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Abstract: In wireless communication, network coding is one of the intelligent approaches to process
the packets before transmitting for efficient information exchange. The goal of this work is to enhance
throughput by using the intelligent technique, which may give comparatively better optimization.
This paper introduces a biologically-inspired coding approach called Artificial Bee Colony Network
Coding (ABC-NC), a modification in the COPE framework. The existing COPE and its variant
are probabilistic approaches, which may not give good results in all of the real-time scenarios.
Therefore, it needs some intelligent technique to find better packet combinations at intermediate
nodes before forwarding to optimize the energy and maximize the throughput in wireless networks.
This paper proposes ABC-NC over the existing COPE framework for the wireless environment.

Keywords: network coding; artificial bee colony-based COPE; wireless sensor network

1. Introduction

Innovative data storage and transmission is a challenging issue for researchers to improve the
efficiency and reduce the communication cost in the wireless environment. Cloud applications and
Internet usage are increasing day by day due to the rapidly increasing on demand services raised by
Internet users. Therefore, data transmission is a crucial parameter of the network in terms of energy
efficiency and throughput. Researchers introduced network coding as a concept of intelligent data
processing before its transmission to reduce network traffic and make effective utilization of energy
during packet transmission.

In the wireless environment, throughput improvement and reduction in energy consumption
are the main challenging tasks. Besides this, scalability and dense deployment are further issues for
researchers [1]. Network coding provides a way of intelligent data processing before their transmission
to reduce network traffic and energy consumption. Earlier network coding was proposed to overcome
the bottleneck problem in a wired network, but the diversity of links and the broadcast nature of the
wireless medium makes it more popular in a wireless network, such as a sensor and mesh network.
The first practical implementation of network coding came in the form of COPE [2] in 2006.

As mentioned by Katti et al., COPE is a new packet-forwarding architecture to raise wireless
network throughput by inserting a COPE shim between the IP and MAC layer. COPE provides much
less coding gain of approximately 2%–3% in a TCP flow network due to collision-related losses, while
an enhancement of 15%–70% in a UDP network, depending on uplink traffic. Liu et al. [3] proved
that network coding could reduce the number of transmissions in a wireless network. Philipp et al.
claimed energy savings up to 50% in [4] for a randomly-deployed and scalable sensor network using
opportunistic network coding.

In this paper, the implementation is focused on improving the coding gain by applying an
intelligent mechanism, which is an artificial bee colony approach. The proposed model would be
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applicable to a wireless sensor network while transmitting the packets. The wireless sensor network
[5–7] is a collection of tiny devices, distributed in an area for some specific and collaborative purpose.
A survey on an intelligent sensor network with its applications is presented in [8]. Another candidate
network (not implemented in this paper) for the proposed encoding technique is a wireless mesh
network [9–11] in which each node can directly communicate with any other peer node. The sensor
nodes may communicate with the other nodes, as well as sink nodes or base stations depending on
their range of communication. A vast range of real applications, like battlefield surveillance, animal
and environmental monitoring, agriculture improvement, traffic and health monitoring, forest fire
monitoring, etc., make sensor networks popular enough in the research community. As an energy
consumption concern, it is important for WSNs to limit the number of transmissions/receptions of
data and control packets. Network coding is useful for throughput enhancement, robustness and load
balancing.

In the literature, several issues of WSNs, like localization, node coverage and data aggregation,
are applied in various routing schemes, which are enhanced by nature-inspired artificial intelligence
techniques. A compact artificial bee colony optimization for topology control was proposed in [12].
This paper proposed a nature-inspired approach for encoding packets on the COPE framework.
The coding technique proposed in COPE was based on a reception report and the probability of
having packets at neighbors. Researchers have confirmed that several systems available in nature
may better deal with many complex problems in a very efficient manner. The proposed artificial bee
colony network coding technique is able to find better packet combinations in a heuristic manner as
a natural bee does and gives improved coding gain, as shown in the results. As a population size
concern, random or heuristic techniques provide better optimization than the traditional deterministic
approaches.

The proposed encoding algorithm enhances the performance of an opportunistic coding phase
of the COPE framework using artificial honey bee behavior. The algorithm executes in three steps:
employee bee phase, onlooker bee phase and scout bee phase. In this approach, a random wireless
sensor network has been considered for the implementation purpose to check the performance of the
proposed approach. The proposed research work also enhances the practical implementation of COPE.

