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Abstract: Multiplication is the dominant operation for many applications implemented on
field-programmable gate arrays (FPGAs). Although most current FPGA families have embedded
hard multipliers, soft multipliers using lookup tables (LUTs) in the logic fabric remain important.
This paper presents a novel two-operand addition circuit (patent pending) that combines
radix-4 partial-product generation with addition and shows how it can be used to implement
two’s-complement array multipliers. The circuit is specific to modern Xilinx FPGAs that are based
on a 6-input LUT architecture. Proposed pipelined multipliers use 42%–52% fewer LUTs, and some
versions can be clocked up to 23% faster than delay-optimized LogiCORE IP multipliers. This allows
1.72–2.10-times as many multipliers to be implemented in the same logic fabric and potentially offers
1.86–2.58-times the throughput by increasing the clock frequency.

Keywords: field-programmable gate array (FPGA); LUT-based multipliers; parallel multipliers;
array multipliers; radix-4-modified Booth recoding

1. Introduction

Field-programmable gate arrays (FPGAs) are often used in signal processing systems for many
applications, such as digital-signal processing (DSP), video processing and image processing. For these
applications and others, computation of a sum-of-products is very common. As a result, multiplication
is often the focus of efforts to reduce required resources, delay and power. For this reason, most
contemporary FPGAs have embedded hard multipliers distributed throughout the fabric. Even so,
soft multipliers using lookup tables (LUTs) in the configurable logic fabric remain important for
high-performance designs for several reasons:

• Flexible size and type: Embedded multiplier operands are fixed in size and type, e.g., 25× 18 two’s
complement, while LUT-based multiplier operands can be any size or type.

• Flexible placement: The number and location of embedded multipliers are fixed, while LUT-based
multipliers can be placed anywhere, and the number is limited only by the size of the
reconfigurable fabric.

• Configurable: Embedded multipliers cannot be modified, while LUT-based multipliers can use
techniques, such as merged arithmetic [1] and truncated-matrix arithmetic [2–6], to optimize the
overall system.

• Hybrids: LUT-based multipliers are often combined with embedded multipliers to make
larger multipliers.
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Parandeh-Afshar and Ienne discuss the importance of this topic and present techniques to
improve the performance of soft multipliers in Altera FPGAs [7]. They present radix-2 Baugh–Wooley
multipliers and radix-4-modified Booth multipliers that use generalized parallel counters (GPCs)
in the logic fabric to reduce the partial-product matrix to two or three rows, which are then added
using a carry-propagate adder (CPA). This builds on the previous work of Parandeh-Afshar et al.
using GPCs for compressor trees for the more general case of multi-operand addition [8–10]. In other
work, Parandeh-Afshar et al. suggest modifications to the FPGA logic fabric to improve soft multiplier
implementations [11,12]. Matsunaga et al. have also published work on using GPCs for multi-operand
addition [13–15]. De Dinechin and Pasca present methods for implementing large multipliers
and squarers on Xilinx FPGAs using a combination of embedded multipliers and logic-based
multipliers [16]. Gao et al. present a method for implementing large multipliers that combine embedded
multipliers with GPCs [17]. Brunie et al. model a generalized weighted sum of bits as a bit heap and
describe techniques for summing them using a combination of embedded multipliers and GPCs on
Altera and Xilinx FPGAs [18]. Kumm and Zipf present novel GPCs for Xilinx FPGAs and use them
with integer linear programming (ILP) in compressor trees [19]. Mhaidat and Hamzah compare the
use of GPCs to Wallace and Dadda multipliers [20]. Kumm et al. use a method similar to this work to
implement softcore multipliers [21].

