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Abstract: Brain–computer interfacing (BCI) is a promising technique for regaining communication
and control in severely paralyzed people. Many BCI implementations are based on the recognition
of task-specific event-related potentials (ERP) such as P300 responses. However, because of the
high signal-to-noise ratio in noninvasive brain recordings, reliable detection of single trial ERPs
is challenging. Furthermore, the relevant signal is often heterogeneously distributed over several
channels. In this paper, we introduce a new approach for recognizing a sequence of attended
events from multi-channel brain recordings. The framework utilizes spatial filtering to reduce both
noise and signal space considerably. We introduce different models that can be used to construct
the spatial filter and evaluate the approach using magnetoencephalography (MEG) data involving
P300 responses, recorded during a BCI experiment. Compared to the accuracy achieved in the BCI
experiment performed without spatial filtering, the recognition rate increased significantly to up
to 95.3% on average (SD: 5.3%). In combination with the data-driven spatial filter construction
we introduce here, our framework represents a powerful method to reliably recognize a sequence
of brain potentials from high-density electrophysiological data, which could greatly improve the
control of BCIs.

Keywords: brain–computer interface; BCI; magnetoencephalography (MEG); ERP; CCA; spatial
filter; P300

1. Introduction

People who have lost the capability to communicate with their environment due to severe
paralysis could greatly benefit from a brain–computer interface (BCI) [1]. In such systems,
communication can be realized by translating voluntarily modulated brain activity of a user into
commands. One type of brain signal used for BCI-based communication is the event-related potential
(ERP), which is evoked in response to specific external events. A prominent ERP, often focused on
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in BCI research, is the P300 potential, which is elicited in oddball paradigms by rare deviant target
stimuli, randomly embedded in a series of frequent standard stimuli. Because the P300 is a marker of
focused attention, it is used in BCIs to infer where the users direct their attention. With the so-called
matrix speller this approach was introduced in 1988 [2] and has been widely used ever since. In ERP
detection, the main challenge researchers are faced with is the low signal-to-noise ratio (SNR), which
is due to ongoing brain activity, artifacts, and environmental noise. Consequently, the detection
of ERPs in single time intervals is challenging. However, the SNR of ERP components increases
when averaging the brain responses to several identical events. Thus, pooling of many ERP intervals
increases the recognition success, but leads to a low information transfer rate (ITR). Furthermore,
noninvasive electrophysiological measurement techniques indirectly measure effects of local source
activity, resulting in heterogeneously distributed signals across several channels. An appropriate
combination of these channels enhances the signal strength and reduces the noise. Such channel
weightings are also known as spatial filter coefficients which were applied to analyze P300 potentials,
taking varying approaches to estimating the coefficients, e.g., independent component analysis
(ICA) [3], common spatial patterns (CSP) [4], spatial whitening [5], canonical correlation analysis
(CCA) [6], and others [7,8]. A quite simple example of a spatial filter is averaging the signal across
all channels, weighting all channels equally. However, if channels represent the subcomponents
differently or are completely uninvolved, this approach is disadvantageous. Therefore, when a high
number of channels is available and no hypothetical selection of channels can be made, optimal
spatial filtering is particularly relevant.

In general, noninvasive BCIs are implemented using electroencephalographic (EEG)
measurements. In a previous study, we investigated magnetoencephalographic (MEG) recordings
as an alternative acquisition modality for use in a BCI, providing a high number of sensors with
short preparation time of subjects. The study [9] aimed at virtual object selection combined
with robotic grasping. MEG is regarded as having exquisite spatial and temporal resolution [1].
In previous work [10], we demonstrated greater discrimination of adjacent motor potentials in MEG
data compared with simultaneously recorded EEG data. Furthermore, a study investigating the
classification of visual ERPs [11] has provided evidence that discriminable data are more focused in
the MEG than in the EEG. The potential advantages of MEG could open a promising communication
channel for severely impaired patients, even though only applicable in a laboratory environment.
In this work, we apply new methods to the previously recorded 248 channel MEG data for an
improved decoding of the P300 responses. In contrast to the empirically parameterized decoding
scheme we used in the MEG-based BCI performed without spatial filtering, our new approach is
data-driven and does not need a priori assumptions regarding spatial patterns or, in a particular
variant, regarding the time course.

In this paper we introduce a new method to efficiently recognize distinct sequences of event
related potentials. The approach does not use machine learning techniques for classification but
determines the target sequence by means of the Pearson product-moment correlation coefficient.
The framework is specifically designed to work with CCA. We demonstrate the outcome of the
recognition approach using different model functions that take event-specific information into
account. In contrast to CSP, which estimates spatial filters considering events separately as well,
here also temporal characteristics can be involved. Importantly, we introduce a simple model that
determines the waveform of most discriminative ERP components and permits accurate recognition
of the target event sequence.

