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Abstract: The rapid development of digitalization, the Internet of Things (IoT), and Industry 4.0
has led to the emergence of the digital twin concept. IoT is an important pillar of the digital twin.
The digital twin serves as a crucial link, merging the physical and digital territories of Industry 4.0.
Digital twins are beneficial to numerous industries, providing the capability to perform advanced
analytics, create detailed simulations, and facilitate informed decision-making that IoT supports.
This paper presents a review of the literature on digital twins, discussing its concepts, definitions,
frameworks, application methods, and challenges. The review spans various domains, including
manufacturing, energy, agriculture, maintenance, construction, transportation, and smart cities in
Industry 4.0. The present study suggests that the terminology “3 dimensional (3D) digital twin” is a
more fitting descriptor for digital twin technology assisted by IoT. The aforementioned statement
serves as the central argument of the study. This article advocates for a shift in terminology, replacing
“digital twin” with “3D digital twin” to more accurately depict the technology’s innate potential
and capabilities in Industry 4.0. We aim to establish that “3D digital twin” offers a more precise
and holistic representation of the technology. By doing so, we underline the digital twin’s analytical
ability and capacity to offer an intuitive understanding of systems, which can significantly streamline
decision-making processes using the digital twin.

Keywords: digital twin; 3D digital twin; Industry 4.0; IoT digital twin; advanced analytics for
digital twin

1. Introduction: Origins of Digital Twin and Its Development

The history of the digital twin is relatively brief, primarily due to technological con-
straints during its early stages. The evolution of digital twins is divided into three different
stages: (1) formation, (2) incubation, and (3) growth. This advancement and the significant
key events are depicted in Figure 1.
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Figure 1. History of digital twin. Reused with permission from Bhatti et al. [1]. 

The first emergence of the digital twin concept can be traced back to Grieves in 2003. 
During this formative period, there were very few references to digital twin technology. 
However, until 2011, rapid advancements in communication sectors contributed to the 
rise of digital twins, as reported by Bhatti et al. [1]. In 2011, the first paper on digital twins 
was published, explaining by what method digital twins can assist in estimating aircraft 
operational lifespan. In 2012, NASA officially started the concept of digital twins and ex-
plored potential applications in the aerospace industry, as reported by Grieves [2]. Fol-
lowing this formal definition, a surge in academic research on digital twins was observed. 
The year 2014 saw the expansion of digital twins beyond their aviation-centric origins to 
a variety of practical applications. 

Grieves [2] reported in 2018 that Gartner identified digital twins as among the top 
promising innovations affecting various industries in the future. As Yang et al. [3] stated, 
a digital twin is a unique simulation system based on professional knowledge and data in 
real time to create an accurate replica across various time and space scales. Glaessgen and 
Stargel [4] explained that digital twins technology is an advanced representation to de-
scribe the performance of a product. A number of interpretations of digital twin technol-
ogy exist. Some experts believe that digital twin research should concentrate on simula-
tion. Other professionals argue that it should comprise three components, which include 
physical, virtual, and connecting components as reported by Gabor, et al. [5]. 

In recent times, the concept of digital twins has attracted considerable attention from 
scholars and experts across several scientific and engineering fields. A particularly prom-
ising prospective use of the digital twin concept involves the ability to perform real-time 
optimization of control and operations through data-driven simulations [6]. The capabil-
ities of optimization in real-time refer to the ability of digital twins to continuously ana-
lyze incoming data and make immediate adjustments to improve performance or effi-
ciency. This concept is often discussed in the academic literature on digital twins, which 
explores the implementation of real-time optimization algorithms within digital twin 
frameworks for agriculture [7], predictive simulation [6], manufacturing systems [8], oil 
and gas industry [9], and petrochemical industry [10]. 

Regarding the use of digital twins, the term ‘local’ digital twin represents a specific, 
individual object, system, or process, which typically focuses on a particular asset or entity 
and simulates its behavior, characteristics, and interactions within its immediate environ-
ment. Local digital twins are often used for detailed monitoring, diagnostics, and predic-
tive maintenance of specific assets or components. While local digital twins focus on indi-
vidual entities or assets, ‘global’ digital twins provide a comprehensive view of larger-
scale systems or environments by integrating data from multiple local digital twins. Both 
concepts are essential in leveraging digital twin technology for monitoring, analysis, and 
optimization across different levels of complexity [11,12]. 

Numerous studies have reviewed the digital twin issues in the last three years with 
a wide domain span. Semeraro et al. [13] tried to answer the digital twins paradigmʹs basic 
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The first emergence of the digital twin concept can be traced back to Grieves in 2003.
During this formative period, there were very few references to digital twin technology.
However, until 2011, rapid advancements in communication sectors contributed to the
rise of digital twins, as reported by Bhatti et al. [1]. In 2011, the first paper on digital
twins was published, explaining by what method digital twins can assist in estimating
aircraft operational lifespan. In 2012, NASA officially started the concept of digital twins
and explored potential applications in the aerospace industry, as reported by Grieves [2].
Following this formal definition, a surge in academic research on digital twins was observed.
The year 2014 saw the expansion of digital twins beyond their aviation-centric origins to a
variety of practical applications.

Grieves [2] reported in 2018 that Gartner identified digital twins as among the top
promising innovations affecting various industries in the future. As Yang et al. [3] stated, a
digital twin is a unique simulation system based on professional knowledge and data in
real time to create an accurate replica across various time and space scales. Glaessgen and
Stargel [4] explained that digital twins technology is an advanced representation to describe
the performance of a product. A number of interpretations of digital twin technology exist.
Some experts believe that digital twin research should concentrate on simulation. Other
professionals argue that it should comprise three components, which include physical,
virtual, and connecting components as reported by Gabor, et al. [5].

In recent times, the concept of digital twins has attracted considerable attention
from scholars and experts across several scientific and engineering fields. A particularly
promising prospective use of the digital twin concept involves the ability to perform real-
time optimization of control and operations through data-driven simulations [6]. The
capabilities of optimization in real-time refer to the ability of digital twins to continuously
analyze incoming data and make immediate adjustments to improve performance or
efficiency. This concept is often discussed in the academic literature on digital twins,
which explores the implementation of real-time optimization algorithms within digital
twin frameworks for agriculture [7], predictive simulation [6], manufacturing systems [8],
oil and gas industry [9], and petrochemical industry [10].

Regarding the use of digital twins, the term ‘local’ digital twin represents a specific,
individual object, system, or process, which typically focuses on a particular asset or
entity and simulates its behavior, characteristics, and interactions within its immediate
environment. Local digital twins are often used for detailed monitoring, diagnostics, and
predictive maintenance of specific assets or components. While local digital twins focus
on individual entities or assets, ‘global’ digital twins provide a comprehensive view of
larger-scale systems or environments by integrating data from multiple local digital twins.
Both concepts are essential in leveraging digital twin technology for monitoring, analysis,
and optimization across different levels of complexity [11,12].

