each responsible for
a certain type of data load [2] (building management, perception, ingestion and storage,

Computers 2024, 13, 23. https://doi.org/10.3390/computers13010023 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13010023
https://doi.org/10.3390/computers13010023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0004-1161-4777
https://orcid.org/0009-0002-2731-3237
https://orcid.org/0000-0002-2801-1962
https://doi.org/10.3390/computers13010023
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13010023?type=check_update&version=1


Computers 2024, 13, 23 2 of 12

processing, and analytics). In this article, the authors present an architecture developed
for managing smart buildings, perceiving parameters of interest, and finally, storing,
processing, and analyzing smart building diagnostic data in the cloud. While their approach
is vastly different, their motivations are the same: remove the need for energy-concerned
entities to maintain in-house hardware and expensive network infrastructures. Their
research is also primarily concerned with the detection and diagnosis of faults. The authors
detail the Smart Building Diagnostics as a Service (SBDaaS) model, which consists of three
tiers utilized to connect cloud-based services to smart buildings. A smart building itself
encompasses the first tier, along with all the infrastructure therein. A distributed network
of sensor nodes monitoring energy consumption and environmental conditions make up
the topmost layer of the first tier. The second tier is the Cloud-Enabled Building Energy
Management System (CE-BEMS). Each smart building houses one CE-BEMS, and all energy-
consuming subsystems, sensor nodes, and actuators are connected to it via IoT technologies.
Every CE-BEMS is a lower-power device connected to the SBDaaS provider, an endpoint
on a cloud platform. This could be an Azure Data Factory or an AWS configuration. Here,
more intensive resources are housed. This is the third tier, the internet. Mohamed suggests
that the service provider should offer multiple basic maintenance functions for different
smart buildings including command and control, software updates, and the addition
of sensor nodes [2]. For smart building diagnostic functionality, the SBDaaS provider
should provide data collection and storage for parameters monitored and perceived by
the sensor networks (automated, if necessary), diagnostics reports to end-users (possible
faults, the current status of sensor nodes), support for virtual aggregate sensors, and energy
fault detection and diagnosis [2]. The most noteworthy feature of their architecture is the
implementation of adaptive AI features in the cloud such as knowledge-based systems to
provide a feedback loop into the analytics required to generate faults, making the cloud-
based smart building infrastructure robust to vertical scaling. This SBDaaS approach aims
to create a highly scalable, less specialized infrastructure for companies to manage and
report on smart buildings.

Iulia Stamatescu, Valeria Bolbooaca and Grigore Stamatescu propose an architecture
more similar to ours, lacking a robust lower tier of distributed sensor nodes or per-building
management devices like the CE-BEMS. This architecture connects the network of sensor
nodes straight to the cloud through a WSN gateway (wireless sensor network) and forwards
parameters to a cloud-based event hub [3]. The parameters are moved from the event hub
straight to Azure services such as Stream Analytics, Data Factory, and finally, the Azure App
Service before being reported to users on a dashboard [3]. The primary difference between
this model and the one proposed by Nader Mohamed and Sanja Lazarova-Molnar is the
service-based theme. Here, there is a single service provided by the cloud platform, and
the buildings are not managed independently. This model is better suited for specialized
use cases that do not expect much scaling in the way of provided services. Its strength is in
its simplicity.

The approach taken in this paper is similar to the architecture as proposed by Iulia
Stamatescu [3]. Each building is profiled with diagnostics collected by a network of sensors
to collect energy consumption aggregates for the smart building, as well as inputs from
other energy subsystems within the building. Rather than having a robust lower tier of
sensor nodes to collect more than energy data, environmental parameters such as climatic
data are collected on a per-building basis from a third-party API. Our smart building fault
detection architecture differs in that the supporting infrastructure exists almost entirely in
the cloud, rather than having a CE-BEMS or other management devices in each building.
Relevant parameters are collected by sensors or other third parties and forwarded directly
to the primary cloud storage medium, the Azure Data Lake Storage. This contrasts with
the more distributed, as-a-service approach taken by other researchers. Our processing
is largely centralized, not lending itself well to vertical scaling or the addition of more
data sources, a problem that will be solved in Phase 2. However, the taken approach to a
smart building diagnostics architecture allows for easier horizontal scaling. In this case,



Computers 2024, 13, 23 3 of 12

this looks like the addition of more smart buildings without having to expand the sensor
node networks or install management devices in each building. While other architectures
are admittedly more robust, the BFD system proposed herein met the needs of the big data
workload presented to the University and was more than satisfactory to the employer given
its low cost. Additionally, keeping with a tightly centralized design and outsourcing the
collection of environmental parameters such as weather data enabled rapid development
and deployment.