The rest of the paper is organized as follows. Section 2 presents some network coding techniques
proposed for unicast traffic flow. The proposed approach with an overview of nature-inspired
techniques, especially artificial bee colony, is presented in Section 3. Section 4 is dedicated to the
implementation of the proposed work and the comparative results’ discussion, respectively. Finally,
Section 5 is the conclusion and future scope.

2. Related Work

In order to optimize the coding technique, several theoretical concepts have been proposed by in
the literature. Inter-session-based network coding COPE was proposed in [2]. In this implementation,
Sachin et al. distributed a random number of mobile nodes in the sensor field of a fixed region. The
nodes in the sensor field perform the network coding concept in a real environment. The COPE
basically performs in three steps, which are opportunistic listening, opportunistic coding and learning
the neighbor’s state.

COPE is an XOR-based local network coding technique. The existing COPE may not work in all
real-time applications; the following are a few drawbacks of COPE, which we can overcome in our
proposed work:

1. Prolong snooping of the communication medium may quickly deplete node’s battery.
2. Periodic broadcast of reception reports and the diversity of links may increase battery

consumption and network traffic.
3. COPE is a probabilistic approach. Therefore, the time complexity of the coding algorithm in

COPE is less, but it may not be the best encoding solution each time.
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Kaikai et al. [13] replaced the FIFO queue of COPE with a priority queue. The authors maintain
a dedicated FIFO queue called the control queue for special packets and an FIFO queue for each active
flow passing through the current node. The author has changed the scheduling algorithm, as well.
The simulated result claims an improvement of 16% in coding gain.

Opportunistic coding depends on two things: first is the combination of incoming and outgoing
links at the node and second is whether the packet received at the node is coded or native. In
contrast to COPE, the cross-layer-based network coding-aware routing technique is proposed in
[14]. The coding-aware routing approach is based on the linear programming technique. A new
inter-session network coding technique, COPR (Coding with Opportunistic Reception) [15], is proposed
for multiple unicast flows, and it achieved 25% power savings. In a wired network, COPR decomposes
multiple unicast flows into a superposition of multicast and unicast flows with coding in each flow.
However, this session-based scheduling method performs coding by searching only the head of the
queues, similar to COPE. A distributive approach to network coding-aware queuing management
(NCAQM) for TCP flows is discussed in [16]. The NCAQM scheme uses network coding and confession
information for coded packet buffering and dropping at the relay nodes. The author claims that
NCAQM better exploits the coding opportunity in TCP flows over wireless network coding, which
was not possible in COPE due to the bursty behavior of TCP flows. The simulated result (TCP
+ NCAQM) shows an improvement of 18%–35% depending on the network topology. CLONE is
proposed in [17] for a wireless lossy medium and claimed throughput gain of around 57% with an
approximate overhead of 9%–10%. CLONE uses redundancy to increase the probability of delivering
packets at the intermediate nodes. It is practically in-feasible due to its complex computation.

In [18], the author considers the flow instead of individual packets and compares simulated results
with packet-level network coding. In contrast with the traditional tree-based approach, SenseCode is
proposed in [19]. The redundancy and network coding-based SenseCode achieves high reliability up
to 90% in highly dynamic network conditions, whereas redundancy alone or opportunistic routing
does not. Each node buffers all self-generated messages and the packets it has received from its
descendant nodes during the transmission cycle in a queue. Overheard packets may be stored in a
separate queue. Whenever a node has a message to send, it creates an un-codable marked packet
and transmits to ancestor nodes. If a node receives an un-codable marked packet, it has to relay that
packet; otherwise, it has to send the linear combination of the received packet with the queue’s packets.
Finally, some of coded/uncoded packets are received at the sink node, which provide reliability in a
lossy wireless medium. Kasireddy and Wang [20] analyzed the network coding performance on the
energy consumption of a grid wireless sensor network.