Numerous studies have reviewed the digital twin issues in the last three years with a
wide domain span. Semeraro et al. [13] tried to answer the digital twins paradigm’s basic
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questions (4W-1H), including scholarly studies, methodologies, and technological aspects
across various application fields. Sjarov et al. [14] concentrated on identifying precise
definitions of the phrase “Digital Twin” and establishing models that describe the idea
of Digital Twin. By expanding the theoretical framework, they established a platform for
the future modeling of augmented Digital Twins. Jones et al. [15] reviewed and analyzed
digital twin publications from the past decade and provided a characterization of the digital
twin by identifying the concept, terminology, and related processes. Like Jones et al. [15],
Liu et al. [16] conducted a comprehensive and detailed study of multiple digital twin
publications, analyzing them from numerous perspectives, including concepts, technology,
and industrial applications. In a specific industry, Opoku et al. [17] reviewed and analyzed
comprehensively the digital twin concept, technologies, and applications in the construc-
tion field. In a similar field, Madubuike, et al. [18] conducted a comprehensive review of
the progress and application of digital twin technology in the construction sector and com-
pared its utilization with other industries. Botín-Sanabria et al. [19] reviewed digital twin
technology in-depth, examining its implementation issues and limitations across several
domains and applications in engineering and other fields. Shahat, et al. [20] examined the
existing and future possibilities and difficulties of digital twin cities and provided guidance
for further research on the concept of city digital twin. Errandonea et al. [21] reviewed
digital twins in maintenance applications and highlighted future research pathways and
open issues. Lo et al. [22] conducted a study to examine the current status of digital twin
research, with a specific focus on product design and development. They achieved this
by describing typical industrial scenarios. The discussion also covered the challenges and
potential applications of digital twins, with the aim of inspiring future research. Melesse
et al. [23] examined the utilization of Digital Twins in the manufacturing industry. The
authors offered valuable perspectives to many industrial sectors, practitioners, researchers,
and specialists in the field about the distinct functions of Digital Twin models and the diffi-
culties encountered in the domains of production, predictive maintenance, and after-sale
services. In their study, Soori et al. [24] reviewed the utilization of digital twin technology
in smart manufacturing systems. They specifically focused on examining the benefits and
obstacles associated with modifying part production through the implementation of digital
twin technology. Similar to Soori et al. [24], Psarommatis and May [25] also examined the
concept of digital twins in the manufacturing industry. They thoroughly analyzed the
existing literature on the use of digital twins in zero-defect manufacturing. They proposed
a standardised design process to assist researchers and practitioners in developing digital
twins, regardless of the specific field.

However, few papers still address the more fundamental concept of digital twins in
various applications. This study contributes a review of the literature on digital twins,
discussing its concepts, definitions, frameworks, application methods, and challenges.
Moreover, the article could be of use in collaborative robotics. Digital twins play a crucial
role in advancing collaborative robotics by providing simulation, monitoring, predictive
capabilities, adaptive behavior, and training support. They enable stakeholders to de-
sign, deploy, and optimize collaborative workflows that enhance productivity, safety, and
adaptability in various industrial and service sectors.

The outline structure of this study consists of seven sections, as follows: the basics
of digital twin, which explore the concepts, definitions, and frameworks literature review
methodology is described in Section 2; digital twin concept, definition, and frameworks are
elaborated in section Section 3, the application of digital twin in Industry 4.0 in Section 4,
the challenges and solution of digital twin technology in Section 5. The limitation of the
term “Digital Twin” in Section 6 is the importance and significance of 3D digital twins in
Section 7. The last section is the conclusion and future research.

2. Methodology

This literature review follows a systematic approach to comprehensively examine the
existing literature on digital twins across diverse disciplines. The methodology encom-
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passes several key steps to ensure rigor and transparency in the review process, as shown in
Figure 2. First, an extensive literature identification was conducted using Scopus academic
databases. This step was conducted to map the landscape of the research. Initially, the
search was performed using relevant keywords such as “digital twin”, “digital twin tech-
nology”, and “digital twin applications” in the Scopus database. These keywords produced
tens of thousands of articles with wide-span fields of discussion. Publications within a
specified timeframe were considered to capture the most recent developments in the field,
mostly the five last year’s publications. Duplicate and irrelevant articles were excluded
from the review. Then, the article was screened using digital twins’ field applications,
such as manufacturing, energy, agriculture, maintenance, construction, transportation,
and smart cities. All of these fields involve intricate physical systems that can consider-
ably benefit from digital representation and analysis. The authors selected this field as a
representation of an application that has many contributions to advancing digitalization.
Moreover, these fields all deal with complex physical systems that can benefit greatly from
digital representation and analysis.
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Figure 2. Systematic review methodology.

Following the literature search, articles were screened by reviewing their titles, ab-
stracts, and brief reviews to find potentially relevant studies. Subsequently, the text was
comprehensively evaluated to determine suitability according to predetermined criteria for
inclusion and exclusion. Review articles and conference papers were considered if they of-
fered valuable information on the concept, definition, applications, frameworks, techniques,
problems, limitations, or breakthroughs of digital twin technology in different fields.

Data and information were compiled and synthesized systematically, with relevant
information from selected articles organized according to predetermined criteria into the
paper’s outline. Content analysis was employed to identify recurring themes, trends, and
patterns across the literature. The quality of selected articles was also assessed based on
criteria such as rigor of concepts, definitions, frameworks, applications, challenges, and
limitations to the review objectives. Finally, the review process was documented in detail
to facilitate critical issues. This systematic methodology aims to provide a comprehen-
sive review of the current knowledge of digital twin technology, its concepts, definitions,
frameworks, applications, challenges, limitations, and future research.

3. Digital Twin: Concepts, Definitions, and Frameworks

Digital Twin technology, supporting digital transformation and decision-making
across various industries, has evolved significantly over the past 20 years, leading to
a multitude of definitions that risk diluting the concept and causing ineffective imple-
mentations. VanDerHorn and Mahadevan [26] review 46 Digital Twin definitions from
the past decade, proposing a generalized definition encompassing the diverse range of
applications and offering a detailed characterization to differentiate Digital Twins from
other digital technologies.

Numerous definitions in the literature tend to blend a definition with distinct charac-
terizations of Digital Twins that are specific to the use cases they describe. A significant
portion of the confusion surrounding the Digital Twin concept seems to stem from the
qualifiers placed on certain characterizations to determine what is considered a Digital
Twin and what is not. The study by VanDerHorn and Mahadevan [26] mentioned above
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identified Digital Twin by three main elements: (1) A physical existence, (2) a digital repre-
sentation, and (3) connections that facilitate information exchange between the physical
existence and digital representation, as depicted in Figure 3.
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3.1. Digital Twin Reference Models

Lu et al. [27] examine the recent progress of Digital Twin technologies within man-
ufacturing systems and processes from an Industry 4.0 point of view. It offers a detailed
summary of Digital Twin definitions and state-of-the-art developments while organizing
existing technologies under a reference model to systematize the Digital Twin development
methodology. The study emphasizes representative applications aligned with the pro-
posed reference model and concludes by identifying key research challenges for the future
development of Digital Twins in smart manufacturing. Figure 4 displays a Digital Twin
reference model. The creation of a Digital Twin hinges on three vital elements. First, we
need an information model that takes the complexities of a physical object and simplifies it.
Next, we need a way for the Digital Twin and the real-world object to ‘talk’ to each other,
swapping data back and forth. Lastly, we have a data processing unit that takes data from
numerous sources, reads it, and uses this information to create a digital representation of
the physical object. These three components must collaborate to successfully construct a
Digital Twin.
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Aheleroff et al. [28] address the challenges in developing a comprehensive Digital Twin
reference architecture that balances scope and scale, emphasizing the need for appropriate
Industry 4.0 technologies and business models. The study highlights the lack of empirical
research on the relationship between Digital Twin technology and mass individualization.
A new Digital Twin reference architecture is proposed and applied to an industrial case
study while also introducing the concept of Digital Twin as a Service (DTaaS) for digital
transformation in unique wetlands. The results demonstrate a significant relationship
between DTaaS capabilities and mass individualization, emphasizing the potential benefits
of smart maintenance and predictive functionalities.

Aheleroff et al. [29] discuss the potential of using Digital Twin capabilities for mass
personalization in the context of the Fourth Industrial Revolution (Industry 4.0). The study
provides insights into new industrial applications for Digital Twin integration levels, con-
tributing to a better understanding of the potential of Digital Twin in meeting the high cus-
tomer demands and market competition of today’s business sectors. Erkoyuncu et al. [30]
introduce a novel design framework for Digital Twin. Addressing the limitations of con-
necting existing brownfield systems and their data, the framework has been successfully
tested on a helicopter gearbox demonstrator and a mobile robotic system, showcasing
Digital Twin’s adaptiveness without the need for modifications to the data architecture.