2. Materials and Methods

In this section, we propose a new method that projects high-density electrophysiological data
into a subspace consisting of a few virtual channels using CCA. Furthermore, we describe a simple
approach to recognizing sequences of ERPs from these virtual channels, which is essential in many
BCI applications. The proposed method is specifically suited to ERP processing, since the model
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assumes time-locked brain responses. Thus, synchronously driven BCIs could greatly benefit from
this approach when applying dense electrode configurations.

This section is organized as follows. First we introduce the CCA method, which is the
mathematical tool we apply to estimate filter matrices. Subsequently, we explain our approach of
constructing the reference signal. Then we define several models for reference signals, which are
used to construct spatial and temporal filters with CCA. In the following subsection, we describe how
the filter matrices can be applied to perform an efficient recognition of ERP sequences. Afterwards,
we present the experimental data we used for evaluation of the algorithm. Finally, we describe the
processing steps we applied to perform the evaluation. In the Appendix we provide the nomenclature
describing all symbols used in this section.

2.1. Canonical Correlation Analysis

A basic concept in our approach is the transformation of multi-channel data such that relevant
information is extracted while noise and redundancy is reduced. To achieve this, we apply canonical
correlation analysis, an established multivariate statistical method, which was first introduced by
Hotelling [12]. The rationale behind CCA is the transformation of two sets of variables, such that the
values of the transformed variable sets show high similarity. Considering two sets X ∈ Rn×c and
Y ∈ Rn×d of c and d variables (c ≥ d) and n observations, CCA finds the maximum correlation of
linear combinations of the columns in X and Y. The linear combinations U = XWx, Wx ∈ Rc×d

and V = YWy, Wy ∈ Rd×d that have maximum correlation are called canonical variables. Thus,
the problem to be solved is to find the matrices Wx and Wy such that the kth canonical correlation
ρk(uk, vk), k = 1, . . . , d is maximal, given that uk and vk are centred:

max
wx

k ,wy
k

ρk(uk, vk) =
E(uT

k vk)√
E(uT

k uk)E(vT
k vk)

. (1)

An important property of the canonical variables is that they are uncorrelated amongst
themselves. Analogously to principal component analysis (PCA), where successive variance
maximization reveals orthogonal factors, the first canonical variable reveals the linear combination
that achieves maximum correlation, while the following canonical variables maximize the correlation
of residual variance in the data. Thus, a number of at most d canonical variables can be transformed,
while the canonical correlation ρk decreases with increasing k. The equivalent relationship of
ρ(u, v) = ρ(v, u) implies that it is irrelevant whether the number of variables is higher in X or in Y.

While CCA operates on two different sets of variables, other transformation algorithms like PCA
and ICA operate on a single set of variables. Other algorithms such as the CSP method operate
on two sets of identical variables containing different observations. It was shown in sensorimotor
rhythm-based studies that the categorical information involved in this approach is advantageous
for spatial filtering [13]. However, temporal information which is important for ERP analysis is not
regarded with ordinary CSP [4]. The concept of CCA enables the modeling of an independent set
of variables serving as reference signals [14,15]. Thus, CCA can be used to exploit categorical and
temporal information to estimate efficient spatio-temporal filters for BCI control.

2.2. Constructing Spatial Filters for ERP Extraction

Let us assume the set of variables X is represented by a number of c channels and n sampling
points of a time-varying signal, measuring brain activity. To find a spatial filter that decomposes
a component that maximally correlates with an ERP, we need to know the waveform of the brain
response. This requires a priori knowledge, which is not necessarily available. As mentioned above,
CCA determines a linear combination XWx and YWy with maximum correlation. Thus, it can be
applied to linearly combine a set of d signals in Y that yield the characteristic signal Ywy

k with
maximum correlation to Xwx

k . To obtain the spatial filter matrix Wx using CCA, we need to model a
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set of reference signals Y, characterizing a hypothetical brain response to the onsets of specific events.
Here we consider a sequence of two types of events: target events and standard events. Consequently,
we define a set of d model ERPs Mt ∈ Rn×d describing a target event and Ms ∈ Rn×d describing
the model ERP of a standard event, where n is the number of sampling points in the ERP interval.
We construct the reference functions Y that are associated with a sequence of standard and target
events by embedding an arbitrary model Ms at each onset is of the standard event in chronological
order, i.e.,

yi+is ,k = ms
(i,k), i = 1, . . . , n, k = 1, . . . , d. (2)

Afterwards, we embed an arbitrary model Mt at each onset it of the target event analogous to
Equation (2):

yi+it ,k = mt
(i,k), i = 1, . . . , n, k = 1, . . . , d. (3)

When n is greater than the distance between two events, the previously assigned values in Y are
overwritten. See Figure 1 for an illustration of the analysis method. Note that all signals depicted in
the figure are actually represented as column vectors, and that the estimation of only one component
is shown.