Intra-session network coding is a more obvious way to deal with the lossy environment problems.
It gives equal preference to all packets generated from the same source. Random linear encoding-based
MORE [21] was proposed for opportunistic routing. In the opportunistic routing technique [22], each
node overhears the medium transmission, and nodes closer to the destination may participate in the
relaying of a packet in contrast with traditional routing methods, where a predetermined path exists
between the source and destination. In MORE, source node fragments the source file into segments
named batches. The batch is a collection of uncoded packets called native packets. A random linear
combination of native packets of the batch is created and broadcast in the wireless medium. The
destination decodes the encoded packets only if it receives a sufficient number of packets. The optimal
rate control for avoiding network congestion and the multi-path routing technique for shortest path
exploration-based OMNC were proposed in [23]. This reduces bandwidth usage and avoids congestion
in a distributive manner by encoding.

OMNC has less complexity for network coding implementation, but it decreases protocol
performance by wasting wireless bandwidth. This problem is addressed, and a new approach,
CodeOR, is presented in [24]. CodeOR exchanges the window size (W) with the destination node
for more than one simultaneous segment communication. If the source node receives at least one
end-to-end acknowledgment from the destination node, it starts transmitting the packets of the next
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segment. If an intermediate node receives an acknowledgment from descendant nodes, it starts
transmitting packets of the next segment. The problem of loss rate estimation and correlation between
the links is emphasized in CCACK [25,26]. Cumulative coded acknowledgment is used for feedback
messages. The symbol-level MIXIT protocol is proposed in [27]. Rather than sending the correct packet
every time, MIXIT even transmits each correct bit. The MIXIT approach is useful for WSNs in which
there are huge traffic flows from sensors to the sink node and for VANETs for content distribution.

3. Proposed Work

In the proposed work, we have made an attempt at an artificial intelligence approach to the
existing COPE, which performs the encoding of packets before transmitting them to the next node.
The encoding of a packet is nothing but processing before sending it to the next hop. In COPE,
the processing consists of three phases, and the proposed work optimizes these steps to overcome
the problems in the basic architecture. In the literature, several issues of WSNs, like localization,
node coverage, data aggregation and resource optimization in routing schemes, are enhanced by
nature-inspired artificial intelligence techniques. The proposed work is an attempt to incorporate
the well-known nature-inspired Artificial Bee Colony (ABC) technique to improve coding gain in
wireless networks. This section will explain the general features of nature-inspired techniques and the
proposed algorithm.

Recently, the major issues in WSNs have been solved more efficiently by meta-heuristic
approaches, and swarm intelligence provides the way of doing so. The basic idea behind swarm
intelligence is the collective and collaborative behavior of social animals, like ants, birds, fish, bees,
bacteria, etc. These social animals solve complex tasks in a distributed manner, which would not be
possible for a centralized approach. The intelligent behavior of these insects is analyzed by the research
community and it was attempted to develop algorithms for nonlinear, non-convex or combinatorial
optimization problems for science and engineering applications. The two important and significant
behaviors of swarm intelligence are [28,29] explained in the literature:

3.1. Self-Organization

This is an important feature of social animals that results in global-level response due to interaction
with lower level individuals without any central coordinating unit. Self-organization is based on:

1. Positive feedback is the information generated by the system and again fed back to the system to
create a better structure. It provides diversity and acceleration to the new stable state.

2. Negative feedback helps to stabilize the system and compensates the effect of positive feedback.
3. Fluctuation helps in finding a new solution by random change and avoids stagnation.
4. Multiple interactions provide group intelligent behavior by learning from individuals of the society.

3.2. Division of Labor

Social animals are intelligent enough to distribute small segments of a whole task into specialized
individuals and to perform simultaneously for a better and efficient outcome.

Swarms are the collection of interacting individuals that may work together to accomplish a
goal. The classical examples are honey bees around their hives, ant colonies, flocks of birds, herding
of animals, particle swarm intelligence (PSO), the immune system in a swarm of cells, behavior of
termites, etc.

Dervis Karaboga presented an artificial bee colony algorithm [30] inspired by the foraging
behavior of honey bees in 2005. The author specifies that the bees in the hive are divided into
three categories:

1. Employee bees are currently exploiting or employed at some food source. They share information
of the food source with other members of the hive with a certain probability.
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2. Onlooker bees are waiting in the hive for new food sources. They evaluate the information
communicated by employed bees to find the best one among those.

