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Abstract: Automatic anomaly detection plays a critical role in surveillance systems but requires
datasets comprising large amounts of annotated data to train and evaluate models. Gathering
and annotating these data is a labor-intensive task that can become costly. A way to circumvent
this is to use synthetic data to augment anomalies directly into existing datasets. This far more
diverse scenario can be created and come directly with annotations. This however also poses new
issues for the computer-vision engineer and researcher end users, who are not readily familiar with
3D modeling, game development, or computer graphics methodologies and must rely on external
specialists to use or tweak such pipelines. In this paper, we extend our previous work of an application
that synthesizes dataset variations using 3D models and augments anomalies on real backgrounds
using the Unity Engine. We developed a high-usability user interface for our application through a
series of RITE experiments and evaluated the final product with the help of deep-learning specialists
who provided positive feedback regarding its usability, accessibility, and user experience. Finally,
we tested if the proposed solution can be used in the context of traffic surveillance by augmenting
the train data from the challenging Street Scene dataset. We found that by using our synthetic data,
we could achieve higher detection accuracy. We also propose the next steps to expand the proposed
solution for better usability and render accuracy through the use of segmentation pre-processing.

Keywords: synthetic data; user-centered design; deep learning; anomaly detection; MNAD; Street
Scene; Unity

1. Introduction

In a surveillance context, abnormal activities, also called “anomalies”, are activities
that are out of the ordinary. We can roughly divide anomalies into two large categories
based on whether they are affected by context or not. Some anomalies are scene-dependent,
i.e., what might be considered an anomaly in one scene might be considered normal in
another. For example on a normal street, pedestrians crossing outside of a crosswalk or
walking on the street might be considered an anomaly of a type of jaywalking. On another
street that is designated as a walking street, this behavior can be normal. In some streets,
depending on the markings, a U-turn can be considered either normal or an anomaly [1,2].
On the other hand, anomalies can also be scene-independent—thus always seen as an
abnormality independent of the context. Examples of such anomalies can be brawling or
fighting on the street or a pedestrian falling or getting hit by a car [3,4].

Within surveillance systems, anomaly detection is a large area of interest, as manual
observation and analysis of real-time videos have several documented shortcomings. There
is an imbalance between the number of camera systems and the available human moni-
tors [5], and the task of following video feeds and detecting potential concerning events
is a laborious task, which requires maximum accuracy, with the time between detecting
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an event and response being vital for positive outcomes [6]. Finally, human monitors can
only focus their attention on a limited area from the observed surveillance footage, which
has the potential for missing events [7], as suspicious activity is much less common than
normal occurrences. Automatic systems can also filter away normal occurrences and only
provide alerts for abnormal detected behavior. This is especially beneficial for large-scale
surveillance systems in places such as public monitoring in parks, harbors, streets, or
intersections. Especially in traffic scenarios, anomaly detection is prevalent for monitoring
traffic flow and congestion, accidents, and law violations [8–10].

Anomaly detection is implemented through the use of autoencoder deep learning
models, which learn the representation of normal data from a training dataset. They are
normally built as an encoder/decoder architecture, which tries to reconstruct a given input.
When presented with a combination of normal and abnormal data, the reconstruction
error of the anomalies spikes, which can be used as an indicator of their presence and
classification of the data. This has the advantage of the autoencoders not needing to know
about all the potential anomalies and thus being trained only on diverse normal data. This
cuts down on data labeling [2,11,12].

One downside of using autoencoders is the need for large amounts of varied normal
and abnormal data. Even though several datasets exist online for surveillance purposes
focusing on pedestrian and traffic scenarios [13–16], the presented normal and abnormal
situations can be insufficient to train sufficiently robust models. The other problem with
using such predefined datasets is that researchers are constrained to only the presented
scenarios, which are captured, in most cases, in very short amounts of time. Due to
this, attempts have been made to generate and use synthetic data to either augment
the real-world one or directly substitute it in the training and testing of autoencoders.
This synthetic data can be generated through the use of ready-built game worlds such
as GTA [17,18] or full-city simulations [19]. Otherwise, they can be created through the
augmentation of already existing real-world images with synthetic elements [20–22]. While
most synthetic data augmentation relies on time-consuming processes, with weeks being
spent on frame rendering in some cases [21,23], others, such as the works on responsive
anomaly generation [20] and fall synthesis [24], are using real-time rendering game engines
to speed up and streamline the process. Even these applications have the downside of
still relying on domain-specific knowledge of game developers and 3D artists to set up the
environments and generate scenario variations.