Unlike much of the related work, this paper is specific to the Xilinx 6-input LUT architecture found
in the Spartan-6, Virtex-5, Virtex-6, 7-Series, UltraScale and perhaps future generations. The underlying
generate-add unit (patent pending) can be used for many purposes, but this paper focuses on its use in
general-purpose array multipliers. Previous work describes a radix-4 partial-product generate-add
structure and shows how it can be used to make array and tree multipliers [22–24]. This paper extends
that work in several ways:

• The generate-add unit is described in greater detail, and new optimizations are presented.
• Proposed array multipliers are described in greater detail, and new optimizations are presented.
• All new synthesis results are given using Vivado instead of the ISE toolchain; LogiCORE IP v12.0

multipliers are compared instead of v11.2; and more operand sizes are synthesized.

The new optimizations further reduce the number of required LUTs by approximately 10% and
provide approximately a 1.5-times speedup compared to [22]. The proposed multipliers are believed
to be the only designs to date that produce better results than LogiCORE IP LUT-based multipliers.

The paper is organized as follows. Section 2 gives background information. Section 3 discusses
related work using GPCs. Section 4 describes the proposed two-operand adder, and Section 5 describes
the proposed LUT-based array multipliers. Synthesis results are discussed in Section 6, and conclusions
are given in Section 7.

2. Background

This section describes the details of the Xilinx logic fabric, two-operand addition in the Xilinx
logic fabric, Altera logic fabric and radix-4-modified Booth multiplication.

2.1. Xilinx Logic Fabric

The main logic resource for implementing combinational and sequential circuits in a Xilinx FPGA
is the configurable logic block (CLB). Each CLB has two slices. Figure 1 is a partial diagram of a 7-Series
FPGA slice. Each slice has four 6-input lookup tables (LUT6s) designated A, B, C and D. Each LUT6
is composed of two 5-input lookup tables (LUT5s) and a two-to-one multiplexer. The two LUT5s
are 32 × 1 memories that share five inputs designated I5:I1. The memory values are designated
M[63:32] in one LUT5 and M[31:0] in the other LUT5. The output of the M[31:0] LUT5 is designated O5.
The sixth input, I6, is input to a multiplexer that selects one of the LUT5 outputs. The selected output is
designated O6. The LUT6 is normally configured as either two LUT5s with five shared inputs and two
outputs by connecting I6 to logic “1”, or as one LUT6 with six inputs and one output by connecting I6
to the sixth input [25,26].



Computers 2016, 5, 20 3 of 25

Figure 1. Partial diagram of a Xilinx 7-Series CLB slice.

A multiplexer and an XOR gate, indicated in Figure 1 as MUXCY and XORCY respectively, are
associated with each LUT6. Inputs to the MUXCY associated with the A LUT6 are a select signal, propi,
a first data input, geni, and a second data input, ci. The output of the MUXCY, ci+1, is connected to
the MUXCY associated with the B LUT6. These connections continue through the C and D LUT6s to
form a fast carry chain within the slice. The ci+4 output of the slice, COUT, can be connected to the ci
input of the next slice, CIN, to form longer carry chains. The prop signal is driven by the O6 output of
the corresponding LUT6. The gen signal is selected by a configuration multiplexer and is either the
O5 output of the corresponding LUT6 or the bypass input, which is designated AX, BX, CX or DX.
The fast carry logic in a slice, which includes four MUXCYs, four XORCYs and the fast carry chain, is
called a CARRY4 [26].

Two flip-flops are associated with each LUT6. One flip-flop can be used to register O5 or the
bypass input. The other flip-flop can be used to register O5, O6, the bypass input, the MUXCY output
or the XORCY output.

The Spartan-6, Virtex-5, Virtex-6 and UltraScale families are similar to the 7-Series. One notable
difference is that the Spartan-6 family does not have fast carry chains in every column of slices.