3. Scout bees are unemployed bees and randomly explore the new food source near the hive.

The routine activity of honey bees are artificially presented by Karaboga [30] in the following
ABC algorithm:

Algorithm 1 ABC algorithm.

1: procedure BEST–FOOD–SOURCE
2: Initial food sources generated by scout bees near hive area.
3: while (termination criteria) do
4: Employee bees visit to explore food sources and determine their nectar amounts.
5: Employee bees compute the probability value of the food sources with which food sources

are preferred by onlooker bees.
6: Stop exhausted food exploitation by the bees.
7: Scout bees randomly start exploring new food sources.
8: Memorize the best food source so far.
9: end while

10: end procedure

The main concept of the ABC technique is to converge at the best global solution by updating
position efficiently. The updating position (Figure 1) performed using the expression:

vij = xij + φij(xij − xkj) (1)

where:
vij = updated position value
xij = current position value
xkj = neighboring position value
φij = random value

Figure 1 is the general pictorial representation of the position updating process of a bit in the
packet.

Figure 1. Food source updating process in Artificial Bee Colony (ABC).

As an example, suppose 0111000101110110 is a population member (size 16 bit), representing Xi
(the i-th member of the population set) and updating through population member 1110001101010110
representing Xk (the k-th member of the population set). The randomly-selected position updating is
11th, which represents the j-th value in the above equation. Ø is the random value between −1.0 and
+1.0 and taken as 0.5596 for this particular example. Figure 2 shows the position updating as follows.
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Figure 2. Pictorial representation of the position updating process.

Employee and onlooker bees are responsible for the updating process to approach the global
solution of the problem. Exploration of the new food source is carried out by scout bees. The
computation of the nectar amount corresponds to the quality of the solution for a particular problem. A
similar technique is proposed in the next section to find a better encoding solution of the buffered native
packet at intermediate nodes. A conceptual paper on the artificial bee colony-based COPE framework is
presented in [31]. The author mentioned that the theoretical concept of the nature-inspired optimization
technique in existing probabilistic COPE may enhance the network throughput and efficiency. COPE
inserts a coding shim layer between IP and MAC, as shown in Figure 3, Stage (a). To improve network
throughput, COPE distributes the work in three stages, as shown in Figure 3, Stage (b). In the proposed
work, the intelligent approach is incorporated for better packet combination in opportunistic coding,
as shown in Figure 3, Stage (c).

Figure 3. Modifications to the COPE-opportunistic coding stage.

COPE encodes packets based on the head packet of the output queue and virtual queues. In
contrast, our approach finds the random partial packet encoding through an intelligent technique
called artificial bee colony and improves the encoded packet size. The proposed approach is divided
into three phases: Employee Bee Phase (EBP), Onlooker Bee Phase (OBP) and Scout Bee Phase (SBP).
All of these phases runs repeatedly in a sequential manner, as explained in the opportunistic coding
section of the proposed algorithm.

3.3. Opportunistic Listening

This phase gives the best packet combination to ensure the overall high throughput of wireless
networks. The existing COPE follows a probabilistic approach along with the available reception report
information received by the neighbors for packet combination. However, in our approach, we have
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made an attempt to find the packet combination by artificial intelligence honey bees. As discussed
earlier, opportunistic listening is snooping the wireless medium to overhear packets by the nodes. In
COPE, overheard packets are buffered by each node for 0.5 s for the future coding opportunity and
decoding purposes. The proposed intelligent optimization will find better packet encoding and take
more processing time in comparison with probabilistic COPE. The limiting time for overheard packets
in the buffer is assumed as 1.0 s for delay-tolerant applications.

3.4. Opportunistic Coding

Packet encoding and decoding are the two important phases of the COPE technique. Whatever is
encoded at the source node should be decodable at the destination node; this is the basic principle of
network coding. Decoding is only possible if the destination node has all of the packets except the
interested one. The next subsections describe our approach of packet coding and decoding.