A smart building fault detection system (SBFD) involving big data analytics requires
high-performance computing runtimes and large distributed datasets [4]. Additionally,
the development of a continuous pipeline of workflows that make up such a system
requires scheduling strategies, collaboration, version control, and smart dependency man-
agement [5]. Each component in the technology stack is generally responsible for one of
these core requirements. With minimal development operations and the use of a robust
technology stack, we streamline the process of construction and deployment to focus on
preparing analytic approaches that are effective and meet strict deadlines and variable
specifications. For the high-performance computing runtime [6], Apache Spark takes the
lead with around 80% of the Fortune 500 making use of this massive, distributed comput-
ing framework. Fortunately, Microsoft’s cloud platform, Azure, provides a workspace,
Databricks, giving a uniform interface to Spark’s capabilities (namely multi-node com-
pute clusters) through intuitive GUIs and Jupyter notebooks where developers can house
primary pipeline functionality. Our system makes use of two Spark compute clusters,
one for the data pipeline workflows and another for the analytics and machine learning
workflows [7]. For large distributed datasets, our Databricks workspace came largely
pre-configured with an Apache Hive data warehouse. Each component of our pipeline,
the workflow notebooks, was able to seamlessly interact with its respective data hierarchy
using Structured Query Language (SQL) queries on tables uniquely labeled to reflect their
contents and position in the pipeline. Our team devised several scheduling strategies
over the lifetime of the project due to variable specifications and changing requirements.
All strategies were implemented via the Databricks workflow interface allowing us to
focus on analytic approaches rather than the development of some primitive driver to
orchestrate and automate various pipeline tasks (real-time ingestion, integration, cleaning,
and analytics). A given Jupyter notebook in the Databricks workspace is fully collaborative
for all permitted users specified in the permission matrix (Admin console functionality).
In our system, dependencies (Python libraries) are version-frozen and pre-installed at the
cluster level. For version control, the Databricks workspace was configured to interact with
external repositories hosted by GitHub.

2. Infrastructure: Technology Stack

Various technologies actuate the cloud-based smart building fault detection system,
composing our technology stack. The primary components are the cloud storage medium,
the workspace platform built on with distributed compute, and the data warehousing
technology. Integrating these components was challenging but achievable with the wealth
of documentation and resources publicly available. Microsoft and Apache built these
technologies targeting big data analytics use cases. Coherent APIs allow engineers to focus
on the problem rather than the tool.

2.1. Primary Cloud Storage Medium

Microsoft Azure Data Lake Storage (ADLS) Gen2 is a huge cloud storage platform built
on Azure BLOB storage capabilities optimized for big data analytics workflows. The hierar-
chical namespace feature enables the organization and structure (directories/files) that you
would expect from local file systems with all the power of a distributed storage platform
behind it. This allows ADLS to scale easily to big workloads. Access control is achieved via
integration with the Azure Active Directory (AD), which manages authentication (for both
users and developers’ applications), authorization, and encryption both at rest and en route



Computers 2024, 13, 23 4 of 12

to application endpoints. ADLS is capable of managing a robust array of data types includ-
ing JSON, CSV, Parquet, DAT, plain text, and Binary Large Object files. In a project where
data were dumped to ADLS by a third party, the data versioning functionality of ADLS
allowed us to trace changes to data over time and revert to previous versions if needed. The
common use case for ADLS is as a storage medium for the raw and unstructured part of the
data lifecycle in an analytics pipeline. Our models would eventually train on pre-processed
integrated representations of the very same data present in ADLS. We divided our data
lake into namespaces called Storage Accounts (SAs). The SA acted as a sort of software
context for access control and configuration. After configuring each SA to hold raw data
for each relevant source (historic weather data, energy consumption data, hard sensor data,
etc.), we were able to have finely tuned control over each source individually without the
added complexity of multiple data lake resources. Stepping down from the SA, the BLOB
container held different types of data. For example, after applying manual preprocessing
steps to energy consumption, DAT files might be moved from the ‘reference’ container
to the ‘output’ container. Generally, however, the BLOB container functioned one-to-one
with the SA, as most of the data preparation would happen on the workspace/compute
platform outputting to the data warehouse technology. The BLOB storage pattern is a
cost-effective way to manage large amounts of unstructured data in these containers and
is best applied to static applications. Since the most frequent writes to ADLS occurred
roughly every 48 h, the BLOB pattern suits our use case. Additionally, reading the Binary
Large Objects happens in near real-time once a copy is moved to the workspace file system
(Databricks FS) or in-memory given that they are random access. Accessing ADLS from our
workspace/compute platform was admittedly a challenge. To read our data from ADLS,
we needed to mount the Gen2 BLOB storage containers as directories on the Databricks
Distributed File System (DBFS) [8]. This involved three primary steps: booting a Spark
context, authenticating with the SA via some secure protocol, and finally, using Databricks’
utilities to perform the FUSE (file system in user space) mount operation [9]. Given that
Databricks is our primary compute workspace and provides APIs for accessing external
resources such as data lakes, this was the best home for the ‘prepare_environment’ script
responsible for pulling in the containers from all relevant Storage Accounts. See Figure 1.

Computers 2024, 13, x FOR PEER REVIEW 4 of 12 
 

authentication (for both users and developers’ applications), authorization, and encryp-
tion both at rest and en route to application endpoints. ADLS is capable of managing a 
robust array of data types including JSON, CSV, Parquet, DAT, plain text, and Binary 
Large Object files. In a project where data were dumped to ADLS by a third party, the 
data versioning functionality of ADLS allowed us to trace changes to data over time and 
revert to previous versions if needed. The common use case for ADLS is as a storage me-
dium for the raw and unstructured part of the data lifecycle in an analytics pipeline. Our 
models would eventually train on pre-processed integrated representations of the very 
same data present in ADLS. We divided our data lake into namespaces called Storage Ac-
counts (SAs). The SA acted as a sort of software context for access control and configura-
tion. After configuring each SA to hold raw data for each relevant source (historic weather 
data, energy consumption data, hard sensor data, etc.), we were able to have finely tuned 
control over each source individually without the added complexity of multiple data lake 
resources. Stepping down from the SA, the BLOB container held different types of data. 
For example, after applying manual preprocessing steps to energy consumption, DAT files 
might be moved from the ‘reference’ container to the ‘output’ container. Generally, how-
ever, the BLOB container functioned one-to-one with the SA, as most of the data prepara-
tion would happen on the workspace/compute platform outputting to the data warehouse 
technology. The BLOB storage pattern is a cost-effective way to manage large amounts of 
unstructured data in these containers and is best applied to static applications. Since the 
most frequent writes to ADLS occurred roughly every 48 h, the BLOB pattern suits our 
use case. Additionally, reading the Binary Large Objects happens in near real-time once a 
copy is moved to the workspace file system (Databricks FS) or in-memory given that they 
are random access. Accessing ADLS from our workspace/compute platform was admit-
tedly a challenge. To read our data from ADLS, we needed to mount the Gen2 BLOB stor-
age containers as directories on the Databricks Distributed File System (DBFS) [8]. This 
involved three primary steps: booting a Spark context, authenticating with the SA via 
some secure protocol, and finally, using Databricks’ utilities to perform the FUSE (file sys-
tem in user space) mount operation [9]. Given that Databricks is our primary compute 
workspace and provides APIs for accessing external resources such as data lakes, this was 
the best home for the ‘prepare_environment’ script responsible for pulling in the contain-
ers from all relevant Storage Accounts. See Figure 1. 