This is why in this paper, we extend and streamline the anomaly generation and aug-
mentation process proposed by Nikolov [20] through the development of a user-centered
interface specialized in high usability through Rapid Iterative Testing and Evaluation
(RITE), which simplifies the process of generating synthetic data without relying on exter-
nal companies or extensive knowledge about 3D animation. The building blocks of the
interface are given in Figure 1. We additionally extend the approach from the purely pedes-
trian anomaly detection context to anomaly detection in traffic surveillance by introducing
the easy selection of streets, bike lanes, and walkways with synthetic cars, pedestrians,
and cyclists being generated on them. In addition to adapting the RITE of the developed
features, we presented the final prototype to deep learning specialists in the field of surveil-
lance anomaly detection and reported their positive reactions to the proposed system.
Finally, to demonstrate the validity of the produced synthetic data, we created additional
augmented training data from the challenging Street Scene [2] and trained the MNAD
anomaly detection model [25] on a combination of real and synthetic data. We report that
this results in better overall accuracy. This paper’s main contributions can be summarized
as follows:

• Extending the approach for augmenting datasets with synthetic elements [20] with a
customizable solution with a visual user interface specialized in high usability;

• Refocusing the solution to an anomaly detection in traffic surveillance context where
synthetic pedestrians, cars, and cyclists can be augmented into the scene;
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• Training the MNAD anomaly detection model on a combination of real and syn-
thetic data and demonstrating that it produces better results on the complex Street
Scene dataset

Figure 1. Overview of the pipeline built into the proposed application for synthetic augmentation
of anomaly detection datasets through the use of the Unity game engine. The main aspects of the
proposed solution are the user-centered menu system consisting of selecting occlusion parts (A),
loading images (B), calculating the 3D position of the camera (C), selecting roads (D), adjusting
the lighting and shadows of the scene (E), and spawning 3D objects for normal and abnormal
scenarios (F), exporting the synthesized content (G). The blue and red squares represent normal and
abnormal objects, while the multicolored squares represent the different classes like cars, bicycles,
and pedestrians.

2. Background Research
2.1. Anomaly Datasets

Current state-of-the-art research on anomaly detection commonly uses existing datasets
to train and evaluate their models [5,25,26]. Common datasets include UCSD Ped2 [27],
CUHK Avenue [14], and ShanghaiTech [15]. This is done because creating a new dataset
from scratch is a time-consuming task and because using the same datasets allows for
easier comparisons between similar research and testing new models against the same
anomalies. An issue that arises periodically with existing datasets is that new models
become too efficient at detecting anomalies, which makes datasets “solved” and diminishes
their usefulness. Therefore, newer challenging datasets are also often used. These include
Street Scene [2], UHTCD [28], ADOC [29], and LTD [16]. Even with these datasets, the
problem persists that the normal and anomalous data are still constrained to what was
captured at the specific times and for novel scenarios, requiring a new dataset or extension
of the old one. In addition, not all of the readily available datasets contain object- and
pixel-level annotations, as many of them focus mostly on frame-level annotations, which
limits their usefulness.

2.2. Synthetic Datasets

One way to combat the lack of scenario variations and the diminishing usefulness of
real-life surveillance datasets is to create synthetic ones. The generation of synthetic data
can be implemented into two main approaches. One is the creation of a full image or video
sequence from scratch using either deep learning models or digital twin environments. The
second is augmenting existing real-life images and videos with synthetic foreground and
background elements representing specific scenarios.
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Generating fully synthetic images can be completed through the use of generative
adversarial networks (GANs) or diffusion networks [30–32] or through the use of digital
twins created to mimic real-world environments [33,34]. One problem with these fully
synthetic images and video sequences is that deep learning models trained on them can
be susceptible to distribution gaps between the real and synthetic data. This in turn can
lower the performance of models and might require additional postprocessing to match
the synthetic data to the real one [35]. Augmenting real images and videos with synthetic
elements, on the other hand, bridges the gap much better between real and generated
data, as only certain elements of the images are synthesized. Especially for surveillance
purposes, such augmentations have been shown to produce good results for pedestrian
anomalies [21], falling in water detection [24], camera tampering [22], and subtle anomalies
such as dropping objects and animals in the frame, as seen in the work that the current
paper is an extension of [20].