CCA

Standard/Target Event Onsets

Multi-Channel Brain Signals X

Ms

uk = Xwx
k

vk = Ywy
k

Mt Ms Ms MsMtMt

ρ(uk,vk)

wx
k =

wx
k,1
...

wx
k,c

Reference Signals Y

wy
k =

wy
k,1
...

wy
k,d

Figure 1. Depiction of the method of estimating filter matrices for extracting event-related potential
(ERP) components based on canonical correlation analysis (CCA).

2.3. Model Functions for ERPs

The functions we will define in this section aim at characterizing ERPs, i.e., they represent
assumptions about the expected brain response following a specific event. First we describe two
simple model functions that we consider to be applicable in decoding ERPs following a target event.
The most general hypothesis is that the brain response is deflected during the interval of the target
event but not when standard events are presented. We can model this hypothesis by defining binary
model functions of length n as follows:

Ms
binary = (mi,1), where mi,1 = {0|∀i = 1, . . . , n} (4)

Mt
binary = (mi,1), where mi,1 = {1|∀i = 1, . . . , n} . (5)
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The assumption that no characteristic deflection is expected after standard events will be made
several times in this paper, which is why we also will refer to the zero matrix M0 if Ms is all zero.
Certainly, the binary model reflects a quite naïve assumption, because we know that brain responses
do not switch on and off but respond to events with bell-shaped deflections. In single trial analysis,
typical ERP responses were shown to fit with Gabor functions [16]. Thus, to model a single ERP
deflection, we define for the target event interval:

Mt
Gabor = (mi,1), where mi,1 = e−

(i−µ)2

2σ2 cos
2π(i− µ)

ωσ
. (6)

In this equation µ denotes the sample point of the signal peak, σ represents the standard
deviation of the Gaussian component in samples and ω is a scaling parameter where ωσ spans one
cosine cycle.

So far we have solely described single reference functions, which simplifies CCA to multiple
correlation analysis. However, to exploit the strength of CCA, we intend to model a set of multiple
distinct reference functions. One approach was introduced by Spüler et al. [6], who calculated the
average signal across all standard trials as Ms

mean ∈ Rn×c and across all target trials in a set of
training data as Mt

mean ∈ Rn×c, where c is the number of channels to be involved. The advantage
of this method is that the reference functions are directly calculated from the brain data representing
one time course for each channel with reduced noise. Thus, this method is less driven by hypothesis
but rather the underlying brain response is determined in a data-driven manner.

2.4. A Spatio-Temporal Filter

The approach of averaging over trials still has one restricting assumption, which is the time
course of the signal within single channels. The weights of the vector wy

k in Wy determine
the contribution of the averaged signal in channel i, i = 1, . . . , c to the kth ERP component.
Thus, internally two spatial filter matrices are determined with CCA, one for the input signal and
one for the averaged signal. Another point to be noted is that due to the broad spatial distribution
of ERP activity many of the channels representing average signals over trials might reflect similar
signals, implying redundancy in the reference functions. To resolve this constraint, we introduce a
set of reference functions which is orthogonal and which models the time course of the signal rather
than the composition of predefined signal courses. We define Mt

temporal as d signal time series, where
each of the time series represents one sample point after the event of interest occurred, and d is the
number of samples the interval of interest is spanning. More specifically, we define

Mt
temporal = Id (7)

where Id is the identity matrix of size d. Consequently, the d coefficients in wy
k determine the

strength at sample point i, i = 1, . . . , d after event onset. This model can also be seen as a set
of impulse functions where each function i, i = 1, . . . , d shows exactly one peak at time point i.
In combination with M0 the weights in wy

k directly represent the estimated signal in the interval of
interest that distinguish event-related brain activity from baseline activity. Here, each vector wy

k in
Wy can be considered a temporal filter. As already explained above, using CCA, the filter matrix
Wx simultaneously weights the c channels such that the correlation with the estimated temporally
filtered reference signal is maximal. This linear weighting of channels is a classical spatial filter.
The time series uk obtained from spatial filtering can be considered a virtual channel. An important
feature of our approach is that the evoked potential is determined implicitly by the method applied.
To make this clear, consider the virtual channel vk = Ywy

k . Setting Y = Id implies that wy
k = vk,

which means that the filter wy
kdirectly represents the estimated component vk, maximal correlating

with uk, i.e., with the channel signals filtered by wx
k . Consequently, when using this filter we obtain

V = M0Wy = 0 for standard events and V = Mt
temporalWy = Wy for target events, meaning that
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the filtered channel signals U are supposed to correlate with a zero signal after standard events
and to correlate with the spatial filter coefficients in Wy after target events. Because each column
in Y represents a model function which in turn represents a time point after stimulus onset in
chronological order, the elements in wy

k can be considered the time course of virtual channel k. Using
this spatio-temporal filter the only hypothetical assumption is that a characteristic signal is evoked
after a specific event occurred, and no systematic activity is otherwise present. This represents an
even more data-driven approach as compared to using Ms

mean and Mt
mean as models. Note that

the reliable estimation of filters Wx and Wy using CCA requires a multitude of repetitions of the
same events, irrespective of the model functions we have introduced. More precisely, in every model
function yk the value mi,k of time point i after event onset has to be present many times to enhance
the signal-to-noise ratio. Thus, although Ms and Mt are repeatedly represented in a sequence of
events (Equations (2) and (3)), multiple such sequences must be involved simultaneously in the CCA
to enhance the reliability of estimated ERP components.