3.2. Scope and Requirements of Digital Twin in Manufacturing

The digital twin concept holds significant potential for enabling smart manufacturing,
but confusion persists regarding its implementation, particularly among small-to-medium-
sized enterprises. Shao and Helu [31] consolidate various perspectives on digital twins to
identify key characteristics for developing use case-specific digital twins, offering example
applications and emphasizing the need for a standardized framework like ISO 23247. It
enables context-reliant implementations, fostering composability and reusability of digital
twin components to optimize manufacturing processes. Figure 5 illustrates three potential
applications of digital twins at various manufacturing levels (e.g., machine, cell, line, facility,
or supply chain):

Computers 2024, 13, x FOR PEER REVIEW 7 of 28 
 

 
Figure 5. Three instances of digital twin utilization in manufacturing processes. Reused with per-
mission from Shao and Helu [31]. 

Kritzinger et al. [32] provide a literature review of Digital Twin in manufacturing, 
aiming to establish a common understanding of the term. The review categorizes publi-
cations according to their level of Digital Twin integration, including Digital Model, Dig-
ital Shadow, and Digital Twin. It was found that in the highest development stage litera-
ture, Digital Twin is not as frequent as Digital Model and Digital Shadow. 

3.3. Integrated Frameworks for Digital Twin 
A multi-dimensional conceptual modeling approach is needed as digital twin tech-

nology expands into various engineering domains. Wu et al. [33] introduce a conceptual 
modeling method according to a 5D framework of Digital Twin, capturing complicated 
relationships between Digital Twin objects and their characteristics. This method was ap-
plied to model the digital twin of an intelligent vehicle at the conceptual level. Lee et al. 
[34] present an integrated digital twin and blockchain framework to improve information 
sharing among fragmented stakeholders in construction projects. 

D’Amico et al. [35] propose a digital twin framework for the purpose of degradation 
assessment of complex engineering systems (CES) caused by wear, corrosion, and frac-
ture. The digital twin continuously monitors the CES and updates a virtual model to make 
real-time predictions about future functionality, providing data-driven approaches to pre-
dict degradation evolution over time. The study introduces the conceptual framework and 
discusses its potential applications for the management of CES. 

Leveraging digital twins, IoT, data mining, and machine learning, Min et al. [10] pre-
sent a framework for intelligent manufacturing in the petrochemical industry, emphasiz-
ing agile and smart production controls. The proposed method integrates AI tools with 
real-time big data from industries for training and optimizes Digital Twin models, ena-
bling dynamic adaptation to changing environments and enhancing economic benefits. 
Addressing industry-specific challenges, such as high data dimensions, time lags, and im-
mediacy demands, the study demonstrates the effectiveness of the proposed method 
through a successful case study at a petrochemical factory. 

The digital twin practice loop, designed for the petrochemical production line, in-
volves a continuous cycle of control and optimization, as depicted in Figure 6. While the 
first iteration of the loop requires significant manual effort for preparation and business 
understanding, subsequent iterations are expected to be executed automatically by com-
puters connecting the physical IoT and cyber-network. The repetition frequency depends 
on both business requirements and computing performance. 

Figure 5. Three instances of digital twin utilization in manufacturing processes. Reused with
permission from Shao and Helu [31].

Kritzinger et al. [32] provide a literature review of Digital Twin in manufacturing,
aiming to establish a common understanding of the term. The review categorizes publica-
tions according to their level of Digital Twin integration, including Digital Model, Digital
Shadow, and Digital Twin. It was found that in the highest development stage literature,
Digital Twin is not as frequent as Digital Model and Digital Shadow.

3.3. Integrated Frameworks for Digital Twin

A multi-dimensional conceptual modeling approach is needed as digital twin tech-
nology expands into various engineering domains. Wu et al. [33] introduce a conceptual
modeling method according to a 5D framework of Digital Twin, capturing complicated re-
lationships between Digital Twin objects and their characteristics. This method was applied
to model the digital twin of an intelligent vehicle at the conceptual level. Lee et al. [34]
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present an integrated digital twin and blockchain framework to improve information
sharing among fragmented stakeholders in construction projects.

D’Amico et al. [35] propose a digital twin framework for the purpose of degradation
assessment of complex engineering systems (CES) caused by wear, corrosion, and fracture.
The digital twin continuously monitors the CES and updates a virtual model to make real-
time predictions about future functionality, providing data-driven approaches to predict
degradation evolution over time. The study introduces the conceptual framework and
discusses its potential applications for the management of CES.

Leveraging digital twins, IoT, data mining, and machine learning, Min et al. [10]
present a framework for intelligent manufacturing in the petrochemical industry, empha-
sizing agile and smart production controls. The proposed method integrates AI tools
with real-time big data from industries for training and optimizes Digital Twin models,
enabling dynamic adaptation to changing environments and enhancing economic benefits.
Addressing industry-specific challenges, such as high data dimensions, time lags, and
immediacy demands, the study demonstrates the effectiveness of the proposed method
through a successful case study at a petrochemical factory.

The digital twin practice loop, designed for the petrochemical production line, in-
volves a continuous cycle of control and optimization, as depicted in Figure 6. While the
first iteration of the loop requires significant manual effort for preparation and business
understanding, subsequent iterations are expected to be executed automatically by com-
puters connecting the physical IoT and cyber-network. The repetition frequency depends
on both business requirements and computing performance.

The Industrial Internet of Things (IIoT) has emerged as a vital component of Industry
4.0, adding value to traditional devices through the integration of digital twin technology.
Jiang et al. [36] examine digital twin concepts and influential framework models, concluding
that successful digital twin implementation relies on a data, models, and services (DMS)
framework. By applying this framework to both device acquisition and remote system
layers within the IIoT, devices can be logically organized through the construction of partial
digital twins with varying functions. This “device-digital twin-application” approach
has been successfully demonstrated in the IoT of Gas-insulated Switchgear (GIS) systems,
offering a unified architecture that supports internal digital twin expansion and multi-
digital twin connections for improved mapping of complex systems. Furthermore, this
method isolates direct business access to equipment, strengthens local-cloud collaboration,
and fosters virtual-real integration and synchronization. The study also offers insights into
the development of a collaborative framework between edge and cloud computing.

In short, the concept of Digital Twin has evolved over the years, leading to various
definitions and frameworks that aim to capture its diverse applications. However, the
multitude of definitions has caused confusion and ineffective implementations. Researchers
have proposed a generalized definition that includes three main elements: a physical exis-
tence, a digital representation, and connections facilitating information exchange between
the physical and digital counterparts. Reference models highlight the essential components
required for constructing a Digital Twin, including an information model, a communication
mechanism, and a data processing module. The development of comprehensive Digital
Twin reference architectures is also crucial for effectively leveraging Industry 4.0 technolo-
gies and achieving mass individualization. The potential of Digital Twins for meeting the
demands of today’s business sectors and enabling mass personalization under Industry 4.0
has been explored by several researchers. Furthermore, novel frameworks utilize ontologies
for co-evolution with CES, showcasing the adaptiveness of Digital Twins without the need
for extensive modifications. Overall, Digital Twin technology holds significant promise
for supporting digital transformation and decision-making across industries, but further
research and standardization efforts are needed to fully unlock its potential and ensure
effective implementation.
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3.4. Evaluation of Digital Twins Performance

Evaluating performance is crucial in enhancing or overseeing any process or system
within a business. Evaluating the performance of digital twins helps determine how effec-
tively they are fulfilling their intended objectives. Similar to the common business, digital
twins require an evaluation approach to identify the maturity of the process. Moreover,
performance evaluation ensures quality and reliability. By assessing its accuracy, robust-
ness, and consistency, stakeholders can identify any discrepancies or shortcomings that
may compromise its usefulness. It allows stakeholders to assess whether the digital twin
is accurately representing the physical system, providing valuable insights and facilitat-
ing decision-making. Hence, the approach evaluation plays a significant role in guiding
practitioners, experts, or researchers to improve more effective processes in digital twins.