3. Proposed Application
3.1. Overview

In this paper, we propose an application for synthetic dataset generation based on a
user-centered design perspective, which can be seen in Figure 2, with the two main parts for
interface interactions and synthetic data augmentation on top of the real images. Heuristics
proposed by Desurvire et al. [36] were used to ensure high usability for the application,
which maximizes the effectiveness, efficiency, and satisfaction by lowering interruptions or
challenges in using the program [37].

Figure 2. Overview of the synthetic data generation application with the two main parts: the
interface setup that contains all the menus the user can interact with and the preview setup which
contains the visualized real background images with the road, sidewalk, and bike path limits and the
synthetic objects.
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To extend the work done in the reactive synthetic data augmentation paper [20], we
focus on the traffic-anomaly detection context. This context is much more challenging [2,15],
as it focuses on traffic flow, pedestrians, and other participants in traffic such as cyclists and
bikers. We built the application in Unity, and as a basis, used the Street Scene dataset [2]. We
also used the open-source camera matching application fSpy [38] for semiautomatic camera
calibration from a single image. This software was successfully used for augmenting
surveillance images [20] and digital reconstructions [39]. The main parts of the developed
application, as presented in Figure 1, are the user interface (Section 3.2), the synthetic object
placement (Section 3.3), the occlusion of synthetic objects by real background elements
(Section 3.4), the automatic annotation of normal and abnormal images (Section 3.5), and
the improved blending of the real and synthetic parts of the image through lighting and
shadows (Section 3.6). We will discuss each of these elements in the next subsections. As
each of the elements is in a prototype stage, we will discuss the required changes to the
prototype in the Future Work Section 6.

3.2. User Interface Development

The proposed application’s main goal is to make synthetic data generation more
straightforward for nonspecialist users. Because of this, the goal of the design of the
interface was to keep the layout simple while still giving the user the freedom to make
the simulation fit their footage. This can be a challenge, as giving the user more freedom
will inherently lead to a need for more input fields [40,41]. From the design of interfaces
for games [36], a set of heuristics can be used as a basis for building the program UI. The
main design patterns used as a basis for the interface are that controls need to be consistent
and use standard industry conventions, they are spread out and mapped naturally, and
the controls are basic enough to not need a manual and be useable for both novice and
experienced users. As the main user group is researchers working with deep learning and
computer vision, it is believed that these users are used to interfaces closer to those of
annotation software solutions such as LabelMe 5.4.1 [42], CVAT 2.11 [43], LabelImg [44],
Supervisely 6.73 [45], and VoTT [46], among others. Similarly, to these applications, the
visualization screen is given the largest screen space while the different menus for camera
transformation, anomaly generation, traffic, lighting, exporting, etc. are set up as tabs, so
less space is used, and unneeded information is hidden. In the final iteration, the UI is
separated into four main groups shown in Figure 3:

• The visualization screen used for manually tweaking the position of the camera, road,
bike lanes, and sidewalks (A);

• The Unity camera positioning group where fSpy can be started and an initial camera
position can be loaded and later tweaked if needed (B);

• The synthetic objects group which contains the tabs for adding anomalies; synthetic
traffic in the form of cars, pedestrians, and cyclists; changing of light color, direction,
and intensity; and finally manual separation of the input image space into streets,
bicycle lanes, and sidewalks (C);

• The export tab contains options for setting up the length of the augmented video se-
quence, generating multiple videos one after the other, adding or removing anomalies
depending on the training or testing data being generated, and an option if video files
or image sequences should be saved (D).
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Figure 3. Overview of the synthetic data generation application with the visualization and annotation
screens shown (A) with the camera positioning panel noted with (B), the settings panel shown with
(C), and the export settings shown as (D).