3.4.1. Packet Encoding

This proposed work illustrates an artificial-based encoding process based on nature-inspired
honey bee behavior. The proposed algorithm is an iterative-based approach, which is a meta-heuristic
in nature. The designed algorithm is basically composed of three sub-algorithms: employee bee
phase, onlooker bee phase and scout bee phase. All of these phases are artificially implemented
on the honey bee life cycle. The working principle of the algorithm is shown in Figure 4. The
Partially-Encoded Packet (PEP) is an initial food source generated by scout bees for the EMPLOYEE
bee phase. The partially-encoded packet improves itself in iterations, and if not able to improve up
to a maximum number of trials, then the SCOUT bee phase abandons that PEP and replaces it with
another randomly-generated PEP.

Figure 4. Diagrammatic representation of ABC-based network coding.

The proposed encoding algorithm is given as:

Algorithm 2 ABC-COPE.

1: procedure ABC–BASED–COPE
2: Scout Bees initialize random food sources/Partially-Encoded Packets (PEP)
3: Compute objective and fitness value of PEPs
4: while (termination criteria) do
5: EMPLOYEE bee phase
6: ONLOOKER bee phase
7: SCOUT bee phase
8: Memorize the best PEP found so far
9: end while

10: end procedure
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The initial population is randomly generated by scout bees based on the packets at the node’s
output queue. In the proposed implementation, the initial partially-encoded packet size varies from
2–11, i.e., the encoded packet contains 2–11 native packets (uncoded packets). The range may vary
depending on the processing and memory capacity. Based on the initial encoded packets, all three
phases of the algorithm have repeatedly found the best possible final encoded packet of maximum
objective value. The objective function is the number of neighboring nodes able to decode the current
encoded packet correctly. We have chosen a large number of iterations (n = 1000) for better packet
combination. The existing COPE is probabilistic in nature, whereas our proposed one would give a
better combination after a certain number of iterations. Our proposed algorithm accuracy depends
on the number of iterations specified by the algorithm; the proposed algorithm performance will
be evaluated by varying the number of iterations in the given algorithm. The proposed algorithm’s
practical implementation depends on the availability of existing physical resources.

The evaluated objective value computation from the Employee Bee Phase (EBP) sub-algorithm
executes to improve population members.

Algorithm 3 EMPLOYEE bee phase.

1: procedure EMPLOYEE–BEE–PHASE
2: for each population food source/PEP do
3: find a random position in the PEP for mutation process
4: randomly select neighboring PEP from the population set
5: mutate the current PEP with neighboring as follows:

newPEP(ij) = currentPEP(ij) + rand ∗ (currentPEP(ij) − neighborPEP(positionj))

6: calculate the objective value of the current PEP as:

objVal(i) = number o f bene f ited neighbors in a single transmission cycle

7: compute the fitness value of newPEP(ij) as:
8:

f it(i) =

1/ObjVal(i) + 1, if ObjVal(i) ≥ 0

1 + abs(ObjVal(i), otherwise

9: perform greedy selection between newPEP(ij) and currentPEP(ij)
10: calculate the probability for ONLOOKER bee phase as:

prob(i) = 0.9 ∗ f it(i)/max( f it) + 0.1

11: end for
12: end procedure

The purpose of this phase is to improve the PEP as much as possible. If any population set as
the member/PEP is not able to improve itself in 100 trials (assumption), then scout bees will abandon
that PEP and replace that population member with another randomly-generated PEP by the scout bee
phase. For the updating process of PEP, the algorithm mutates the current food source with random
bits of randomly-selected PEP using Equation (2).

newPEP(ij) = currentPEP(ij) + rand ∗ (currentPEP(ij) − neighborPEP(positionj)) (2)

Here, newPEP(ij) represents the modified PEP using the value of under-considered PEP, i.e.,
currentPEP(ij), and a random bit of another randomly-selected member of the population set
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neighborPEP(positionj). After updating PEP, the algorithm again evaluates the objective and fitness
value of the updated PEP using Equations (3) and (4).

objVal(i) = number o f bene f ited neighbors in a single transmission cycle (3)

f it(i) =

{
1/ObjVal(i) + 1, if ObjVal(i) ≥ 0

1 + abs(ObjVal(i), otherwise
(4)

Fitness ( f it(i)) depends on the objective value computed in Equation (3). The objective function
(objVal(i)) is defined as a function of the neighbor count benefited in a single transmission cycle. Here,
we have introduced only one parameter for optimization, but we may also include battery power
remaining with the node, packet latency and many more in the future. If we consider other parameters,
as well, then the objective value function of Equation (3) may look like:

objVal(i) = f un(x, y, z, ...)

where x denotes the number of benefited neighboring nodes in a single transmission cycle. y represents
the remaining battery power with the node. z may be considered as the packet latency, and so on.