 
Figure 1. A high-level overview of mounting remote ADLS objects as DBFS files/directories. 

As is shown in Figure 1, the ‘prepare_environment’ script authenticates with a SA 
endpoint, specifying BLOB containers of interest. In return, a BLOB transfer is completed. 
The notebook completes the data acquisition process by FUSE mounting the BLOB 

Figure 1. A high-level overview of mounting remote ADLS objects as DBFS files/directories.

As is shown in Figure 1, the ‘prepare_environment’ script authenticates with a SA end-
point, specifying BLOB containers of interest. In return, a BLOB transfer is completed. The
notebook completes the data acquisition process by FUSE mounting the BLOB container
as a directory on the Databricks File System (DBFS), a distributed file system accessible
via all notebooks in a Databricks workspace given an active Spark context. Here, ‘pre-



Computers 2024, 13, 23 5 of 12

pare_environment’ has effectively given the entire pipeline local access to DAT files that
were previously only available remotely. There are a variety of protocols made available
to applications for transporting BLOB storage containers. The easiest of which to con-
figure was the Azure BLOB File System Secure (ABFSS). ABFSS is the workhorse of the
token-for-BLOB exchange between the workspace and ADLS, as illustrated in Figure 1.
The ABFSS driver API provided by Databricks’ ‘dbutils’ is configured on all compute
clusters by default. ADLS security policies demand some robust authentication before an
application can make requests to an SA’s endpoint. We configured our primary SAs to use
Shared Access Signature (SAS) strings, a token system that can be distributed among devel-
opers and passed to the endpoint URL from the application backend. This allowed each
Storage Account to be configured with access expiration dates, IP address requirements
(accomplished with the use of a virtual network) and basic access control permissions.
As with a regular file system mount, you need only provide the ABFSS driver with a
mount point (a directory on the Databricks File System, globally accessible to all clusters in
the Resource group), and an ADLS endpoint as well as authentication information (SAS
flags, strings, etc.). Performing the actual mount is done with ‘dbutils’. Only minimal
configuration is required by the application script in order to access and mount ADLS
storage objects. These parameters consist of ‘dbfs_mount_path’ (the destination directory
on DBFS), ‘abfss_generic_endpoint’ (the remote Azure BLOB file system endpoint, resource
locator for ADLS), ‘relevant_locations’ (relevant SAs and BLOB containers), and ‘keys’
(simply the SAS tokens for each SA). These parameters are packed into an authentication
config structure to be passed to ‘dbutils.mount’. Before performing the actual mount, a
local file system check is done to verify there are no pre-existing directories containing the
BLOB containers to be mounted. Both global DBFS and the local virtual storage on each
worker node is checked for the existence of the resource being fetched. Note that Spark
configuration parameters are set again with each object mount. The Databricks File System
will propagate changes in mounted objects in the data lake [10]. This is a powerful feature
that requires the Spark context to be aware of the ABFSS parameters. After this script is
run, bar any problems, the directories on the Databricks’ globally accessible storage will
hold the most recent version of the hierarchical structure present in each BLOB container in
ADLS. After an SAS token expires or more SAs are created, the script must be modified and
re-run. Given that our data sources did not change for the duration of the development
phase, this was not an issue. ‘!ls/mnt/<mount-path>’ can be issued to the shell interpreter
present on the driver node of each cluster to enumerate the mounted BLOB containers.
Note that each compute cluster, within the lifetime of its Spark context, has access to the
FUSE mounts. Accordingly, every workflow notebook created and attached to a cluster
was able to read and write data to the directories on DBFS. After these steps, the primary
storage medium was fully connected with our workspace platform.

2.2. Workspace Platform and Compute Technology

Microsoft Azure Databricks is a workspace platform and compute-technology inter-
face for the collaborative development and deployment of analytics workflows and the
automated configuration of Apache Spark HPC clusters [11] with node-local storage and
access to a global DBFS. Databricks comes prepared with an intuitive GUI for setting up
Spark clusters, giving control to such properties as runtime software, support for several
target languages including Python, Scala, and R, and hardware allocation. Each Azure
subscription is bounded by compute core quotas. Consequently, the exact use case of each
cluster must be thought out before allocation to avoid wasting resources. Each cluster was
responsible for either data pipelining (real-time ingestion, integration, cleaning) or machine
learning (analytics) workflows. Each compute cluster has local storage file systems present
on each worker node. The virtual environment for managing your language runtime is
stored on this local storage. see Figure 2. The most basic unit of the workspace platform
is the interactive notebook, a dynamic way to quickly scale up a project by writing code
in smaller steps called command cells. Each notebook had one purpose and would be



Computers 2024, 13, 23 6 of 12

attached to a compute cluster in order to perform its workloads. A lifetime value was set
for each cluster, so that they would terminate on either of two cases: a programmer was not
actively using any notebooks attached to that cluster, or there were no active jobs scheduled
on that cluster. The aforementioned primary clusters shared the total pipeline workload.
The specifications of each cluster are shown in appropriate detail in Table 1.