Generally, the phrase “maturity” denotes a “condition of being complete, perfect,
or ready” and suggests progression in the growth of a system [37]. As systems mature,
they gradually improve their capacities to reach a desired future condition. During the
evaluation process, the level of maturity can be assessed either using qualitative or quanti-
tative methods, and it can be measured in a discrete or continuous manner [38]. The initial
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concepts of digital twins evaluation were outlined in [39], which presented a four-step
implementation approach for digital technology (external inspiration, in-house impact
analysis, shortlisting and assessment, and prototyping and implementation). Additional
literature evaluations on Industry 4.0 maturity models are available in references [40,41].
However, the design and implementation of digital twins vary widely due to the numerous
possibilities they offer. Therefore, the evaluation of digital twins is also wide-ranging
in implementation.

Uhlenkamp et al. [42] organized and classified the maturity model, which formed
the central part. The model’s validity was confirmed by its application to five use cases
in production and logistics, representing various domains. The maturity model evaluates
digital twins based on seven categories (context, data, computing capabilities, model,
integration, control, human–machine interface) using a ranking system that includes 31
features. This marks the initial phase in conducting a methodical assessment, enhancing the
organized advancement of such applications. The article presented a valuable framework
for evaluating digital twins. However, the evaluation method’s scalability to highly complex
digital twins with numerous functionalities needs to be addressed.

Psarommatis and May [43] introduced a systematic approach for evaluating the perfor-
mance and flexibility of digital twins by presenting a step-by-step process for quantitatively
monitoring the performance of digital twins using four key performance indicators (KPIs).
In addition, the study suggested a novel KPI called DTflex to assess the level of flexibility
exhibited by digital twins. The performance of DTflex was assessed as a KPI to showcase its
use as a straightforward tool for designers and practitioners to efficiently compare various
digital twin approaches.

4. Applications of Digital Twin in Industry 4.0

The profound influence of Digital Twin technology has been increasingly recognized
across various sectors in Industry 4.0, reshaping the landscape of traditional operations and
opening doors to significant improvements in efficiency, productivity, and innovation. This
section delves into diverse applications of Digital Twins, exploring their implementation
and potential impact in the manufacturing realm—specifically in cutting tools, 3D printing,
additive manufacturing, dynamic scheduling, and data management—as well as in energy,
agriculture, maintenance, construction, transportation, and the creation of smart cities.
Through a detailed examination of these applications, we aim to provide a comprehensive
understanding of the transformative role Digital Twin technology plays in the Fourth
Industrial Revolution.

4.1. Manufacturing
4.1.1. Cutting Tool

The advancement of digital twin technology continues to revolutionize various aspects
of manufacturing, with cutting tools being one notable example. By creating virtual
counterparts for these tools, businesses can capture precise data throughout the production
lifecycle, allowing for insightful analysis, optimized process planning, and continuous
improvement. This is largely facilitated through standardizations like ISO 13399. Digital
twin-driven data frameworks provide unique insights into tool wear, which is crucial for
maintaining the efficiency and quality of manufacturing processes.

Botkina et al. [44] investigate the digital twin of a cutting tool, examining its data
format, structure, information flows, data management, and potential applications for
productivity analysis. Leveraging the international ISO 13399 standard and the event-
driven line information system architecture (LISA) with IoT functionality, data is accurately
collected throughout the production lifecycle. The digital twin is then stored, refined, and
incorporated into process planning to achieve optimized machining solutions, demonstrat-
ing the value of digital twins in contemporary manufacturing processes.

Xie et al. [45] present a digital twin-driven data flow framework for cutting tools
aimed at enhancing manufacturing digitalization and enabling continuous improvement of
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processes and tools throughout their life cycle. The framework offers two service modes for
manufacturers to cater to customer needs and proposes a virtual cutting tool test platform
that combines physical tool wear data with virtual tool wear data to provide valuable
insights for the future of intelligent manufacturing. Additionally, the study discusses
development prospects and challenges related to data analysis, fusion, mining, and service
within this context.

Overall, digital twins of cutting tools showcase the transformative potential of this
technology in manufacturing. By integrating real-time data from the physical world
with a virtual model, it is possible to optimize machining solutions, enhance manufac-
turing digitalization, and provide valuable insights for future intelligent manufacturing.
While development prospects and challenges remain, the strategic implementation of
digital twin technology in cutting tools promises significant advancements in modern
manufacturing operations.

4.1.2. 3D Printing and Additive Manufacturing

Digital twin technology has garnered significant attention in various sectors, includ-
ing manufacturing, due to its potential to enhance process efficiency and product quality.
Particularly in the fields of 3D printing and additive manufacturing, this technology offers
promising solutions to persistent challenges such as material limitations, structural com-
plexity, and high defect rates. The application of digital twins in these areas aims to reduce
the traditionally time-consuming and costly trial-and-error processes and enable faster and
more cost-effective part qualification. The following research summaries delve into the
specific applications of digital twin technology in 3D printing and additive manufacturing,
highlighting the latest developments and key findings in this evolving domain.

The 3D printing has the potential to transform manufacturing in various industries,
but its current market value remains small due to limited material options, structural
diversity, and susceptibility to defects. The existing trial-and-error qualification process is
costly and time-consuming, restricting 3D printing to niche markets. A paper by Mukherjee
and DebRoy [46] proposes a digital twin of the printing machine to lower the number
of trial-and-error checks and expedite part qualification, making 3D-printed components
more cost-effective. A comprehensive digital twin, incorporating mechanistic, control, and
3D printing statistical models, as well as machine learning and big data, can minimize
defects and decrease the time between design and production.

The geometry, microstructure, and defects of additively manufactured components
significantly affect their properties and serviceability. However, the selection of necessary
process variables could not be based on scientific theories, and optimization is currently
done through trial and error. The concept of a digital twin of additive manufacturing has
been introduced to overcome this challenge. Knapp et al. [47] present a computationally
efficient first-generation digital twin of laser-based directed energy deposition additive
manufacturing using a transient, three-dimensional model that calculates temperature and
velocity fields, cooling rates, solidification parameters, and deposit geometry. The measured
profiles of stainless steel 316L and Alloy 800H deposits and metallurgical parameters were
employed for verification.

Overall, the implementation of digital twins in 3D printing and additive manufac-
turing presents a significant opportunity to overcome current limitations. By reducing
trial-and-error tests, these digital replicas can expedite part qualification, making the
process more cost-effective and leading to wider adoption of 3D printing across various
industries. Furthermore, digital twins can predict the complex spatial as well as temporal
differences of metallurgical parameters affecting the components, contributing to more pre-
cise and efficient production. The higher prediction accuracy highlights the transformative
potential of digital twin technology in these areas.
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4.1.3. Dynamic Scheduling

In the dynamic and complex landscape of modern manufacturing, the integration of
digital twin technology has proven to be a key enabler in streamlining job-shop scheduling
and enhancing overall manufacturing processes. This section examines how digital twins,
through their real-time simulation and analysis capabilities, contribute to the continuous
digital monitoring and functional improvement of interconnected systems in manufacturing.

Zhang et al. [48] address common bottlenecks in dynamic scheduling for job-shops.
Digital twin facilitates convergence between the physical job-shop and its virtual models, en-
hancing dynamic scheduling by fusing real and simulated data for machine availability pre-
diction and real-time disturbance detection through comparison with its digital counterpart.

Industrie 4.0 is among many global endeavors that recognize the significance of indus-
trial manufacturing for economic and societal development. Addressing this transformation
entails grappling with socio-economic and political questions, including the future of labor,
as well as tackling crucial technical and technological challenges that must be overcome to
realize the full potential of this evolving landscape, as reported by Rosen et al. [49]. Digital
Twins have emerged as innovative solutions for continuous digital monitoring, as reported
by Stark et al. [50] in Figure 7. Based on this analysis, the paper identifies and presents
design elements crucial for developing effective Digital Twins.
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In the Industry 4.0 era, Digital Twins serve as promising enablers for real-time repli-
cation and analysis of production systems. Cimino et al. [51] examine the current state of
manufacturing and existing digital twin environments through a literature review, identify-
ing gaps between implemented digital twins and their descriptions in the literature. Key
areas of focus include the degree of digital twin integration with physical system control,
particularly with Manufacturing Execution Systems (MES) in the Automation Pyramid,
and the services offered compared to those in reference.