2.2. Two-Operand Addition

Suppose X and Y are to be added using the Xilinx fast carry logic. For the i-th column of the
adder, xi and yi are the bits of X and Y, respectively; ci is the carry-in bit; ci+1 is the carry-out bit; and
si is the sum bit. A truth table can be made for the adder; then, required values for propi and geni can
be derived from the table.
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Figure 1 shows that si = propi ⊕ ci, so propi must have the same value as si ⊕ ci to produce the
correct value for the sum bit. When propi = 0, the generate signal becomes the carry out, so geni must
have the same value as the expected value of ci+1. When propi = 1, the generate signal is not used, so
it is a don’t-care. These values are given in Table 1. Next, propi and geni are expressed as functions of
xi and yi. Inspection of the truth table shows that propi = xi ⊕ yi and that the generate signal can be
either geni = xi or geni = yi.

Table 1. MUXCY propagate and generate signals for addition.

Adder Adder MUXCY
Inputs Outputs Inputs

xi yi ci ci+1 si propi geni

0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 X
0 1 1 1 0 1 X
1 0 0 0 1 1 X
1 0 1 1 0 1 X
1 1 0 1 0 0 1
1 1 1 1 1 0 1

2.3. Altera Logic Fabric

The multipliers proposed in this paper are specific to the Xilinx LUT6 architecture and are not
applicable to Altera FPGAs. The Altera logic fabric is briefly described here to give context to related
work on generalized parallel counters (GPCs).

The main logic resource for implementing combinational and sequential circuits in an Altera
Stratix V FPGA is the logic array block (LAB) [27]. Each LAB in the Stratix V has ten adaptive logic
modules (ALMs). The ALM has evolved, but the general functionality described in this section applies
to the older Stratix II family [28] through the latest family, the Stratix 10 [29].

The capabilities of an ALM can be compared to a Xilinx LUT6 and its associated MUXCY, XORCY
and flip-flops. An ALM can be configured to implement two functions of six inputs, provided that
four of the inputs are common, as shown in Figure 2. By comparison, a Xilinx LUT6 can implement
one function of six inputs or two functions of five shared inputs.

Figure 2. Altera ALM configured as two 6-input LUTs.

Each ALM includes two full adders and dedicated carry connections to implement fast addition.
Figure 3 shows an Altera ALM in arithmetic mode.
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Figure 3. Altera ALM configured for arithmetic.

2.4. Radix-4-Modified Booth Multipliers

Suppose A and B are to be multiplied. If the multiplicand, A, is an m-bit two’s-complement
integer and the multiplier, B, is an n-bit two’s-complement integer, then:

A = −am−1 · 2m−1 +
m−2

∑
i=0

ai · 2i (1)

B = −bn−1 · 2n−1 +
n−2

∑
j=0

bj · 2j (2)

MacSorley’s modified Booth recoding algorithm works for both unsigned and two’s-complement
multipliers [30]. First, b−1 is concatenated to the right of B and set to “0”. For two’s-complement
multipliers, n must be even. If it is not, B is sign extended by one bit to make n even. For unsigned
multipliers with odd values of n, B is zero-extended with one “0” to make n even. If n is already even,
B is zero-extended with two “0”s.

Next, B is recoded two bits at a time using overlapping groups of three bits. For each
j ∈ {0, 2, 4, . . . , n− 2}, bj+1, bj and bj−1 are recoded as a radix-4 signed digit, b′ρ, where ρ = j/2 and
b′ρ = −2bj+1 + bj + bj−1. Each partial product, Pρ, is A · b′ρ. Digit recoding and partial-product selection
are summarized in Table 2. Finally, the product is computed as:

P =
n/2−1

∑
ρ=0

Pρ · 22ρ =
n/2−1

∑
ρ=0

A · b′ρ · 22ρ. (3)

Table 2. Radix-4-modified Booth recoding and partial-product selection (j = 2ρ).

bj+1 bj bj−1 b′ρ Pρ Comments

0 0 0 0 0 string of “0”s
0 0 1 1 +A end of “1”s
0 1 0 1 +A a single “1”
0 1 1 2 +2A end of “1”s
1 0 0 −2 −2A beginning of “1”s
1 0 1 −1 −A a single “0”
1 1 0 −1 −A beginning of “1”s
1 1 1 0 0 string of “1”s

If a partial product is +A, then the multiplicand, A, is selected. If a partial product is +2A, then
the multiplicand is shifted left one bit before selection. If a partial product is −A or −2A, then A or
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2A is subtracted by complementing each bit and adding “1” to the least significant bit (LSB). Table 3
summarizes partial-product generation for each selection. There are m + 1 bits in the partial product
to provide for a left shift of A, with sign extension if A is not shifted. The operation bit, opρ, is set to “0”
for addition or “1” for subtraction and is added to the LSB column of the partial product.