Computers 2024, 13, x FOR PEER REVIEW 6 of 12 
 

platform is the interactive notebook, a dynamic way to quickly scale up a project by writ-
ing code in smaller steps called command cells. Each notebook had one purpose and 
would be attached to a compute cluster in order to perform its workloads. A lifetime value 
was set for each cluster, so that they would terminate on either of two cases: a programmer 
was not actively using any notebooks attached to that cluster, or there were no active jobs 
scheduled on that cluster. The aforementioned primary clusters shared the total pipeline 
workload. The specifications of each cluster are shown in appropriate detail in Table 1. 

Table 1. Manifest of relevant clusters used to deploy the pipeline. 

Cluster Runtime Nodes Specs (Per Worker) 

Data Pipeline Cluster 
DB Runtime 11.3 

LTS 
2 × 

Standard_D_S3_v2 14 GB, 4-cores 

ML Cluster ML Runtime 12.2 LTS 
2 × 

Standard_D_S3_v2 
14 GB, 4-cores 

 
Figure 2. Apache Spark compute cluster architecture. 

A high-level illustration of the inner workings of a Spark compute cluster reveals the 
distributed design. This enables efficiency and parallel computing capabilities, with a 
strong centralized management node dispatching tasks to workers, as seen in Figure 2. 
Most of what a programmer does in a given pipeline component (interactive notebooks) 
interfaces only with the Spark runtime running on a driver node. The driver node, along 
with the cluster manager, is responsible for provisioning real resources and dispatching 
worker nodes to complete tasks. For smart building fault detection, relevant workflows 
were written in Python 3. We can again explore the virtual environment system by issuing 
‘!which python’ to the worker, which reveals that the location of the Python binary in use 
is cluster-local and that, consequently, the respective ‘site-packages’ folder is also cluster-
local. This is where PyPi dependencies are stored for the lifetime of the Spark context. It 
should be noted that managing dependencies at this level requires the installation of pack-
ages from a ‘requirements.txt’ file every time you start up a cluster. In other words, when 
a cluster terminates, the local storage on each worker node is restored to a default state. It 
was determined early on that this Spark context-scoped method of dependency manage-
ment would not suffice. However, upon initialization, every cluster had access to the Data-
bricks FS where the BLOB containers are FUSE mounted by itself, creating a local mount. 
In addition to different storage mediums creating a challenging dependency management 
situation, quota restrictions also proved to be challenging throughout the lifetime of the 
development phase. With everchanging requirements, the Azure subscription was also 

Figure 2. Apache Spark compute cluster architecture.

Table 1. Manifest of relevant clusters used to deploy the pipeline.

Cluster Runtime Nodes Specs (Per Worker)

Data Pipeline Cluster DB Runtime 11.3
LTS 2 × Standard_D_S3_v2 14 GB, 4-cores

ML Cluster ML Runtime 12.2 LTS 2 × Standard_D_S3_v2 14 GB, 4-cores

A high-level illustration of the inner workings of a Spark compute cluster reveals
the distributed design. This enables efficiency and parallel computing capabilities, with
a strong centralized management node dispatching tasks to workers, as seen in Figure 2.
Most of what a programmer does in a given pipeline component (interactive notebooks)
interfaces only with the Spark runtime running on a driver node. The driver node, along
with the cluster manager, is responsible for provisioning real resources and dispatching
worker nodes to complete tasks. For smart building fault detection, relevant workflows
were written in Python 3. We can again explore the virtual environment system by issuing
‘!which python’ to the worker, which reveals that the location of the Python binary in use is
cluster-local and that, consequently, the respective ‘site-packages’ folder is also cluster-local.
This is where PyPi dependencies are stored for the lifetime of the Spark context. It should
be noted that managing dependencies at this level requires the installation of packages from
a ‘requirements.txt’ file every time you start up a cluster. In other words, when a cluster
terminates, the local storage on each worker node is restored to a default state. It was
determined early on that this Spark context-scoped method of dependency management
would not suffice. However, upon initialization, every cluster had access to the Databricks
FS where the BLOB containers are FUSE mounted by itself, creating a local mount. In
addition to different storage mediums creating a challenging dependency management
situation, quota restrictions also proved to be challenging throughout the lifetime of the
development phase. With everchanging requirements, the Azure subscription was also
subject to change. As more workflows were attached to our primary clusters, and with
the use of certain high-performance analytics libraries (namely ‘xgboost’ and ‘pyspark’),
the Spark runtime attempted to up-scale the number of cores required to complete certain
tasks. Most roadblocks had technical solutions, but communication with subscription



Computers 2024, 13, 23 7 of 12

administrators was key in resolving the recurrent quota issue. After properly configuring
the compute clusters on the workspace platform and integrating the primary storage
medium with the DBFS, we were able to read and explore raw data.