Greedy choice is executed for the best PEP selection between current and modified PEP. The last
step of this phase is to calculate the probability by using the PEP fitness value as in Equation (5).

prob(i) = 0.9 × f it(i)/max( f it) + 0.1 (5)

The above probability value range is modified as:

0.1 ≤ prob(i) ≤ 1.0
This probability is helpful for the onlooker bee phase in the selection process just like in a real

honey bee hive; onlookers select that food source/PEP for which the nectar amount (information
shared by employee bees) is higher.

The onlooker bee phase only updates those PEPs whose probability value is greater than α. α

are the random value taken between zero and one. The selected PEP for which α-criteria is fulfilled
is considered for updating the same as the employee bee phase using the same Equations (2)–(4), as
shown in the algorithm:
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Algorithm 4 ONLOOKER bee phase.

1: procedure ONLOOKER–BEE–PHASE
2: for each population food source/PEP do
3: i f prob > α
4: find a random position in the PEP for mutation process
5: randomly select neighboring PEP from the population set
6: mutate the current PEP with neighboring as follows:

newPEP(ij) = currentPEP(ij) + rand ∗ (currentPEP(ij) − neighborPEP(positionj))

7: calculate the objective value of the current PEP as:

objVal(i) = number o f bene f ited neighbors in a single transmission cycle

8: compute the fitness value of newPEP(ij) as:
9:

f it(i) =

1/ObjVal(i) + 1, if ObjVal(i) ≥ 0

1 + abs(ObjVal(i), otherwise

10: perform greedy selection between newPEP(ij) and currentPEP(ij)
11: end
12: end for
13: end procedure

The scout bee phase explores new food sources/PEPs, as well as abandons those PEPs that are
not able to improve itself in the iterations. The corresponding algorithm is given as follows:

Algorithm 5 SCOUT bee phase.

1: procedure SCOUT–BEE–PHASE
2: for each population food source/PEP do
3: i f PEPcounter ≥ max_trail
4: then
5: replace PEP with another randomly-generated PEP
6: update the objective and fitness value of PEP
7: end
8: end for
9: end procedure

Here, max_trail is taken as 100. If any partially-encoded packet is not able to update itself in 100
trails, it is replaced by another random PEP. After this replacement, the objective and fitness values
are updated.

The last step of the main algorithm is to memorize the best PEP so far. The algorithm returns the
best PEP heuristically. All of these three phases will be repeated 1000 times for a better opportunity for
the packet combination.

3.4.2. Pocket Decoding

The packet decoding process is the same as the COPE framework. A node can decode the desired
packet only if it has n − 1 packets out of n encoded packets.

3.5. Learning Neighbor State

Each node transmits the reception report to the neighboring nodes to circulate information about
the packet it has stored in the buffer pool. In COPE, each node, along with finding the probability of
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having any packet at the neighboring node, also receives a reception report from neighboring nodes.
However, sometimes, the information collected by the reception report may be lost. The computed
probability may also be erroneous. Due to insufficient and erroneous information, the coded packet
may not be decodable at the next hop, which may cause inefficient encoding. The proposed ABC-COPE
finds a better coding combination using the iteration of three phases.

Similar to the COPE protocol, the ABC-COPE header is attached along with the MAC and IP
header.

The ABC-COPE header is divided into three parts as shown in Figure 5:

i. ENCODED_NUM contains the information regarding the packets XORed together
ii. REPORT_NUM carries the reception report information

iii. ACK_NUM contains the cumulative acknowledgment information

Bit Seq is the combination of bits, representing the cumulative feedback and reception
report information. The structure of the reception report and acknowledgment are
(SRC_IP, LAST_PKT, Bit Map) and (NEIGHBOR, LAST_ACK, Bit Map), respectively. The
reception report bit sequence (134.10.23.19, 50, 10000001) represents that the last packet heard by
the current node is 50th from source 134.10.23.19, and also, it has heard the 42nd and 49th packet from
the same source. The acknowledgment bit sequence (134.10.23.17, 50, 00111111) represents that the
destination received the 50th packet, as well as a sequence of the 44th–49th packets from neighbor
134.10.23.17.