Overall, the increasing adoption and integration of Digital Twins in the manufacturing
sector marks a significant stride in the evolution of smart manufacturing. While gaps still
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exist in digital twin implementation and the seamless fusion with Manufacturing Execution
Systems, the studies reviewed offer promising solutions that navigate these challenges.
Future research will undoubtedly continue to refine these approaches, further bridging the
divide between theoretical concepts and practical implementations, thereby leading to a
more holistic and efficient manufacturing environment.

4.1.4. Data Management in Industrial Operations

The effective implementation and maintenance of Digital Twins in industrial oper-
ations presents a significant challenge due to their high complexity and data demands.
Digital twins are virtual representations of physical systems, consistently synchronized
with real-time data, providing critical insights for informed decision-making. This section
explores multiple facets of this issue, including the creation of high-fidelity digital twin
models for specific tools, the construction of a digital twin within a research environment,
the role of digital twins in various industrial domains, and the development of efficient
data construction methods to support digital twin systems.

Wei et al. [52] address the challenges in implementing and maintaining a high-fidelity
Digital Twin model for Computer Numerical Control Machine Tools (CNCMT). The authors
propose a model consistency retention method, including a framework for both digital and
physical spaces and principles for data management and performance attenuation updates.
The study examines the implementation method for consistency retention, focusing on
wear and damage updates separately. A case study involving a rolling guide-rail test
bench digital twin model demonstrates the proposed method’s implementation flow and
validates its operability and effectiveness, emphasizing the approach’s potential to improve
CNCMT digital twin modeling and maintenance.

Semeraro et al. [13] aim to provide an overview of digital twins’ components, features,
and challenges and their use in different application domains. The paper covers key
questions related to the digital twin, such as where and when to use it, why it is essential,
and how to design and implement it. The authors conducted a systematic literature review
of various scientific research, tools, and technicalities in different application domains to
address the challenges of implementing digital twins.

Melesse et al. [23] provide a systematic literature review on the role of Digital Twins
in industrial operations, particularly in production, predictive maintenance, and after-sales
services, and identify challenges in applying Digital Twin models to extend their role in
these domains. The review highlights the need for a systematic approach to applying
Digital Twin models and provides insights for practitioners, researchers, and experts in
the field.

Kong et al. [53] propose a data construction method to support the efficient and
accurate operation of Digital Twin Systems (DTS) manufacturing workshop, which relies
heavily on manufacturing data. The proposed method is designed based on the functional
requirements, taking into account the characteristics of manufacturing data, such as its
coupling and large-amount nature. The framework of data construction consists of a data
representation module, a data organization module, and a data management module.
The effectiveness of the proposed method is demonstrated by applying it to the cutting
tool wear prediction case study. This study provides a valuable reference for developing
efficient data support for the applications of digital twin systems.

Overall, the studies discussed highlight the potential of Digital Twin technology in
transforming industrial operations, with a focus on production, predictive maintenance,
and after-sales services. Crucially, they underscore the importance of maintaining model
consistency, efficient data construction, and realistic digital twin construction for effec-
tive application. With these advances, digital twin technology stands poised to enhance
decision-making processes, improve tool maintenance, and streamline industrial opera-
tions, reinforcing the need for continued research and practical application development in
this area.
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4.2. Energy and Agriculture

Digital Twin technology, an innovation that pairs the virtual and physical world, is
increasingly transforming the energy and agriculture sectors. The technology’s capacity to
model complex systems, detect anomalies, predict risks, and optimize operational processes
presents significant potential to address industry challenges and improve efficiencies.
From function-structure-behavior-control-intelligence-performance frameworks for smart
manufacturing systems to predictive maintenance of CNC machine tools, digital twins
are reshaping existing paradigms. In the energy sector, digital twins aid in predicting risk
probabilities in oil pipeline systems and optimizing fuel cell operations. Simultaneously, in
the agriculture sector, they offer valuable insights into farming operations and foster an
understanding of the value digital twins could bring to this industry.

Leng et al. [54] explore the integration of digital twin technologies in smart manufac-
turing system (SMS) design, addressing the challenges of concurrent design and unified
modeling for complex, multi-field systems. Priyanka et al. [55] propose a Digital Twin-
based framework that leverages machine learning and prognostics algorithms to analyze
and predict risk probability rates in oil pipeline systems. The framework focuses on de-
tecting failure precursors through pressure data analysis and remaining useful life (RUL)
evaluation. It employs Dirichlet Process Clustering and Canopy clustering to identify ab-
normal pressure changes, while manifold learning methods extract features from multiple
oil substation data. Kernel-based SVM algorithms evaluate the best feature probability
rates, enabling on-time control actions across the entire oil pipeline system through efficient
wireless data communication. The proposed Virtual Intelligent Integrated Automated
Control System predicts risk rates in the oil industry by integrating transmission lines
through enhanced wireless information networks in remote locations.

Wang et al. [56] present a surrogate modeling method that combines a state-of-the-art
three-dimensional proton exchange membrane fuel cell (PEMFC) physical model with a
data-driven model to develop multi-physics-resolved digital twins. The surrogate model
demonstrates prediction accuracy comparable to the comprehensive 3D physical model
while significantly reducing computational cost and time. Test-set relative root mean
square errors (rRMSEs) of multi-physics fields range from 3.88% to 24.80%, effectively
capturing the multi-physics field distribution characteristics. Two model-based designs, the
PEMFC healthy operation envelope and state map, are demonstrated using the developed
digital twin framework. This research showcases the potential of integrating data-driven
approaches with comprehensive physical models to create digital twins for complex systems
like PEMFCs.

Pylianidis et al. [7] investigate digital twins’ adoption and potential benefits in the
agriculture sector, using a mixed-method approach to analyze literature from 2017 to
2020. The paper concludes by recognizing the unique features of agricultural digital twins,
showcasing the transformative potential of this technology within the industry. Figure 8
displays the various physical twin types and the maturity of each use case as represented
by their TRL levels.

Uhlemann et al. [57] highlight the challenges faced by SMEs in fully automating data
acquisition and processing, as well as the lack of knowledge about the benefits of digitaliza-
tion. Overall, a digital twin is a transformative force in the energy and agriculture sectors,
driving advancements in system modeling, risk prediction, and operation optimization.
Its ability to create high-accuracy virtual representations of complex physical systems has
far-reaching implications, from enabling proactive maintenance strategies to enhancing
decision-making processes. This potent combination of physical and virtual realities fosters
innovative solutions to traditional industry challenges. Despite considerable strides, a
comprehensive understanding of digital twins’ potential continues to unfold, suggesting
promising opportunities for future research and development. These technological advance-
ments hold great promise to shape a future where digital twin technology is integrated
seamlessly into the fabric of these industries.
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4.3. Maintenance and Construction

Digital Twin technology, characterized by creating virtual models of physical systems,
has been making remarkable strides in the industrial sectors, notably in maintenance and
construction. Its unique capability to simulate, monitor, and predict the performance of
systems has immense potential to revolutionize these fields. The application of digital twins
encompasses a broad range of areas, from predictive maintenance of industrial machinery
to smart construction project management. Integrating the power of other cutting-edge
technologies, digital twins are creating high-fidelity virtual models that enable advanced
project management and improved lifecycle monitoring of complex equipment. This
paradigm shift offers potential solutions to industry challenges such as low productivity
and slow technological advancements while facilitating an enhanced understanding of
system operations.

Digital Twins have seen widespread implementation for maintenance. It has garnered
significant research interest due to its potential impact on company operations, such as
shutting down entire production lines or ensuring worker safety. Errandonea et al. [21]
review digital twin applications for maintenance, detailing the concepts and strategies for
both “Digital Twin” and “maintenance”, followed by a literature review exploring their
intersection. Besides examining current digital twin applications in maintenance, the paper
also identifies future research directions and open issues in the field.