2.3. Data Warehousing Technology

Apache Hive is a data warehousing technology (similar to a Database Management
System, DBMS) primarily used for managing data tables in large-scale projects providing
a high-level relational and non-relational abstract interface to reading/writing Resilient
Distributed Datasets (RDDs) in the Hadoop distributed file system pattern [12]. The process
of reading and writing to RDDs is conducted through the Spark API from a given notebook.
See Figure 3.

Computers 2024, 13, x FOR PEER REVIEW 7 of 12 
 

subject to change. As more workflows were attached to our primary clusters, and with the 
use of certain high-performance analytics libraries (namely ‘xgboost’ and ‘pyspark’), the 
Spark runtime attempted to up-scale the number of cores required to complete certain 
tasks. Most roadblocks had technical solutions, but communication with subscription ad-
ministrators was key in resolving the recurrent quota issue. After properly configuring 
the compute clusters on the workspace platform and integrating the primary storage me-
dium with the DBFS, we were able to read and explore raw data. 

2.3. Data Warehousing Technology 
Apache Hive is a data warehousing technology (similar to a Database Management 

System, DBMS) primarily used for managing data tables in large-scale projects providing 
a high-level relational and non-relational abstract interface to reading/writing Resilient 
Distributed Datasets (RDDs) in the Hadoop distributed file system pattern [12]. The pro-
cess of reading and writing to RDDs is conducted through the Spark API from a given 
notebook. See Figure 3. 

 
Figure 3. Interaction between Hive, in-memory datasets (Spark DataFrames) and the various work-
flow notebooks in the pipeline. 

The process of reading and writing to SQL tables in Hive is seamless and highly ab-
stracted. Each notebook has an in-memory dataset (DataFrame) copy of the relevant table 
in the main memory of each worker node. This can be seen in Figure 3. Actions manipulate 
these in-memory copies. When calls to ‘pyspark’ are made to overwrite the corresponding 
Hive table, real IO takes place between the cluster and the Resilient Distributed Dataset 
(RDD) management system’s controller. Our workspace platform, Databricks, was de-
signed to integrate well with Apache big data technologies. It follows that setting up the 
Hive warehouse is simple. The ‘pyspark’ library provides a clean interface to send 
read/write schemas to the default location inside Hive. All intermediary datasets and final 
output datasets were dumped to Hive. Generally, after any amount of pre-processing or 
real-time ingestion, intermediary datasets were written to Hive. The analytics workflows 
would pick up the clean integrated tables to perform machine learning before outputting 
the results to final datasets also in Hive [13]. The largest obstacle encountered with the 
data warehousing technology was a natural side effect of a big data project. With almost 
a dozen different table formats and various fields being added and removed at different 
stages of the BFD pipeline, the Spark schemas were constantly changing. Taking special 
note of what fields were required at each stage of the pipeline (actuated by a particular 

Figure 3. Interaction between Hive, in-memory datasets (Spark DataFrames) and the various work-
flow notebooks in the pipeline.

The process of reading and writing to SQL tables in Hive is seamless and highly
abstracted. Each notebook has an in-memory dataset (DataFrame) copy of the relevant table
in the main memory of each worker node. This can be seen in Figure 3. Actions manipulate
these in-memory copies. When calls to ‘pyspark’ are made to overwrite the corresponding
Hive table, real IO takes place between the cluster and the Resilient Distributed Dataset
(RDD) management system’s controller. Our workspace platform, Databricks, was designed
to integrate well with Apache big data technologies. It follows that setting up the Hive
warehouse is simple. The ‘pyspark’ library provides a clean interface to send read/write
schemas to the default location inside Hive. All intermediary datasets and final output
datasets were dumped to Hive. Generally, after any amount of pre-processing or real-time
ingestion, intermediary datasets were written to Hive. The analytics workflows would
pick up the clean integrated tables to perform machine learning before outputting the
results to final datasets also in Hive [13]. The largest obstacle encountered with the data
warehousing technology was a natural side effect of a big data project. With almost a
dozen different table formats and various fields being added and removed at different
stages of the BFD pipeline, the Spark schemas were constantly changing. Taking special
note of what fields were required at each stage of the pipeline (actuated by a particular
notebook) and their respective Spark data type (‘pyspark.sql.types’ members, namely
‘StructType’, ‘StructField’, ‘StringType’, ‘IntegerType’, ‘DoubleType’, ‘TimestampType’, etc.)
was a manual solution that produced consistent results. Additionally, when writing to
Hive with ‘pyspark.DataFrame.write’, we enabled the mode option ‘overwriteSchema’
which worked seamlessly, so long as the expected fields between the DataFrame and the



Computers 2024, 13, 23 8 of 12

destination RDD were consistent. Spark’s ability to infer data types is admittedly flawed,
but these obstacles provided ample opportunity to familiarize ourselves with not only
the Databricks environment, but the intricacies of the Apache Spark API. We were able to
successfully build our own Spark schemas, override an old schema to an existing dataset,
and finally, export the in-memory dataset to a persistent Hive-managed table.

3. Infrastructure: Pipeline of Workflows and Datasets

Each workflow in the pipeline (implemented as an interactive notebook specific to the
target language) is responsible for the actuation of one of the following tasks: ingestion,
integration, cleaning, or analytics. Creating a continuous pipeline between each com-
ponent of the technology stack was an issue of interaction between the notebooks. For
example, ‘prepare_integrated_datasets’ must proc before ‘outlier_detection_integrated_datasets’
in order for the later notebook to ingest the data required to complete that stage. The
general architecture is as follows: each notebook read an RDD from Hive into memory as
a ‘pyspark.DataFrame’. This enables both programmatic (using ‘PySpark’ API) and struc-
tured queries (SQL) to be executed over the dataset. Work is conducted and the resulting
dataset is written back to Hive to a new table, tagged with various prefixes and suffixes
denoting exactly what work was conducted to the data before being written to that table.
This process is repeated N times until the late-stage workflows (analytics and machine
learning) converge on results (energy consumption predictions, detected anomalies, etc.).
Simply put, each notebook reads and writes to a storage resource that is accessible by
the next notebook in the pipeline to take as its input. Therefore, most notebooks must be
actuated synchronously.