2.5. Recognition of ERP Sequences

Many BCIs are controlled by P300 responses, elicited by attention to one of several stimuli.
In such systems, the selection of an item is determined by recognizing which of the item-specific
event sequences match the brain response best. Generally, this is done by pooling the single responses
to an item stimulus. Here we use the Pearson product-moment correlation coefficient to evaluate
the similarity of measured and expected sequences of ERPs. An event sequence codes an item
uniquely. In the CCA based filter construction method described above, a set of ERP waveforms
with maximum correlation with the measured data is determined using the canonical coefficients Wy.
Simultaneously, the corresponding spatial filter Wx extracts the noise reduced signal components.
Thus, we determine Wx from a set of training data that we subsequently apply to new data as a spatial
filter. For this purpose, we concatenate the measured brain signals from all trials in X ∈ Rn×c where n
is the total number of sample points and c is the number of channels. Furthermore, we concatenate the
corresponding set of reference functions Y ∈ Rn×d. We then use these sets of variables to perform the
CCA according to Equation (1). This reveals d virtual channels and d canonical variables, respectively.
According to the Matlab implementation of CCA [17], the significance level pk for canonical variable
k is determined using a χ2 statistic for the null hypothesis that all ρi, i = k, . . . , d are zeros. For further
processing, we reduce the number of components, and consequently the number of filters to be
applied on test data by selecting only the first q filters that provide a significance of pk < 0.05 where at
the same time the canonical correlation obtained from training data have to exceed a value of ρk > 0.1.
Thus, after estimating the filters from training data we obtain a spatial filter Wx ∈ Rc×q for the brain
data, and another filter Wy ∈ Rd×q for the reference data.

To recognize an ERP sequence from new brain signal recordings X̂, a model Ŷe is generated for
each of the events, assuming event e is the target event. Afterwards, for each model, the correlations
ρk,e are determined as

ρk,e =
E(ûT

k v̂k,e)√
E(ûT

k ûk)E(v̂T
k,ev̂k,e)

, (8)

where ûk = X̂wx
k and v̂k,e = Ŷewy

k . The correlations are then transformed using Fisher’s z-transform
and averaged over the canonical variables:

f (e) =
1
q

q

∑
k=1

1
2

ln (
1 + ρk,e

1− ρk,e
). (9)

The model providing the highest average correlation with the spatially filtered brain data is then
assumed to represent the target event:

argmax
e

f (e). (10)
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In Figure 2, we demonstrate the recognition procedure showing an exemplary trial, where the
ERP sequence was correctly recognized. In this example, the fourth sequence provides the highest
correlation between v̂1,4 and û1, indicated by blue coloring. Note that we show only the first canonical
variable, although the classification result might also be affected by other canonical variables.

0 2 4 6 8 10

û1 v̂1,e

ρ1,1 = −0.17

ρ1,2 = −0.10

ρ1,3 = −0.01

ρ1,4 = 0.45

ρ1,5 = 0.02

ρ1,6 = −0.10

Time (s)

Figure 2. Demonstration of ERP Recognition.

2.6. Experimental Data

The data set previously described in [9] consists of recordings from 17 subjects. MEG data at
248 head coil positions and 23 reference coils were measured and digitized at 678.15 Hz. During the
experiment, subjects performed an oddball task involving selecting one of six virtual objects by covert
attention to object-related visual stimuli. The objects were arranged around a fixation cross, on which
the subjects fixated during each trial. Visual stimulation was performed by flashing a marker for
each object for 100 ms, with inter-stimulus intervals of 300 ms in random order. The subject directed
his/her attention to the flash of the target object, which served as the deviant stimulus, and ignored
all other flashes representing standard stimuli of an oddball task. In one trial, each object marker
was flashed five times, resulting in 30 stimuli within 9 s. To avoid an overlap of attention-related
brain activity, we accounted for a minimum latency of 600 ms between flashes of a single object in
the randomization procedure. Subjects performed six to eight runs of instructed selection, as well as
additional runs, in which they freely selected the objects. One run consisted of 18 trials. Only those
runs in which selections were instructed are involved in this study, providing the subject’s true
intention for decoder training and evaluation. For more details on the experiment please refer to [9].