Pan and Zhang [58] propose a closed-loop digital twin framework integrating Building
Information Modeling (BIM), the Internet of Things (IoT), and data mining techniques for
smart construction project management. Tao et al. [59] present a new method for improving
the accuracy and efficiency of prognostics and health management (PHM) using digital
twin technology. The digital twin is an emerging technology that allows for physical-virtual
convergence, making it an effective tool for monitoring complex equipment lifecycles in
harsh environments. The paper outlines the construction of a general digital twin for
complex equipment and proposes a new method for PHM that makes use of the interaction
mechanism and fused data of digital twin.

The construction industry faces challenges such as low productivity, limited research
and development, and slow technology advancements. Digital twin technology has trans-
formed industries like manufacturing and automotive, offering potential solutions for
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construction industry challenges. Opoku et al. [17] analyze the current state of digital twin
applications in construction using a systematic review and science mapping method. It
examines the concept’s evolution, key technologies, and six areas of application throughout
a project’s lifecycle: building information modeling, structural system integrity, facilities
management, monitoring, logistics processes, and energy simulation. The research high-
lights the digital twin’s potential to address numerous construction industry challenges,
emphasizing the need for greater awareness and application of digital twin in this sector.

The engineering, architecture, and construction sector is increasingly influenced by
digital technologies that facilitate monitoring, managing, simulating, and optimizing
engineering systems throughout the lifecycle of built assets. While Building Information
Modeling (BIM) offers building components with standardized semantic representation,
the Digital Twin technology provides a more holistic and process-oriented characterization,
addressing the limitations of BIM, such as semantic completeness in control systems and
urban artifacts. Boje et al. [60] review BIM applications during the construction stage,
identifying limitations and requirements, and introduce a Construction Digital Twin. The
definition, underpinning research themes, and future research areas are discussed to explore
the potential of this comprehensive approach in the digital age. Numerous recurring ideas
in the literature related to digital twins are categorized within the Virtual-Data-Physical
framework, as depicted in Figure 9.
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Ozturk [61] conducted a bibliometric search and scientometric analysis of 197 papers
from the Scopus database, revealing that current research spans model-based information
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management, building information management, and interactions between buildings and
smart cities. Key focus areas include virtual-physical building integration, building lifecycle
management, and information-integrated production, while information-based predictive
management and virtual-based information utilization require further attention. The
study recommends that future research concentrate on integrating digital twins with their
physical counterparts for enhanced building lifecycle performance. Limitations include
a relatively small sample size because of the novelty of the subject, with future research
advised to incorporate practice-oriented innovations and industry-driven improvements
for more comprehensive results.

Overall, Digital Twin technology holds substantial promise in reshaping the mainte-
nance and construction sectors. Through its ability to provide high-precision virtual models
of physical systems, digital twins enhance predictive maintenance capabilities, facilitate
smart construction management, and help overcome longstanding industry challenges.
The technology’s future seems to lie in fully integrating digital twins with their physical
counterparts to comprehensively understand building lifecycle performance. Despite the
promising progress, several areas warrant further research, with potential for considerable
practical applications. Given digital twins’ numerous benefits, they are poised to become
an integral part of the maintenance and construction sectors, driving operational efficiency
and technological advancement.

4.4. Transportation and Smart Cities

The advent of digital twin technology is revolutionizing various sectors, and the trans-
portation industry and smart cities are no exception. Digital twins leverage advancements
in IoT, cloud computing, artificial intelligence, and big data to create dynamic, real-time
replicas of physical systems, facilitating their monitoring, control, and optimization. This
technology holds significant promise in enhancing battery management systems, contribut-
ing to the development of smart electric vehicles, revolutionizing urban planning, and
addressing acute traffic management issues in cities. It also provides a unified framework
for disaster management, boosting situation assessment, decision-making, and stakeholder
coordination. From simulating complex traffic scenarios to creating interactive 3D city
models, digital twins are setting new benchmarks in transportation and urban governance.

Li et al. [62] introduce a cloud battery management system that leverages cloud
computing to enhance battery systems’ computational power and data storage capabilities.
IoT technology enables seamless transmission of battery data to the cloud, creating a digital
twin for the battery system. This digital twin facilitates battery diagnostics and monitoring
of charge and aging levels. The cloud battery management system’s functionality and
stability are validated through prototypes for both stationary and mobile applications
under field operation and experimental testing. Figure 10 illustrates a summary of digital
twin applications within the automotive industry.

Rudskoy et al. [63] address the acute traffic management issues faced by cities and
highlight the need for modernization using digital twins and artificial intelligence. By
integrating Intelligent Transport Systems (ITS), it is possible to address key challenges
within the transport network and foster its effective development. The article examines
real-life ITS implementation cases and proposes a reference model for the services offered
by these systems.

Smart cities are considered a solution to global warming, population growth, and
resource depletion. Digital twins, IoT, 5G, blockchain, collaborative computing, simulation,
and AI technologies hold great promise for transforming urban governance. Deng et al. [64]
introduce a digital twin city (DTC). Additionally, the paper discusses relevant theories,
research directions, and frameworks concerning digital twin cities.
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Digital twins, initially developed for enhancing manufacturing processes, have evolved
with advancements in building information models (BIM) and IoT-generated big data, en-
abling the creation of digital twin smart cities. These accurate 3D city models can be
shared online, allowing the public to explore proposed urban planning and policy changes,
fostering transparency and ease of dissemination. Citizens can interact with the model,
providing feedback on planned alterations and reporting local issues. Digital twins also
facilitate experimentation in areas requiring 3D data, such as flood evacuation planning.
White et al. [65] present a public and open digital twin of Dublin’s Docklands area, demon-
strating its utility in urban planning, skyline, and green space management and enabling
user interaction and feedback on proposed changes.

Overall, the adoption of digital twin technology is undeniably transforming trans-
portation and the design of smart cities. By creating an interactive and virtual replica of
battery systems, electric vehicles, city infrastructure, and disaster scenarios, digital twins
offer improved diagnostic and monitoring capabilities, streamlined decision-making, and
enhanced stakeholder engagement. However, while the technology promises significant
advancements, it also poses substantial challenges requiring further research and devel-
opment. The increasing sophistication of digital twins is expected to significantly address
intricate challenges in transportation, urban planning, and disaster management, thereby
contributing to the advancement of sustainability and efficiency in the future.

5. Challenges and Solutions of Digital Twin Technology
5.1. Connection between Physical and Virtual Models

Digital twins are crucial for smart factories and manufacturing under the Industry 4.0
paradigm. Jiang et al. [66] focus on rapid digital twin modeling methods and connection



Computers 2024, 13, 100 18 of 26

implementation mechanisms between physical and virtual systems at the workshop level.
Discrete event system (DES) modeling theory is applied to a three-dimensional digital
twin model. Seven basic elements are identified to formally represent a manufacturing
system, with logistics path networks and service cells introduced for uniform description.
A new interconnection and data interaction mechanism is designed for through-life applica-
tions, with discrete cells mapped onto production-process-oriented digital manufacturing
modules. The proposed method and connection mechanism are demonstrated through a
real-world workshop digital twin, showcasing practicality and usefulness.

5.2. Human Digital Twin

Digital Twin technology, predominantly applied in advanced manufacturing, Product
Lifecycle Management (PLM), and smart healthcare, is explored by Shengli [67] for its
potential use in the full lifecycle management of humans. The concept of an Augmented
Digital Twin serves as the foundation for the Human Digital Twin (HDT), the paper’s
core idea. Drawing from Digital Twin applications in various fields and advancements in
Data Mining, Data Fusion Analysis, Artificial Intelligence, Deep Learning, and Human-
Computer Science, it is concluded that Human Digital Twin is a feasible approach for full
lifecycle health management. Shengli [67] presents the Human Digital Twin’s concept, con-
ceptual model, and characteristics, comparing it to traditional Digital Twins to demonstrate
its potential. Human Digital Twin System Architecture and Implementation Approach are
proposed to discuss Human Digital Twin construction. However, the authors emphasize
the challenges in achieving the Human Digital Twin due to its complexity, various aspects
involved, and security and social ethics concerns.