The synchronous nature of each workflow’s execution enables an element of fault
tolerance. The scheduling system prevents the next workflow from being triggered if it
has data dependencies with a previous failed run. The idea that each workflow has a
responsibility to the next workflow limits opportunities for concurrency, but effectively
controls for data hazards. Large analytic processes housed in individual notebooks are
managed exclusively by Spark compute resources and do in fact execute in parallel as
the cluster manager dispatches tasks to worker queues. Figure 4 illustrates how every
workflow has access to internal resources such as storage and compute, running through
the heart of the pipeline.

Computers 2024, 13, x FOR PEER REVIEW 9 of 12 
 

 
Figure 4. Actual production architectural diagram detailing the interaction between all resources 
and workflow notebooks in the pipeline. Note the fact that each workflow notebook interacts with 
a specific storage resource as both input and output, and the next notebook in the pipeline takes the 
previous notebook’s output as input. This process continues. 

4. Development Operations 
Development Operations (DevOps) is a set of protocols and governing principles that 

target enhanced collaboration, automation, and efficacy amongst software modules and 
their developers [14]. The main objective of DevOps is to optimize and automate both the 
delivery and development of software infrastructure and maintenance [14]. Good DevOps 
practices enabled our team to rapidly deliver a scalable smart building fault detection 
product to a third party. To meet the needs of a big data analytics use case like our BFD 
system, a continuous pipeline of workflows was necessary. Here, the DevOps principles 
of focus were collaborative workflows and version control, dependency management, and 
scheduling strategies. Our workspace platform, Databricks, enabled us to apply these 
principles out of the box with minimal configuration. 

4.1. Collaborative Workflows and Version Control 
Microsoft Azure Databricks, our workspace platform, provides collaborative note-

books. By giving each developer permission to the workspace on the access control matrix 
through the Databricks Admin Console, multiple developers can program the same work-
flow in real-time. Cluster-scoped core quotas inhibited collaborative development at 
times, especially when two developers were programming different workflows attached 
to the same Spark cluster context. Via inner-team communication and calculated time 
management, we were able to overcome these issues and pipeline our efforts by allocating 
time for certain tasks bound to their respective cluster. Version control was outsourced to 
the Git versioning system, using GitHub as a provider. Databricks provides a way to con-
nect a remote Git repository to a workspace directory. Here, we placed our relevant Ver-
sion Control System (VCS) configuration files (.gitignore, etc.). Each developer has to iden-
tify himself with their Personal Access Token (PAT) in order to commit to the connected 
repository. This authentication process happens at the user level in Databricks. Once au-
thenticated, Databricks will assume the developer has access to the remote repository. If 

Figure 4. Actual production architectural diagram detailing the interaction between all resources
and workflow notebooks in the pipeline. Note the fact that each workflow notebook interacts with a
specific storage resource as both input and output, and the next notebook in the pipeline takes the
previous notebook’s output as input. This process continues.



Computers 2024, 13, 23 9 of 12

4. Development Operations

Development Operations (DevOps) is a set of protocols and governing principles that
target enhanced collaboration, automation, and efficacy amongst software modules and
their developers [14]. The main objective of DevOps is to optimize and automate both the
delivery and development of software infrastructure and maintenance [14]. Good DevOps
practices enabled our team to rapidly deliver a scalable smart building fault detection
product to a third party. To meet the needs of a big data analytics use case like our BFD
system, a continuous pipeline of workflows was necessary. Here, the DevOps principles of
focus were collaborative workflows and version control, dependency management, and
scheduling strategies. Our workspace platform, Databricks, enabled us to apply these
principles out of the box with minimal configuration.

4.1. Collaborative Workflows and Version Control

Microsoft Azure Databricks, our workspace platform, provides collaborative note-
books. By giving each developer permission to the workspace on the access control matrix
through the Databricks Admin Console, multiple developers can program the same work-
flow in real-time. Cluster-scoped core quotas inhibited collaborative development at times,
especially when two developers were programming different workflows attached to the
same Spark cluster context. Via inner-team communication and calculated time manage-
ment, we were able to overcome these issues and pipeline our efforts by allocating time for
certain tasks bound to their respective cluster. Version control was outsourced to the Git
versioning system, using GitHub as a provider. Databricks provides a way to connect a re-
mote Git repository to a workspace directory. Here, we placed our relevant Version Control
System (VCS) configuration files (.gitignore, etc.). Each developer has to identify himself
with their Personal Access Token (PAT) in order to commit to the connected repository.
This authentication process happens at the user level in Databricks. Once authenticated,
Databricks will assume the developer has access to the remote repository. If this is not the
case, the developer will be notified upon an unsuccessful commit. Throughout the lifetime
of the project, several commits were made to ensure third parties had access to a clean
working source tree. Git largely met our VCS needs for the construction of a building fault
detection system. This approach to collaborative workflows allowed a team of four devel-
opers to concurrently modify notebooks and make version control commits throughout the
development cycle of the SBFD system.