2.7. Processing of Experimental Data

In a first step, the MEG data were segmented into epochs of 10 s, starting at the first flash event of
a trial. Subsequently, the DC offset was removed, and noise cancellation was performed by removing
environmental noise captured from reference sensors according to Robinson [18]. This step effectively
removes slow signal drifts in the MEG. Thus, no spectral filtering is required for our analysis method.
We performed the analysis using the original sampling rate but also repeated the analysis using
down-sampled data with decimation factors 2, 5, 10 and 20 (339.08 Hz, 135.63 Hz, 67.82 Hz and
33.91 Hz). The first two runs were used to estimate the spatial filter matrix Wx , concatenating all trials
to form the matrices X and Y. The remaining runs served as test data to evaluate the performance of
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the approach. We defined the interval size of an expected ERP at 600 ms. We tested our algorithm
using the model ERPs M0/Mt

binary, M0/Mt
Gabor (µ and σ were set to accord with 300 ms and 100 ms,

ω = 5), Ms
mean/Mt

mean, and M0/Mt
temporal. Please see Figure 3 for a visualization of the model

functions. In this figure exemplary data for n = 20 samples are shown. Note that c = 248 and that
the horizontally presented time series are actually column vectors.

...
... ...

...

Ms
temporal ∈ Rn×n

Ms
binary ∈ Rn×1 Ms

Gabor ∈ Rn×1Mt
binary ∈ Rn×1

Ms
mean ∈ Rn×c Mt

mean ∈ Rn×c

Mt
Gabor ∈ Rn×1

Mt
temporal ∈ Rn×n

1 n

1
0

1 n

1 n 1 n 1 n 1 n

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1

0

1 n 1 n

Figure 3. Model functions used to perform CCA for ERP recognition. Dots represent discrete function
values at sample points in the interval of the expected ERP (600 ms, n = 20).

3. Results

3.1. Accuracy of Recognition

With our recognition algorithm, we were able to significantly improve the accuracy using
the model ERPs M0/Mt

Gabor, Ms
mean/Mt

mean, and M0/Mt
temporal (see Figure 4). In the actual

experiment, feedback was presented according to a support vector machine (SVM) classification.
The algorithm applied in [9] selected 64 sensors out of 152 hypothetically pre-selected sensors for
classification. Data were filtered between 1 Hz and 12 Hz and re-sampled to 32 Hz. For instructed
selections, this approach provided a recognition rate of 74.1% on average (SD: 14.8%). Applying
our new approach the highest recognition rates were achieved without down-sampling and using
model function sets M0/Mt

mean (mean: 95.3%, SD: 5.3%) and M0/Mt
temporal (mean: 94.9%, SD:

4.8%). Twelve subjects achieved a recognition rate of more than 95%, which corresponds to an
ITR of more than 13.1 bit/min, given the choice of 6 alternatives within 10 s. This is substantially
higher than the average ITR of 6.9 bit/min achieved with the initial decoding approach. Reducing
the sampling rate and consequently also the computational effort for performing CCA (Table 1),
the recognition rate was almost constant up to a sampling rate of 67.82 Hz and only slightly
reduced to 91.8% and 90.8%, respectively, when using a decimation factor of 20. Both models,
M0/Mt

mean and M0/Mt
temporal obviously were suited similarly for the recognition task, revealing

accuracies that are nonsignificantly different. The much simpler model M0/Mt
Gabor also considerably

outperformed our initial classification approach, achieving recognition rates of more than 90.5% (SD:
6.3%) at sampling rates above 135 Hz and slightly reduced accuracy using lower sampling rates.
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Remarkably, the simplest model M0/Mt
binary achieved comparable recognition rates as compared

to the initial online classification, using sampling rates above 135 Hz, but accuracy decreased at
lower sampling rates. An important advantage of our spatial filter approach was that the number
of channels could be considerably reduced from 248 channels to a few components (Table 2), where
each virtual channel was composed of one of the selected spatial filters. Note that the number of
selected components shown in Table 2 corresponds to the q most significant canonical correlations
we determined as described in Section 2.5. The number of components, available after CCA is given
by min {c, d} and thus depends on the number of channels c = 248 and the size of the set of model
functions d. For the single model functions M0/Mt

binary and M0/Mt
Gabor is d = 1, for M0/Mt

mean

is d = 248 and for M0/Mt
temporal d depends on the interval length and sampling rate, resulting

in d ∈ {407, 203, 81, 41, 20} for decimation factors 1, 2, 5, 10 and 20. Furthermore, the recognition
method summarizes the waveform of each virtual channel as one single feature, directly describing
the similarity of the measured waveform to the expected waveform. Thus, a substantial reduction
of the feature set can be achieved, down to a single feature using single model ERPs. Finally, no
multivariate classification technique was required to determine the attended stimulus, but rather the
feature directly determined the most probable event sequence.