5.3. Networking Requirements for Digital Twin

Digital twin technology serves as an innovation accelerator, offering a live replica
of physical systems and delivering numerous benefits, including accelerated business
processes, enhanced productivity, and cost-effective innovation. As an ideal solution for
various challenges in domains such as Industry 4.0, education, healthcare, and smart cities,
digital twin technology must ensure a synchronized real-time copy of the physical system.
The network connecting the physical and digital twins must meet specific requirements,
such as low-latency real-time communication, data security, and quality. Mashaly [68]
presents an overview of digital twin technology and its application domains, a compre-
hensive discussion of its networking requirements, and proposed technologies that enable
these demands.

5.4. Barriers and Enablers in the Process Industry

The concept of “digital twins” has seen a surge in practical applications across various
industries since its introduction in 2002. However, due to the novelty of the concept, or-
ganizations face significant challenges when implementing digital twins, particularly in
the process industry, where accurately representing and modeling the underlying physics
of production processes is highly complex. Perno et al. [69] consolidate the fragmented
literature on enabling factors and challenges in digital twin implementation for the process
industry by organizing existing studies and focusing on barriers and enablers. By doing
so, it contributes to the current body of knowledge on digital twins and proposes concep-
tual models that depict enablers, barriers, and their mutual relationships in digital twin
implementation.

5.5. Data Integration and Management

Manufacturing operations produce data that can enhance process capability, adaptabil-
ity, and awareness. Cyber-physical systems collect data from manufacturing equipment,
often using protocols such as MTConnect, to drive change and improve production out-
put. Additionally, Manufacturing Execution Systems (MES) can monitor process output,
consumable usage, and operator productivity. However, MTConnect data and MES data
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typically reside in separate, proprietary, and costly systems. Urbina Coronado et al. [70]
introduce a new, low-cost MES, utilizing Android devices and cloud computing tools, that
integrates MTConnect data with operator-collected production data, making it particu-
larly suitable for small manufacturing enterprises. A case study tracking a titanium parts
production run demonstrates the correlation between MES and MTConnect data from a
machine tool. This research contributes to the development of a Shop Floor Digital Twin, a
comprehensive digital model of the shop floor for production control and optimization.

5.6. Visualized Architecture for Flexible Manufacturing Systems

Fan et al. [71] present a general architecture of digital-twin visualization for flexible
manufacturing systems (FMS), addressing the human–machine interaction problem in the
context of Human-Cyber-Physical Systems (HCPS) and focusing on full life cycle func-
tional services and lightweight architecture. Connections among FMS life cycle prototypes
is shown in Figure 11. The proposed architecture explores digital-twin Cyber-Physical
modeling of multi-source heterogeneous information and 3D visualized human–machine
interaction with digital-twin scenario information. The study thoroughly investigates the
visualization method of high-value information across the life cycle stages and introduces
the “Geometric information (G)-Historical samples (H)-Object attribute (O)-Snapshot col-
lection (S)-Topology constraint (T)” (GHOST) digital-twin modeling concept, as well as
methods for developing virtual digital-twin scenes architecture. Experimental results of the
developed prototypes for the general platform of digital-twin RESTful services and cross-
platform general visual mock-up software demonstrate the effectiveness of this method in
various aspects of the FMS lifecycle.

Computers 2024, 13, x FOR PEER REVIEW 21 of 28 
 

is shown in Figure 11. The proposed architecture explores digital-twin Cyber-Physical 
modeling of multi-source heterogeneous information and 3D visualized human–machine 
interaction with digital-twin scenario information. The study thoroughly investigates the 
visualization method of high-value information across the life cycle stages and introduces 
the “Geometric information (G)-Historical samples (H)-Object attribute (O)-Snapshot col-
lection (S)-Topology constraint (T)” (GHOST) digital-twin modeling concept, as well as 
methods for developing virtual digital-twin scenes architecture. Experimental results of 
the developed prototypes for the general platform of digital-twin RESTful services and 
cross-platform general visual mock-up software demonstrate the effectiveness of this 
method in various aspects of the FMS lifecycle. 

 
Figure 11. Connections among FMS life cycle prototypes. Reused with permission from Fan et al. 
[71]. 

6. The Limitations of the Term “Digital Twin” 
6.1. Limited Understanding 

One of the drawbacks of the term “digital twin” is its limited understanding. The 
term “digital twin” may present challenges in comprehension for individuals lacking 
technical expertise and may not fully encapsulate the technology’s comprehensive scope 
and potential for those who lack familiarity with it. Because of this, it may be challenging 
for non-technical people to completely understand the notion of digital twin technology 
and its potential advantages. Furthermore, it could cause misunderstandings and errone-
ous interpretations of the technology, which might delay the implementation of digital 
twin technology in some sectors or organizations. This restriction can be removed by mak-
ing explanations of digital twin technology easier to access and comprehend and by em-
phasizing its potential advantages in a way that is clear to non-technical people. 

6.2. Limited Scope 
Another drawback of the phrase “digital twin” is its restricted scope. “Digital twin” 

refers to a virtual model that is merely a copy of the physical system. However, the virtual 
model can be more than just a copy; it can also have extra analytical and simulation fea-
tures that can be utilized to boost the physical system’s performance. Because of this, it 
may be challenging for consumers to completely comprehend the capabilities of digital 

Figure 11. Connections among FMS life cycle prototypes. Reused with permission from Fan et al. [71].

6. The Limitations of the Term “Digital Twin”
6.1. Limited Understanding

One of the drawbacks of the term “digital twin” is its limited understanding. The
term “digital twin” may present challenges in comprehension for individuals lacking tech-
nical expertise and may not fully encapsulate the technology’s comprehensive scope and
potential for those who lack familiarity with it. Because of this, it may be challenging for
non-technical people to completely understand the notion of digital twin technology and
its potential advantages. Furthermore, it could cause misunderstandings and erroneous
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interpretations of the technology, which might delay the implementation of digital twin
technology in some sectors or organizations. This restriction can be removed by making ex-
planations of digital twin technology easier to access and comprehend and by emphasizing
its potential advantages in a way that is clear to non-technical people.

6.2. Limited Scope

Another drawback of the phrase “digital twin” is its restricted scope. “Digital twin”
refers to a virtual model that is merely a copy of the physical system. However, the virtual
model can be more than just a copy; it can also have extra analytical and simulation features
that can be utilized to boost the physical system’s performance. Because of this, it may
be challenging for consumers to completely comprehend the capabilities of digital twin
technology and to appreciate all of its potential advantages. It could also result in a limited
vision of the technology, which might hinder the adoption of digital twin technology in
some businesses or organizations. This constraint can be overcome by giving digital twin
technology more thorough and inclusive descriptions, showing its analytical powers and
capacity to go beyond basic reproduction, and emphasizing its potential benefits in a
straightforward manner.

6.3. Limited Recognition in Certain Industries

Another drawback of the phrase “digital twin” is its limited acceptance in some
businesses. The phrase “digital twin” may be connected to some sectors of the economy,
such as manufacturing, but may not be as well-known or understood in others, like
healthcare or construction. Because of this, it may be challenging for sectors of the economy
that are less experienced with digital twin technology to completely understand and utilize
it. It could also result in a limited perception of the technology’s potential, which might
hinder the adoption of digital twin technology in some sectors or organizations. The
term “digital twin” has limited usage in some industries, which is another disadvantage.
While the term “digital twin” may be commonly utilized in certain industries, such as
manufacturing, its usage and comprehension may not be as prevalent in other sectors, such
as healthcare. Because of this, it could be difficult for economic sectors with less exposure
to digital twin technology to fully comprehend and make use of it. Additionally, it can
lead to a restricted understanding of the technology’s potential, which might make it more
difficult for particular industries or organizations to implement digital twin technology.