3.3. Synthetic Object Placement

The synthetic object placement is separated into three main parts: the placement of
the virtual Unity camera in a correct 3D location to mimic the position of the real camera
that captured the dataset images; the placement of the 3D ground plane and its separation
into roads, bike lanes, and sidewalks; and finally the initialization and movement of the
synthetic 3D objects of cars, pedestrians, and cyclists.

Most surveillance datasets do not come with information about the intrinsic and
extrinsic parameters of the camera capturing the images, and videos and most of the
datasets include stationary location [16]. Because of this, we chose to use the same approach
presented by Nikolov [20] in utilizing fSpy to semiautomatically estimate the camera’s 3D
position. The difference between the approach presented by Nikolov and the proposed
implementation is that we integrated the fSpy output camera transformation directly in
Unity. This enables users to additionally manually tweak the camera position using the
camera position and rotation menus to better approximate the real one. The ground plane
is also placed initially through fSpy and can be moved closer to or further away from the
camera using the camera distance menu option shown in Figure 3.

Once the camera and ground plane are positioned, the plane can be separated into
three zones: roads, bicycle lanes, and sidewalks. These can be selected or removed based on
the user’s needs and type of dataset. Their position compared to each other is heuristically
selected as such that the bicycle lanes are on each side of the road and the sidewalks are
on each side of the lanes. If one of the zones is removed, the positions of the others are
adjusted accordingly so that they are next to each other. These zones are visualized with
semitransparent planes with different colors. The width of each zone can be scaled. The
user can then manually select and scale the zones until they overlap with the real scene.
The zones are shown in Figure 4a, and the menu for changing them is shown in Figure 4b.
In the proposed prototype, the zones cannot be rotated, and their length is manually set so
that it goes beyond what the camera sees.

Finally, once the three zones have been set up, the synthetic objects can be spawned in
the correct place depending on if they should represent an anomaly or a normal-behaving
object. For data augmentation, we selected three types of 3D objects to spawn. The first type
is cars, which are spawned on the road zone. Four car models were selected to represent
cars of different sizes and shapes: a sports car, a mini car, a larger sedan car, and an SUV.
The second type of object is cyclists, which are spawned on the bicycle lanes. Two models
of cyclists were implemented. The third type is pedestrians, which are spawned on the
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sidewalk. For pedestrians, three human models were implemented—two male and one
female. Here, we need to mention that these models were selected for testing purposes of
the prototype, and application in Unity was implemented in such a way that additional
3D models can be added for each of these categories of objects. Each synthetic object is
implemented with a base animation—cars moving, cyclists riding, and pedestrians walking.
The number of objects present in the scene can also be changed to make it more or less
populated and complex. Examples of the used 3D models and the traffic menu can be seen
in Figure 5.

(a) Road visualization (b) Road menus

Figure 4. Visualization of the menus and representation of positioning the 3D road on top of a real
image (a). From the menus (b), the width and length of the road can be set, together with the addition
of a bike lanes, sidewalks, and their widths.

(a) Example models (b) Traffic menus

Figure 5. Examples of the models used for augmenting the real dataset images—a pedestrian walking,
a cyclist, and a car (a)— together with the traffic menu for setting the number of objects spawned
from each time and their initial offsets (b).

For generating anomalies, we selected two of the anomalies presented in Street
Scene [2]—jaywalkers and cyclists not riding in the cyclist lane. We chose these two
because they use represent normal-behaving objects that change to anomalies when placed
in different parts of the captured scene. Additional anomalies such as illegal car U-turns,
illegal parking, or even collisions can be easily added to the application. The position and
the movement direction of normal and anomaly objects are randomized. Constraints are
given to the movement of each of the three types of synthetic objects. The cars are always
driving parallel to the road, and their direction is set so they drive in the correct traffic
direction. Cyclists also always ride parallel on the road and bicycle paths. Their direction
can be in the correct or inverse traffic direction. Driving in the wrong traffic direction is set
as an extension of the cyclist anomaly. Finally, the pedestrians can move parallel on the
walkway, or when jaywalking, they can cross the road and bike lane at different angles.
Examples of augmented normal and abnormal scenes are given in Figure 6.
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(a) Normal Augmentations (b) Cyclist Anomaly (c) Pedestrian Anomaly