1 2 5 10 20
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M0/Mt
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R
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it
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R
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Figure 4. Recognition rates achieved with different ERP models at different sampling rates. Error bars
indicate standard error of the mean.

Table 1. Computational effort using different model functions and applying different sampling rates.
The mean effort and standard deviation denote the time in seconds which is needed to perform the
CCA on the training set using an Intel Xeon CPU E5649.

Decimation Factor M0/Mt
binary M0/Mt

Gabor Ms
mean/Mt

mean M0/Mt
temporal

1 16.09 (1.23) 16.10 (1.29) 33.95 (2.70) 48.80 (3.87)
2 8.33 (1.01) 8.23 (0.97) 17.97 (3.14) 15.52 (1.39)
5 3.05 (0.29) 3.19 (0.49) 6.46 (0.58) 3.93 (0.33)

10 1.41 (0.13) 1.41 (0.16) 2.93 (0.27) 1.53 (0.16)
20 0.61 (0.14) 0.63 (0.11) 1.27 (0.15) 0.64 (0.11)



Computers 2016, 5, 5 10 of 16

Table 2. Number of selected components using different model functions and applying different
sampling rates. The values denote mean and standard deviation.

Decimation Factor M0/Mt
binary M0/Mt

Gabor Ms
mean/Mt

mean M0/Mt
temporal

1 1.0 (0.0) 1.0 (0.0) 13.6 (1.2) 5.0 (0.8)
2 1.0 (0.0) 1.0 (0.0) 14.8 (1.2) 5.1 (0.8)
5 1.0 (0.0) 1.0 (0.0) 7.7 (1.2) 4.9 (0.8)

10 1.0 (0.0) 1.0 (0.0) 7.6 (1.3) 4.8 (1.0)
20 1.0 (0.0) 1.0 (0.0) 7.3 (1.4) 4.6 (1.1)

To demonstrate the resulting filtered signal achieved with different model function sets, we show
averages of the virtual channels across standard and target intervals for a representative subject in
Figure 5.

0 200 400 600 0 200 400 600 0 200 400 600

TargetStandard

M0/Mt
binary

M0/Mt
Gabor

Ms
mean/Mt

mean, k = 1

M0/Mt
temporal, k = 1 M0/Mt

temporal, k = 2

Ms
mean/Mt

mean, k = 2

Time (ms)Time (ms) Time (ms)

Figure 5. Averaged, spatially filtered signal revealed with different ERP models exemplary for one
subject. For multi-function models the first two components are shown.

In order to further emphasize the advantage of the recognition framework combined with
CCA-estimated filter matrices we also performed an ordinary classification approach and determined
the impact of PCA as an alternative spatial filtering method. We used the same analysis interval as we
used with model functions at 33.91 Hz sampling rate, no spectral filtering and SVM-based selection
of 64 channels out of the whole channel set to train an SVM and test the classifier with the validation
framework described above. This approach is a trade-off between the decoder used in the actual
BCI experiment and the new approach by loosening the hypothetical constraints which were spectral
filtering and pre-selecting sensors. This revealed an average recognition rate of 81.1% (SD: 13.8%).
When performing a PCA prior to classification and using the 64 virtual channels representing highest
variance, the recognition rate was at a comparable level (mean: 82.4%, SD: 12.4%). This is significantly
higher than the accuracy achieved in the online experiment, but neither the PCA outperforms SVM
classification of spatially unfiltered data nor accuracies at the level achieved with the proposed
recognition approach could be achieved.

3.2. Spatio-Temporal Patterns

In the Methods section, we mentioned the benefit of using the model M0/Mt
temporal, specifically

the opportunity to obtain the time course of ERP subcomponents from a data-driven linear
transformation of the input signals. Here we evaluate the outcome of using this specific model
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function in combination with CCA. Note that the data filtered by CCA-estimated matrices, which we
denote ERP subcomponents that are reflected in virtual channels, do not correspond to physiological
sources according to the theory of blind source separation [19]. Rather, they also are mixtures of brain
sources, but in contrast to the linear combinations of brain sources obtained in the original sensor
space they are optimized to represent the brain’s response to a target event.