Therefore, each node needs to maintain the following data structures:

1. An output FIFO queue is used to store packets that need to relay to the next-hop
2. The packet pool stores all packets heard in the last T unit of time
3. Two virtual queues to store per neighbor information shared/computed by the reception

report/deterministic probability

Figure 5. Description of the ABC-COPE header.

Acknowledgment and re-transmissions: each sender expects acknowledgment from the next hop,
and if not acknowledged within a certain time interval, the sender needs to re-transmit the native
packet again with the next potentially-encoded packet.

4. Results and Discussion

This section shows the results and comparison of our nature-inspired encoding algorithm with
COPE Framework. The implementation is done in MATLAB R2008a Version 7.6.0.324. The proposed
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algorithm was executed on a WSN of Nodes 10–40. Nodes are randomly distributed over an area of
100 × 100 unit2. In the result, the coding gains of COPE and ABC-COPE are evaluated for medium
delivering probabilities of 100%, 80%, 70% and 60%. The delivering probability represents the
information about storing packets at the neighboring node’s buffer, i.e., successful delivery of reception
reports. The proposed algorithm is a heuristic iterative approach, whereas COPE is probabilistic.
This paper shows the above differences with respect to the network coding gain. Some examples
(Figure 6) of randomly-distributed WSNs are shown below. The dots represent the sensor nodes, and
dashed lines shows wireless communication links among the sensors. The following WSN shows the
number of nodes varying with the reliability factor. The reliability factor is increasing 60%, 70%, 80%
and 100%. The number of nodes in the network is varying from 10–40 nodes.

Figure 6. Random wireless sensor network.

Coding gain comparisons are given below. In the bar chart, X-axis values represent the number
of nodes in the sensor network, and Y-axis values represent a coding gain. It is clearly seen that the
coding gain improvement is good for 80%, 70% and 60% reliable networks, whereas for a 100% reliable
network, it is as good as COPE. In real life, most of the wireless networks are less error prone due to
limited resources. Therefore, the proposed mathematical model concludes that ABC-COPE could give
better network coding gain in error prone WSNs with limited resources.

All of the results are shown (Figure 7) for unicast traffic. The sensor node range is assumed as
50 units in the network area of 100 × 100 unit2 to maximize the neighboring node, i.e., to create a
dense network.
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Figure 7. Coding gain chart of COPE and ABC-COPE for dense WSN.

Some random sparse WSNs are also considered for a 200 × 200 unit2 area. The communication
range of the sensor nodes is unchanged i.e., 50 units of radius. The proposed coding technique executed
and the results are presented in Figure 8.

Figure 8. Coding gain chart of COPE and ABC-COPE for sparse WSN.

5. Conclusions and Future Work

The proposed research work designed and presented an updated COPE framework with a
meta-heuristic approach, which is based on a nature-inspired optimization technique to enhance the
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coding gain of a wireless sensor network. The proposed work performance can be improved based
on the number of iterations and existing resources. The comparative results of the proposed work
with existing COPE have been presented in the form of bar graphs. The proposed work performs
well when it is compared to the existing COPE framework. The assumption of the proposed work is
that the nature-inspired techniques need much computing power as compared to other traditional
approaches, but simultaneously, it is also true that they may save much energy. Therefore, the proposed
algorithm is a trade-off between the energy and processing power available. This technique considers a
random initial population set and improves it at the best level. As a future scope, some initial selection
procedures may be applied for population set initialization, which may enhance the coding gain and
throughput of the network. We have presented comparative results for wireless sensor networks,
but this will also be suitable for wireless mesh networks due to its structural deployment. The mesh
network’s element has high processing power and enough energy sources. Therefore, ABC-COPE
will be more suitable for a wireless mesh network. In the future, the proposed framework could be
applicable in WSNs and WMNs along with routing schemes to improve throughput performance. The
proposed work may be simulated using wireless sensor network simulators, such as TinyOS, NS2,
Qualnet, etc.
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