Figure 6. Example images from Street Scene augmented with synthetic cars, pedestrians, and cyclists.
In (a), the 3D models shown with the blue bounding box demonstrate normal behavior, while in
(b,c), the models with the red bounding box are anomalies—jaywalking and cyclists driving on
the walkway.

3.4. Occlusion between Foreground and Background Elements

One of the main problems discussed in the work by Nikolov [20] is the occlusion
between the real background elements such as trees, lamp posts, buildings, etc., and the
synthetic augmented objects. If the occlusion is not correctly handled, it will result in data
that do not represent the real interactions between foreground and background elements
and the widening of the distribution gap between real and synthetic data, resulting in the
worse performance of the trained models.

To manage the occlusions, the same idea as presented by Nikolov is used in this
paper: users can manually select parts of the background image that need to occlude
the synthetic objects by drawing polygons with their mouse. A mesh with a transparent
material is generated from each closed polygon. A shader is written that makes the mesh
transparent to the background image but hides the synthetic objects behind it. As an update
to the proposed solution, a specific menu button is created to start the occluder-generation
process, which can be selected at any time by the user. The user can also easily add and
remove points from the polygon by clicking on them. A representation of the polygon is
shown with gray points, which turn red once the polygon has been closed and the mesh is
generated. A visualization of the unfinished and finished polygonal selection is given in
Figure 7a, while examples of occlusion of synthetic objects by the polygons are given in
Figure 7b.

(a) (b)

Figure 7. Manual creation of occlusion shapes to hide the synthetic models behind parts of the
background such as trees and buildings, together with examples of the occluded 3D models. As seen
by the car model, the quality of the occlusion depends on how well the occluder shape matches the
background. The selected occlusion part of the image is shown with white lines and the selected
points as red circles. (a) Manual occluder generation. (b) Examples of occlusions.

3.5. Synthetic Data Annotation

For object-level annotation, we use Unity’s Perception package [47], as it provides a
straightforward way to generate a wide array of annotations. We generated a bounding
box representation for each of the three types of synthetic objects for both normal or and
data, together with additional annotations for the two types of anomalies. For image-level
annotation, each generated image is tagged as an anomaly or not via generation of a CSV
file of 0 s and 1 s for each captured frame. This results in a file containing as many rows
as the frames in the current sequence, where each row is set to a 0 if there is no anomaly
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and to 1 if there is an anomaly present. This method is widely used for anomaly detection
models such as MNAD [25], LNTRA [48], LGN-Net [49], MPN [50], and others. Examples
of object-level annotations are given in Figure 8.

Figure 8. Object- level bounding-box annotations generated by Unity’s Perception package.

3.6. Lighting and Shadows

In the work presented by Nikolov [20], the used lighting was selected heuristically
by matching the direction of the shadows present on the scene. The chosen dataset was
also grayscale, which limited the need to select the correct shadow and light colors. To
extend this in the proposed application, we allow the possibility for users to easily change
the shadow orientation and the time of day by utilizing the HDRP rendering pipeline in
Unity and the dynamic skybox connected to it. The color of the light can be tweaked as
can the colors of the shadows cast from the synthetic objects. To receive the shadows from
the synthetic objects, the transparent plane representing the roads is given a shader which
makes the shadows cast on it opaque. The menu for changing the lighting and shadows
can be seen in Figure 9a.

(a) (b)

Figure 9. The created lighting menu for changing the direction of light, simulating different times
of day, and for changing the color of shadows, together with an example of using primitive cubes
outside of the camera view to give correct shadowing on the synthetic models. In the figure, the
red and brown cars are synthetic, while the white car is real. (a) Lighting menu, (b) Approximate
shadows on model.