4.2. Dependency Management

Early on, we analyzed the architecture of the Apache Spark clusters and the runtime
configuration. As mentioned in Section 2.2 (see output of ‘!which python’ command), each
worker node in a cluster has local storage that houses a virtual environment (‘venv’)
with frozen dedicated binaries for necessary utilities [15]. This is an environment-specific
directory that is non-portable and directs all notebooks attached to that cluster to use those
specific versions of binaries. In our case, as the selected language implementation on each
cluster was Python, this was largely ‘python3′ and ‘pip’, the official PyPi package manager.
A full Python 3 unpacked source distribution is present in this virtual environment, along
with a site-packages folder where source wheels for Python libraries are installed. Early on,
at the beginning of each notebook, there would be command cells dedicated to installing
the required dependencies. This is because the persistence policy of the modified virtual
environments is weak, i.e., the lifetime of the Spark context. When a cluster is terminated
and rebooted, all changes made to the local worker storage are reverted. The work around
is admittedly late-stage but simple: Databricks provides a cluster-scoped dependency
management console where you can set packages and exact version numbers that you
expect to be present on each cluster. The dependency manager applies the set versions
to the site-packages folder present on the virtual environments of each of the cluster’s
worker nodes. Currently, this meets our needs. The team is exploring the possibility of
dedicated initialization scripts for global and cluster scopes using the ‘dbcli’ utility to



Computers 2024, 13, 23 10 of 12

have robust control over the configuration of Apache Spark including the dependencies
made available to each cluster. None of the 3% of workflows that have been observed to
generate runtime exceptions have been due to dependencies, displaying the efficacy of this
management strategy.

4.3. Automation

Originally, the team had planned to write a primitive driver for the orchestration and
automation of pipeline tasks, housed in one notebook that would itself be scheduled by
the Databricks workflow scheduling interface. This proved to be unnecessary, as some
perceived complexities in the automation simply did not exist. The actual timeline of which
ingestion tasks needed to happen at what time and the order that various preparation and
cleaning workflows needed to be in turned out to be quite simple. Consequently, the BFD
system entirely relies on Databricks for task automation. Each notebook is scheduled to
run at a certain time every so often according to the need. Ample time for each stage to
complete is given between the scheduled runtime of the next workflow.

The only workflow that is scheduled daily is that which is responsible for the ingestion
of open weather data. This happens every hour of every day in real-time to maintain
an up-to-date record of observations for various climatic variables that aid in energy
consumption predictions.

Three primary workflow jobs consisting of 6–12 notebooks each make up the au-
tomated portion of the deployed pipeline. This approach to automation has yielded
successful results, with 100% of workflows triggering as scheduled. At the occurrence
of Spark runtime exceptions, the fault-tolerant nature of the pipeline has shined. The
offending workflows will proc on the next available compute time slice, with most excep-
tions occurring because of Spark misconfigurations that resolve themselves before the next
attempt. These runtime exceptions have been observed to occur in less than 3% of job runs
up to this point in deployment.

5. Results

The deployment of the code base yielded impressive results. The pipeline is currently
providing energy consumption predictions and fault detection for over dozens of buildings
on a military installation. Just as fast as consumption and climatic data is taken in, results
are forwarded to a dashboard in real-time. The primary analytic pipeline currently ingests
upwards of 2356 DAT files with building-level use data, along with climatic variables for
each of the 96 relevant building locations, and produces results within 14 min on average.
The pipeline is surely fault tolerant and resistant to runtime exceptions. Data has not failed
to arrive on the expected resource at any time in deployment, and 100% of job runs that have
been observed to generate runtime exceptions up to this point (3% of the total job runs) have
successfully recovered after being automatically triggered for another run. Additionally,
the pipeline’s ability to scale up is not in question, as we have seen very little growth in
runtime as more locations (smart buildings) are added to the diagnostic system. The team
accredits this fault tolerance to the simplicity of the proposed architecture. Approaches
taken by other researchers including SBDaaS fault detection [2] and direct-to-cloud WSN
fault detection [3] show that there are many different architectures that are capable of
meeting the needs of a big data analytic workload. The approach taken should be selected
according to project specifications, the most decisive of such are the number of data sources,
the number of smart buildings, time constraints, and a future need for vertical scaling or
lack thereof. The lack of numerous data sources in the SBFD use case lent itself well to the
centralized approach and made rapid development and deployment possible. There is
limited research involving not only a proposed smart building diagnostic architecture, but
actual results from a real-world application. Comparing concrete results is difficult given
this fact, but this adds to the novelty of our proposal in that it is actively deployed.



Computers 2024, 13, 23 11 of 12

6. Conclusions

Using cutting-edge cloud technologies and tireless programmatic configurations of the
pipeline components, a smart building fault detection system was developed and deployed
in less than one calendar year. Understanding the need for collaboration and implementing
the seamless interaction between components of the tech stack was crucial to the success
of this project. Sticking to a tightly centralized design and outsourcing the ingestion of
parameters on a per-building basis enabled rapid horizontal scaling. With big data on
the rise, relying on distributed compute and distributed storage platforms is becoming a
must. Knowing how to interface with these platforms and write fault-tolerant codes to
drive the various workflows of a big data pipeline will soon be the only way to process
large amounts of data and perform analytics efficiently. In the next phase of the project,
several data sources will be added to the pipeline. This will introduce new challenges in
the area of infrastructure solution and development operations, most notably, a distributed
network of sensor data. Integrating these subsystem sensors into a centralized architecture
will prove a unique challenge and likely force the creation of a new approach to smart
building diagnostics.