The virtual channels obtained for each subject varied in terms of spatial distribution, waveform,
and significance ranking. Even though individual brain patterns revealed individual spatio-temporal
filters, there were two typical spatio-temporal patterns that could be observed in most of the subjects,
where at least one of the two patterns was present in every subject. In Figure 6, we show the
estimated waveforms of these two components as an average over subjects (standard deviation is
indicated by dotted lines). The waveform corresponds to the target event intervals in vk, which is
with Mt

temporal by definition identical to wy
k . The topographic maps show the loadings calculated as

the correlation between xi, i = 1, . . . , c and vk, averaged over subjects. This measure is comparable
to the factor loadings known from PCA. Red areas indicate positive correlation of the sensor signals
with the extracted waveform, blue areas indicate negative correlations. Thus, the waveforms shown
in Figure 6 correlate with the magnetic flux measured over the right hemisphere, and the reversed
curves correlate with the magnetic flux measured over the left hemisphere. Similar patterns showing
ingoing magnetic field lines over the right and outgoing magnetic field lines over the left hemisphere
were also found in [20]. One typical waveform we observed in 12 subjects, appeared over parietal
areas and peaked at approximately 300 ms, which is an expected component in an oddball paradigm.
The component also showed a negative undershoot before and after the positive gain. The canonical
correlation of this component was ρk = 0.27 on average (SD: 0.05) and was ranked three times as the
strongest canonical correlation, six times as the 2nd, and three times as the 3rd component. Another
prominent waveform was found in 14 of the subjects and extended over a long interval between
100 and 600 ms. This slow wave can also be found in EEG data that investigate deviant stimuli and
has a posterior-positive, anterior-negative scalp distribution [21]. This is in line with the bilateral
distribution of magnetic fluctuations shown in Figure 6. In the MEG, this component appears to
have a higher impact than the classical P300, because this component was ranked in nine subjects
as the first and four times as the second component, and achieved an average canonical correlation
of ρk = 0.32 (SD: 0.05). It is important to note that additionally to these two striking components,
other individual components were also extracted, which are difficult to interpret but contributed to a
reliable recognition of an event sequence.

(a) (b)

0 100 200 300 400 500 600

(c) (d)

Time (ms)
0 100 200 300 400 500 600

Time (ms)

Figure 6. Averaged loadings for (a) a parietal P300-like component and (b) the corresponding
waveform; as well as (c) a potentially inferior-medial located component and (d) the corresponding
waveform. Color scale of loadings in (a) and (c) as well as amplitude in (b) and (d) have
arbitrary units.

4. Discussion

Our results show that our new approach facilitates the recognition of ERP sequences with a high
accuracy. A core component of our method is the optimal spatial filtering, which projects high-density
MEG data into a subspace of a few components. Depending on the complexity of the ERP model used
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as reference signal, a high number of channels can be reduced to only one virtual channel, providing
highly reliable recognition rates. The highest accuracies were achieved equally with two different
sets of model functions. The first set was based on empirical estimates constructing reference signals
according to [6] and the second set was designed to compose the temporal evolution of the signal.
Using the latter method, CCA constructs a spatial filter matrix and concurrently determines brain
dynamics. Thus, using CCA combined with appropriate reference functions, we can interpret the
filtered signal as ERP components that represent the task-specific brain activity. Importantly, the final
recognition of the target sequence is based on the statistical correlation measure and does not require
machine learning algorithms. Simulating a real BCI application, we used only two runs to estimate
the filter matrices for subsequent ERP prediction, resulting in a training time for each subject of less
than ten minutes. Our recognition method showed significantly higher recognition rates than the
decoding approach without spatial filtering applied in [9] for three of the proposed sets of reference
functions modeling the ERPs. Using MEG , our method efficiently deals with high sampling rates
and therefore does not require spectral filtering and down-sampling. In contrast, down-sampled data
does not provide advantage in terms of accuracy. Rather, a sampling rate between 20 and 40 Hz, as
typically used in P300 detection algorithms using EEG [5,6,22,23], yielded slightly lower recognition
rates compared with sampling the data at higher rates.

Given the uncommon setup of our experiment for object selection, comparison with other studies
is challenging. BCI systems are often compared in terms of the information transfer rate. However,
the ITR depends on accuracy, the number of selectable items and the duration of the entire selection
process. When decoding accuracy is used as evaluation measure, it must be considered in the
context of the guessing level, which depends on the number of selectable items. P300 detection from
noninvasive recordings is a common application in BCI matrix spellers, where 36 symbols are usually
provided. In such BCI systems, average bandwidths of 20 to 30 bit/min were achieved at acceptable
accuracy levels (> 85%) with advanced decoding techniques [3,8,24,25]. It is important to note that the
inter-stimulus interval, the number of stimuli and the number of selectable items used in the MEG
experiment limits the maximum ITR to 15.5 bit/min, if detection was hundred percent. However,
when we use the symbol rate as evaluation measure, our classification procedure led to an average
of 5.7 symbols/min at 95.1% decoding accuracy, exceeding the performance of previously described
matrix spellers [3,8,24]. In a study largely fitting our experimental parameters, several classifiers,
electrode configurations and trial lengths were investigated using a 6-item oddball task [23]. The
highest achieved classification accuracy at a trial length of approximately 10 s was about 93% on
average, which is slightly less than the accuracy achieved using our approach.