Finally, to make the augmented objects better match the real ones and the background,
they need to receive shadows from background objects, such as buildings. We accomplish
this by giving the possibility for primitive objects such as cubes to be positioned and scaled
outside of the camera view by users until their shadows match up with the shadows cast
from the real buildings. An example of a primitive cube positioned in such a place can be
seen in Figure 9b, where the synthetic car acquires shadows that match up with the real
ones on the road.

4. Experiments

As part of this study, we conducted three experiments: a RITE used for interactive
development of the proposed application and building on top of the work proposed
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by Nikolov [20]; an interview with computer-vision experts working with surveillance
anomaly detection for traffic scenarios; and a test of the generated data itself, where we
created new normal synthetic data and used them to augment the data used for training
the MNAD [25] anomaly-detection model.

4.1. RITE Experimental Procedure

Rapid Iterative Testing and Evaluation (RITE) was used to test for usability issues in
the application, which helped ensure a high final usability. RITE measures effectiveness,
efficiency, and satisfaction through user feedback [51]. RITE is performed with a smaller
sample size, often 3–5 participants per iteration, but the sample size can be as low as
1 participant. The sample size of each iteration can vary between iterations, depending on
the amount and severity of the issues or bugs found. According to research on sample size
for traditional usability testing, 4–5 participants will uncover 80% of the problems that have
a high likelihood of being detected [52]. RITE thus does not aim to evaluate the product’s
visual fidelity but rather the usability of the workflow, the ease of use of the UI, and the
success of participants working through tasks with the software. For our RITE experiment,
each iteration consisted of one to three participants. They performed 10 tasks that guided
them through the core loop of the application. The test was concluded after a group of
five participants could no longer find issues or bugs that were not considered edge cases.
The tasks were designed to represent different types of workflows using an application
that mixed different parts of the menus such as starting the application, importing a video,
changing the camera, changing the road, adding synthetic objects, changing the lighting,
and exporting the augmented footage. An example workflow used in the RITE experiment
is given in Figure 10.

Figure 10. One of the performed sequences of tasks as part of the RITE experiment, which ensured
that the user experience would be as smooth as possible.

4.2. Expert Interviews

In addition to the RITE, interviews with experts in the field of computer vision were
conducted. This was an open interview where they were given tasks similar to the ones
given in the RITE experiment while giving feedback in a think-aloud interview. The
feedback from the experts was used to shape the application and make it more suitable for
computer-vision and deep-learning users.

4.3. Anomaly Detection Model Test

To test the suitability of the generated synthetic data for use in training anomaly-
detection models, we chose the Memory-Guided Normality for Anomaly Detection (MNAD)
model. The predictive variant of the model was selected, and the resolution of the images
fed to the model was set to 256 × 256. The compactness and separation losses were set to
0.1, with a batch size of 6 and a learning rate of 0.0002. The model was trained for 60 epochs.
For evaluating the model, we used the area under the curve (AUC) scores, which were
used to determine the classification effectiveness of the model, together with the F1-score,
precision, and recall.

To test the effectiveness of the data produced by our proposed solution, we chose to
compare the MNAD model trained only on real data against a combination of real and
synthetic data. To see the effect of the amount of synthetic data on the model’s performance,
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we created two subsets of the real training data: a large subset comprising 5668 frames
captured from the sequences contained in the Street Scene dataset Lreal and a small subset
comprising only 600 frames Sreal . The frames from both datasets were taken from full video
sequences. We created two additional datasets—the large mixed dataset called Lmixed and
the small mixed dataset called Sreal—by combining these two subsets with a dataset of
5607 synthetic frames created using our proposed system. The dataset contains a random
selection of cyclists, cars, and pedestrians in normal scenarios. For testing, we used the
testing dataset provided by the Street Scene dataset.

5. Results
5.1. RITE Experiment and Expert Interviews

The RITE was conducted in five iterations. The final feedback only included niche
matters and personal preferences. As these were not considered to be vital for the design, it
was decided to end the testing there. Figure 11 shows the number of errors and failures
each participant encountered during the five iterations. It needs to be specified that because
of the way RITE iterations are completed, with different participants, the found errors are
different each time. Each participant was also given an efficiency questionnaire asking to
give a score of how easy each of the tasks was to accomplish on a five-point Likert scale with
options of extremely difficult, difficult, neither easy nor difficult, easy, and extremely easy.