Author Contributions: Conceptualization, M.R.A., Y.P. and S.K.; methodology, T.M., K.H. and R.Z.;
software, T.M. and K.H.; validation, T.M. and K.H.; investigation, T.M. and K.H.; writing—original
draft preparation, T.M.; visualization, T.M.; supervision, R.Z.; project administration, M.R.A., Y.P. and
S.K.; funding acquisition, M.R.A. and S.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is funded in part by a Student Research and Creative Endeavors Grant from
Columbus State University through US Ignite (Fund#: 30177).

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from US Ignite and are available from the authors with the permission of US Ignite.

Acknowledgments: US Ignite, Inc. as part of the “Smart Installation Community Dashboard” (SICD)
Project., the United States Army Corps of Engineers, other developers and contributors not listed.

Conflicts of Interest: The authors declare no personal conflicts of interest. The funder purchased
Cloud resources used to implement the pipeline architecture proposed in this paper. The funder
benefited only from the data processed by the pipeline and the analytics results, not from the study
done in this paper (i.e., the architecture of the pipeline, the efficiency statistics of its performance).
The funder was not involved in the design of this study, the collection and analysis of results, or the
interpretation of the specific data presented in this paper. The funder was not involved in the writing
of this article or the decision to submit it for publication, and the funder benefits in no way from the
proliferation of this specific approach as proposed herein.

References
1. Bourhnane, S.; Abid, M.R.; Lghoul, R.; Zine-dine, K.; Elkamoun, N.; Benhaddou, D. Machine learning for Energy Consumption

Prediction and Scheduling in Smart Buildings. Spring Nat. Appl. Sci. J. 2020, 2, 297. [CrossRef]
2. Mohamed, N.; Lazarova-Molnar, S.; Al-Jaroodi, J. SBDaaS: Smart Building Diagnostics as a Service on the Cloud. In Proceedings

of the 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IBSG), Prague, Czech Republic, 27–29
June 2016. [CrossRef]

3. Stamatescu, I.; Bolboaca, V.; Stamatescu, G. Distributed Monitoring of Smart Buildings with Cloud Backend Infrastructure. In
Proceedings of the 2018 International Conference on Control, Decision and Information Technologies (CoDIT’18), Orlando, FL,
USA, 4–7 December 2018. [CrossRef]

4. Benhaddou, D.; Abid, M.R.; Achahbar, O.; Khalil, N.; Rachidi, T.; Al Assaf, M. Big data processing for smart grids. IADIS Int. J.
Comput. Sci. Inf. Syst. 2015, 10, 32–46.

5. Munappy, A.R.; Bosch, J.; Olsson, H.H. Data Pipeline Management in Practice: Challenges and Opportunities. In Product-Focused
Software Process Improvement; Morisio, M., Torchiano, M., Jedlitschka, A., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 12562.

6. Jannach, D.; Jugovac, M.; Lerche, L. Supporting the design of machine learning workflows with a recommendation system. ACM
Trans. Interact. Intell. Syst. (TiiS) 2016, 6, 1–35. [CrossRef]

7. Levy, E.; Silberschatz, A. Distributed file systems: Concepts and examples. ACM Comput. Surv. (CSUR) 1990, 22, 321–374.
[CrossRef]

https://doi.org/10.1007/s42452-020-2024-9
https://doi.org/10.1109/IGBSG.2016.7539417
https://doi.org/10.1109/CoDIT.2018.8394917
https://doi.org/10.1145/2852082
https://doi.org/10.1145/98163.98169


Computers 2024, 13, 23 12 of 12

8. Vangoor, B.K.R.; Tarasov, V.; Zadok, E. To FUSE or not to FUSE: Performance of User-Space file systems. In Proceedings of the
15th USENIX Conference on File and Storage Technologies (FAST’17), Santa Clara, CA, USA, 27 February–2 March 2017.

9. Ravat, F.; Zhao, Y. Data lakes: Trends and perspectives. In Proceedings of the Database and Expert Systems Applications: 30th
International Conference, DEXA 2019, Linz, Austria, 26–29 August 2019; Proceedings, Part I 30. Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; pp. 304–313.

10. Chaimov, N.; Malony, A.; Canon, S.; Iancu, C.; Ibrahim, K.Z.; Srinivasan, J. Scaling Spark on HPC systems. In Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed Computing, Kyoto, Japan, 31 May–4 June
2016; pp. 97–110.

11. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010; pp. 1–10.

12. Camacho-Rodríguez, J.; Chauhan, A.; Gates, A.; Koifman, E.; O’Malley, O.; Garg, V.; Haindrich, Z.; Shelukhin, S.; Jayachandran, P.;
Seth, S.; et al. Apache hive: From mapreduce to enterprise-grade big data warehousing. In Proceedings of the 2019 International
Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 1773–1786.

13. Salloum, S.; Dautov, R.; Chen, X.; Peng, P.X.; Huang, J.Z. Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 2016, 1,
145–164. [CrossRef]

14. Erich, F.; Amrit, C.; Daneva, M. Report: DevOps Literature Review; National Institute of Advanced Industrial Science and
Technology: Tokyo, Japan, 2014; pp. 5–7. [CrossRef]

15. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache Spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.13140/2.1.5125.1201
https://doi.org/10.1145/2934664

	Introduction 
	Infrastructure: Technology Stack 
	Primary Cloud Storage Medium 
	Workspace Platform and Compute Technology 
	Data Warehousing Technology 

	Infrastructure: Pipeline of Workflows and Datasets 
	Development Operations 
	Collaborative Workflows and Version Control 
	Dependency Management 
	Automation 

	Results 
	Conclusions 
	References