6.4. Limited to Specific Types of Systems

Another restriction related to the phrase “digital twin” is that it is limited to specific
kinds of systems. For some systems, like industrial systems, the phrase “digital twin”
may be more often used or understood than for other systems, such as social systems.
Because of this, it may be challenging for users to fully comprehend the possibilities of
digital twin technology and to fully grasp its potential advantages for various kinds of
systems. It could also result in a limited vision of the technology, which might hinder the
adoption of digital twin technology in some businesses or organizations. This drawback
can be overcome by giving more thorough and comprehensive descriptions of digital twin
technology, showing its ability to integrate with many types of systems, and emphasizing
its potential advantages in a simple manner. Additionally, it can help illustrate the potential
advantages of the technology and promote wider adoption across other sorts of systems by
offering case studies and examples that are particular to different types of systems.

6.5. Limited to 2D Representation

Another restriction linked with the phrase “digital twin” is its confinement to 2D
representation. The name “digital twin” implies a two-dimensional representation of the
physical system, although modern technology may create a three-dimensional model that
can be changed in real-time. This can improve decision-making and system knowledge.
This incomplete portrayal may hinder people’s ability to comprehend the capabilities and
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potential advantages of digital twin technology and may also delay the adoption of this
technology in some sectors or organizations. This barrier can be overcome by describing
digital twin technology in a more thorough and inclusive manner, showing its capacity to
deliver 3D representation that can be moved and altered in real-time and emphasising its
potential benefits in a simple manner. Additionally, it can serve to illustrate the potential
advantages of the technology and promote wider adoption by offering instances of 3D
representation that can be moved and altered in real time.

7. Why 3D Digital Twin?
7.1. The Advantages of the Term “3D Digital Twin”

The adoption of terminology plays a significant role in shaping/influencing our
understanding, comprehension, and perception of technological advancements. The name
“3D digital twin” has numerous benefits compared to the generic “digital twin” term.
Within the domain of digital twin technology, the phrase “3D digital twin” arises as a
refined and accurate substitute for the traditional term “digital twin”. This section aims to
clarify the specific benefits of the term “3D digital twin” compared to its predecessor.

7.1.1. More Accurate Description

One benefit of using “3D digital twin” instead of “digital twin” is a more accurate
description. A more precise and comprehensive definition of the technology is “3D digital
twin”, which highlights its analytical capabilities, enables a more intuitive understanding
of the system, and helps speed up decision-making. It talks about how the technology can
offer a 3D representation that can be utilized for various analyses and to draw valuable
conclusions from the data. The full extent and potential of the technology can be better
communicated to individuals who are unfamiliar with it thanks to this more accurate
description. It can also be easier to tell it apart from other, possibly less analytically capable,
similar technologies.

7.1.2. Emphasizes the Analytical Capabilities

Another benefit of adopting the term “3D digital twin” instead of “digital twin” is
that it highlights the analytical capabilities. The phrase “3D digital twin” highlights the
technology’s capacity to offer sophisticated analytical features like modeling, optimization,
and prediction. In addition to helping to separate it from other comparable technologies that
might not have the same analytical skills, this can help to more effectively communicate the
technology’s full extent and promise to others unfamiliar with it. In addition, emphasizing
the analytical capabilities may appeal to businesses and organizations needing sophisticated
analytical capabilities to improve their productivity, security, and efficiency. Consequently,
this technology’s adoption is likely to surge in various industries and across diverse systems,
thereby augmenting its acceptance and comprehension.

7.1.3. More Inclusive

Another benefit of employing “3D digital twin” instead of “digital twin” is that it is
more inclusive. A more encompassing word that can be used to describe a larger range
of systems and sectors is “3D digital twin”. It focuses on how the technology may offer
sophisticated analytical skills, 3D representation, and real-time monitoring, which can
be helpful in a variety of disciplines and businesses, including manufacturing, energy,
transportation, construction, healthcare, and social systems. Because of its inclusivity,
it is more readily accepted and understood across a variety of businesses and systems.
Furthermore, it offers a three-dimensional representation that is capable of being modified
instantaneously, facilitating a more instinctive comprehension of the system and potentially
expediting the process of making decisions. Those who are unfamiliar with the technology
may be better able to understand its entire breadth and potential thanks to this, and it may
also make it easier to identify it from other, maybe inferior, technologies that may not have
the same analytical capabilities or 3D representation.
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7.1.4. Better Understanding for Non-Technical Individuals

Another benefit of employing “3D digital twin” rather than “digital twin” is that it is
easier for non-technical people to understand. Because it highlights analytical skills, 3D
representation, and real-time monitoring, which can be easier for people to understand. To
people who are unfamiliar with the technology, the term “3D digital twin” may perhaps
better appropriately represent the full range and possibilities of the technology. Conse-
quently, the aforementioned technology has the potential to be more widely embraced
and comprehended across various industries and systems, leading to a higher adoption
rate. In addition, it can help people understand digital twin technology and its potential
advantages for many fields by making explanations of the technology easier to access and
comprehend and by emphasizing those advantages in a form that is understandable to
non-technical people.

7.2. Limitation of 3D Digital Twin

While the term “3D digital twin” may more accurately embody the technology tradi-
tionally known as “digital twin”, there are several disadvantages to adopting this terminol-
ogy. Firstly, the phrase “3D digital twin” is less recognized in the industry than “digital
twin”. This lack of familiarity could pose challenges in communicating the technology’s
purpose and educating stakeholders about its capabilities.

Despite some limitations mentioned above, the advantages of using the term 3D
digital twin outweigh its limitations. Figure 12 shows the schematic illustration of a 3D
digital twin that serves as a virtual representation of a physical object or system that can
be used for simulation, analysis, and control purposes by combining three elements: data,
engineering structure, and visualization interface.
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8. Conclusions and Future Research

This review paper systematically explains digital twin concepts, applications, chal-
lenges, and solutions by organizing the selected publications into a comprehensive and
coherent outline. The paper showcases the vast potential of digital twins to revolutionize
Industry 4.0 and beyond, emphasizing its interdisciplinary nature and versatility across
various domains and industries.

Using the “3D digital twin” terminology can provide a more accurate and appropriate
description of the technology commonly known as “digital twin”. The proposed phrase
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highlights the exciting potential of the technology to generate a dynamic and immersive
three-dimensional model of a physical system, allowing for real-time manipulation and
analysis. This terminology highlights how the technology is designed to be very visual and
easy to use, making it easier to understand the system’s status and make quick decisions.
Moreover, the term “3D digital twin” highlights the technology’s powerful analytical
potential. Seeing how the technology’s real-time data processing and analytical functions
can help optimize and improve performance is great. By focusing on these features, the term
highlights the potential of the technology as a powerful tool for gaining real-time insights.

“3D digital twin” has a wide range of applicability, encompassing various industries
and systems, including healthcare, construction, and social systems. A positive aspect of
the technology is its wide range of applications, which highlights its adaptability and ver-
satility. Moreover, the use of “3D digital twin” has the potential to enhance understanding,
especially for those who are not technically inclined. This clear and accessible terminology
will assist people to understand the technology better and appreciate its capabilities and
potential benefits. Although it may take some time to implement, the sector has the poten-
tial to widely accept a terminology change. Despite its name, the technology is a powerful
tool that can enhance safety, reliability, affordability, and efficiency in various industries.

Further research into 3D digital twins could prioritize several crucial domains to aug-
ment their functionalities and tackle current challenges. Firstly, by investigating advanced
visualization techniques, such as augmented reality (AR) and virtual reality (VR), we can
potentially create user interfaces that are more immersive and intuitive. Furthermore,
the development of advanced algorithms and analytics techniques for processing real-
time data has the potential to enhance the optimization, predictive maintenance, anomaly
detection, and decision support capabilities. Furthermore, implementing standardized
data formats and integration frameworks could help resolve interoperability concerns and
enable smooth integration with current systems. Finally, doing research on performance
evaluation, security and privacy measures, scalability, and the socio-technical implications
of digital twin adoption has the potential to improve their dependability, scalability, and
societal effect.
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