The error types found in each of the iterations are given below:

• First iteration —four errors were encountered by participants—two when annotat-
ing the background elements used for occlusion, one when using fSpy through the
application, and one when adjusting the road position;

• Second iteration—one error was encountered by the participant, again connected to
adjusting the road, when using the menu to set offsets;

• Third iteration—one error was encountered by the participant when annotating the
occlusion elements, as it was not known if the occlusion area was created or another
button needed to be pressed;

• Forth iteration—one error was encountered again in the annotation of the occlusion
elements, in the size of the selected region, where the participant thought the region
was smaller than it was.

• Fifth iteration—the users had three errors related to exporting functionality, and the
personal preferences of the users were to have more feedback when creating the
occlusion areas.

Figure 11. A diagram that shows the number of errors and failures encountered during each of the
iterations. The horizontal axis shows the number assigned to each participant, and the vertical axis
shows the number of failures and errors.

The biggest problems encountered by participants and the ones that needed to be
worked most on were the positioning of the 3D camera and the selection of occluding
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background elements. These two interactions were the ones causing the most errors through
the testing, but through the RITE iterations, the perceived difficulty decreased. This can be
seen when looking at the sum efficiency score from all tasks for each of the participants in
Figure 12, where the participants in the fifth iteration gave better overall scores. It needs to
be mentioned that through the RITE iterations, no user completely failed to finish a task.

Figure 12. The average efficiency score calculated from the questionnaire given to each participant in
the RITE. The score is the sum of the selected responses where extremely difficult is 1 and extremely
easy is 5. The maximum possible score is 50 from 10 tasks.

The experts liked the implementation, felt it had potential, and gave suggestions to
changes to the application. The main suggestions implemented were a larger variation
of 3D objects and additional categories, together with export options that would export
video or image footage. Changes to the synthetic object speed were also implemented. The
way the annotations were exported was also changed based on the expert feedback. The
requirements that can be considered for future work are the following:

• Menu system for selecting behavior animations for the different synthetic objects;
• The ability to change the ordering of the pedestrian walkways and the bike lanes so

that users can utilize the application with different types of road configurations;
• A preview window showing an animation of the anomaly before it has been aug-

mented into images;
• Easier changes to the lighting via the ability to separate it into times of the day or by

selecting a specific time.

5.2. Anomaly-Detection Results

The results from the evaluation of the MNAD model trained on the four different
datasets can be seen in Table 1. We can see that in all cases, the results show that the
anomalies connected to the Street Scene dataset are very difficult to detect. This can be
attributed to the fact that many of the anomalies present in the dataset are normal objects,
classified as anomalous because of their spatial position—jaywalkers, bikes outside the
bike lane, cars outside of their lane, loitering pedestrians, car U-turns, and not unseen
behaviors such as crashes, falls, etc. Even with these lower AUC results, we can see
that the introduction of additional synthetic data to the training process results in better
performance of the model. This is specifically apparent with the smaller real dataset
augmented with synthetic data. One thing to mention here is that the introduction of
synthetic data lowered the correctly detected normal data in the training set. This was
most probably caused by the fact that even with all the considerations, the synthetic data
augmentations that are produced are not photo-realistic, meaning that while the model
does gain more representation of what normal data can look like, it also receives a style
of data that is not present in the testing set. The increase in the F1 scores is a result of
increased recall, not increased precision. This highlights the fact that the introduction of
synthetic data did not have a large effect on a model’s ability to be correct when guessing
that a frame had an anomaly in it but rather that the anomaly frames were more likely to be
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identified as anomaly frames by the model. This can be seen as a pro or a con depending
on what the desired use case of the model is.

Table 1. Results from training the MNAD model on the four datasets: the large real image subset
Lreal , the small real image subset Ssmall , and their augmented versions of mixed real and synthetic
data Lmixed and Smixed. We report the AUC, precision, recall, and F1-score.