One of the sets of model functions we introduced, the set that models temporal characteristics,
renders the CCA-based estimation of optimal spatial filters a method to estimate a spatio-temporal
filter. Because we made a minimum of hypothetical assumptions with this model, the method is
highly data-driven. The resulting optimally filtered brain signals can be interpreted as an optimal
combination of ERP subcomponents, which are produced individually for each user and which
can be applied to identify the target ERP sequence. Although some components are unique and
difficult to interpret, we identified two components that showed a characteristic waveform and
spatial distribution across most of the subjects. Interestingly, a slow wave component was more
prominent than the component peaking at 300 ms. In an MEG study on P300 source activity [20],
peaks were found between 400 and 600 ms showing comparable time courses as the slow wave
component found in the present study. The patterns showing highest correlation between this
component and the magnetic flux we found laterally in temporal sensors. In the BCI experiment we
initially performed when the data were recorded, the recognition rate was significantly lower than
with the new approach. Presumably, this was the case because we excluded sensors located over the
temporal lobe empirically from this initial decoding approach due to assumptions derived from EEG
experiments. A further hypothetical processing step in the initial approach was applying a band-pass
filter with passband 1 Hz to 12 Hz, which is common in EEG based BCIs [23] but probably canceled
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out the slow wave component. This is also supported by the fact that classification without spectral
filtering and without excluding sensors was superior compared to the online results. However, even
performing PCA as an alternative approach to reduce the number of channels could not reveal
recognition accuracies as high as it has been achieved with CCA-based recognition, which also
accords to findings from classifying ERPs in a workload task [26]. This demonstrates the advantage
of our data-driven approach compared with a hypothesis-driven approach and the capability of CCA
to efficiently extract task-related features.

So far, in the field of processing electrophysiological data optimization of correlation was mainly
used for analyzing band power in brain signals, such as extracting components that correlate with
intensity modulation of auditory stimuli [27] and discovering underlying power-to-power couplings
of neuronal sources [28]. Similarly, CCA was used to detect steady-state visual evoked potentials for
BCI control [14,15]. The classification of ERPs obtained from CCA by building reference functions
from trial averages in combination with a linear discriminant classifier was first introduced by
Spüler et al. [6] and recently compared with other spatial filters [26], revealing a superior performance
compared to PCA. In the present paper we adapted this approach for recognizing sequences of events
by a simple correlation measure and showed that alternative model functions can be used in this
framework as reference signals as well.

We have demonstrated the efficacy of our method when applied to high-density MEG data,
but it is important to note that MEG has only limited suitability for BCI use. A main limitation
is the mobility of the acquisition system, making applications only possible within the laboratory.
Nevertheless, e.g. locked-in patients could benefit from an efficient communication, despite the
limitation to laboratory dependence. The methods developed with MEG data also may help to
advance EEG processing, because signal characteristics of MEG and EEG measurements are similar.
Finally, MEG could serve as a training modality for demanding neurofeedback applications as it is
approached in rehabilitation or ADHD treatment.

5. Conclusions

The spatial and spatio-temporal filters presented in this paper, revealed considerably higher
recognition accuracy in spatially highly resolved MEG data compared to classification in the original
sensor space. The supervised estimation of optimal spatial filters in combination with a correlation
based recognition framework is highly advantageous compared to PCA combined with a classifier
based on learning theory. We presume that the proposed methods are applicable to high-density EEG
recordings as well, and that the framework can be used for other ERP recognition tasks, not being
limited to the oddball paradigm. In particular, the algorithm could greatly improve BCI reliability for
improved communication abilities of severely paralyzed people.
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Abbreviations

The following abbreviations are used in this manuscript:

ADHD: Attention deficit hyperactivity disorder
BCI: Brain–computer interface
CCA: Canonical correlation analysis
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CSP: Common spatial pattern
EEG: Electroencephalogram
ERP: Event-related potential
ICA: Independent component analysis
ITR: Information transfer rate
MEG: Magnetoencephalogram
P300: Positive deflection, peaking at 300 ms
PCA: Principal component analysis
SD: Standard deviation
SNR: Signal-to-noise ratio
SVM: Support vector machine

Nomenclature

c number of variables (channels) in X
d number of variables (reference functions) in Y
e index for event sequence
f averaged Fisher z-transformed correlation coefficients
i general iteration index
k index for columns in V (virtual channel/component)
m element in M
n number of observations (sampling points)
p p-value
q number of selected components
s refers to standard event
t refers to target event
w element in W
x refers to X / element in X
y refers to Y / element in Y
u column vector in U
v column vector in V
w column vector in W
Id identity matrix of size d× d
M matrix of model functions
U matrix of filtered X
V matrix of filtered Y
W filter matrix (weights for linear combination)
X matrix of observations (brain signals)
Y matrix of observations (reference signals)
ρ (canonical) correlation coefficient
µ Gaussian mean
σ standard deviation
ω scaling parameter
ˆ denotes test data
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