Dataset AUC Precision Recall F1-Score

Lreal 0.506 0.310 0.802 0.448
Lmixed 0.511 0.311 0.850 0.459
Sreal 0.477 0.310 0.820 0.450

Smixed 0.524 0.315 0.860 0.452

6. Future Work

The inconclusive anomaly-detection results show that the next step in testing the
produced synthetic data would be to use a model that is more suited for location-based
anomalies, such as the one used in the explainable video anomaly research [53]. This way
the robustness of the trained model can be evaluated as can the influence of the quality of
the synthetic data on the model behavior. Combining this with the comparison between
the detection of real and synthetic anomalies can give more insight into the possible use
cases for the proposed application.

One of the main problems users encountered in RITE was the selection of parts of the
background as occluders for the synthetic objects. Users found the process confusing and
slow, and even with the updates introduced through the RITE iterations, more work needs
to be done. One way to mitigate this problem completely is to automate the process by
introducing a segmentation step using the Segment Everything (SAM) [54] model for mask
generation and scene segmentation. This way, a user can just use a single click or drag
a bounding box around the required object and obtain a closer-fitting segmentation that
can be used to generate an occlusion area. An example of such a workflow can be seen in
Figure 13.

(a) Input Image (b) SAM Full Segmentation

(c) SAM Bounding-Box Segmentation (d) Example Result Occlusion

Figure 13. Future work improvement to the selection of background objects as occluders on a Street
Scene image (a) using the Segment Everything model (b) with manual selection of an object with
blue outline (c) and the resultant occlusion of a synthetic car shown in a red box (d).
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The current method of manually setting the light and shadow direction can be cum-
bersome, and we would like to automate it as much as possible by using directional-aware
spatial context features [55] or even combining an instance segmentation with paired
shadow detection, so certain shadows can be ignored [56].

In expanding the system, we would like to focus on implementing the feedback from
the experts, as well as adding an easier means to add and browse possible anomaly datasets
to be augmented. Currently, users have to use a simple file browser extension in Unity to
find the background images or video, which can be problematic if multiple datasets need to
be processed. We would also like to combine the synthetic augmentations presented in the
reactive synthetic elements research paper [20] with the ones created for this paper, giving
a larger library of anomalies and normal behaviors to work with. Currently, the presented
research does not have the same level of reactive synthetic elements, which would be
another area to pursue, as making pedestrians wait for real cars or having synthetic cars
veer off because real people or other vehicles can make the generated data closer to real life.

Finally, making the data more photo-realistic would also help with closing the gap
between real and synthetic images. The use of Unity’s HDRP rendering helps with making
lighting and shadows closer to a real-life visualization, but an additional possibility would
be to take the approach by Acsintoae et al. [21], while an additional postprocessing step
a GAN can be used on the augmented parts of images to make them better fit with the
real background. We would also like to test how close to real-life images we can generate
synthetic augmentations by extending the user study to focus on the perceived realism of
the images. This will give us a better overview of the needed realism of the 3D models and
of how correct the lighting and shadows are. We plan to extend the user testing with the
recreation of real examples from the Street Scene with our synthetic pipeline. This way,
users can compare the two and detect possible problems. An example of a side-by-side
view of real and synthetic scenes is shown in Figure 14.

(a) (b)

(c) (d)

Figure 14. An example of comparison pairs for user testing for detecting problems with rendering,
lighting, shadows, 3D model shading, and detail levels. (a) Real Image, (b) Synthetic Augmentation,
(c) Real Image, (d) Synthetic Augmentation.

7. Conclusions

In this paper, we presented an approach for creating a user-centered application
for creating synthetic augmentations of real datasets used for anomaly detection. The
approach builds upon the already established work [20] for generating responsive synthetic
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augmentations by focusing on a new use case of traffic anomalies and adopting a stronger
outlook on developing an easy-to-use application where each required step from the
pipeline is separated in simple to navigate menus. Bigger importance is given to step-by-
step development through the use of RITE and discussions with computer vision specialists.
To test the generated data we trained an anomaly detection model and showed that even
though the chosen dataset can be extremely challenging, the use of synthetic data, especially
when only a small amount of real data is present can achieve better results.
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