Table 3. Radix-4-modified Booth partial-product generation.

Pρ pρ,m pρ,m−1 pρ,m−2 · · · pρ,2 pρ,1 pρ,0 opρ

+0 0 0 0 · · · 0 0 0 0
+A am−1 am−1 am−2 · · · a2 a1 a0 0
+2A am−1 am−2 am−3 · · · a1 a0 0 0
−A am−1 am−1 am−2 · · · a2 a1 a0 1
−2A am−1 am−2 am−3 · · · a1 a0 1 1

Each partial product is sign extended to the width of the multiplier in order to provide for correct
addition and subtraction. Sign extension can be accomplished by complementing the sign bit, adding
a “1” in the same column, and extending with constant “1”s. The constants are pre-added to reduce
the number of “1”s in the matrix. Figure 4 shows the simplified partial-product matrix for a 6× 6
multiplier [31–33].

column: 211 210 29 28 27 26 25 24 23 22 21 20

1
P0 · 20: 1 p0,6 p0,5 p0,4 p0,3 p0,2 p0,1 p0,0
P1 · 22: 1 p1,6 p1,5 p1,4 p1,3 p1,2 p1,1 p1,0 op0
P2 · 24: 1 p2,6 p2,5 p2,4 p2,3 p2,2 p2,1 p2,0 op1

op2

P: p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Figure 4. Radix-4-modified Booth partial-product matrix, m = n = 6.

3. Related Work: Generalized Parallel Counters

The well-known Wallace tree [34] and Dadda [35] multipliers use full adders and half adders to
reduce the partial-product matrix to two rows, which are then added using a final CPA. A full adder is
sometimes called a (3;2) counter, because it adds three bits in the same column and outputs a two-bit
result equal to the sum of the three bits. A GPC adds bits in one or more columns and produces an n-bit
result equal to the sum of the bits, taking into account the weight of the columns [36]. For example,
a (5,5;4) counter adds five bits in the 2i+1 column and five bits in the 2i column and outputs a four-bit
result equal to the weighted sum of the ten input bits. Figure 5 shows how several (5,5;4) counters
could be used to reduce five rows of bits to two rows.

Figure 5. Matrix reduction using (5,5;4) counters.

Parandeh-Afshar et al. are believed to be the first to look at using GPCs implemented using LUTs
to build compressor trees for multi-operand addition in FPGAs [8–10]. They note that modern FPGAs,
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such as Altera Stratix II and newer and Xilinx Virtex-5 and newer, have 6-input LUTs. Therefore,
they focus on GPCs that have up to six total inputs for efficient usage of the LUTs and show that
(6;3), (1,5;3), (2,3;3) and (3,3;4) counters each map to two ALMs in modern Altera FPGAs. They use
a heuristic to implement multi-operand adder compressor trees with GPCs in [8], use integer linear
programming (ILP) to improve the results in [9] and improve the GPCs themselves by using the
ALM fast addition resources in [10]. They note that both Altera and Xilinx have efficient ternary
adders, so they use GPCs to reduce the matrix to three rows. Other work on GPCs that is based on
work by Parandeh-Afshar et al. presents incremental improvements or additional applications for
GPCs [13–15,17,20]. Kumm and Zipf present two novel GPCs, (6,0,6;5) and (1,3,2,5;5), that are specific
to and optimized for Xilinx FPGAs [19].

4. Proposed Two-Operand Adder

Suppose X and Y are to be added using the Xilinx fast carry logic. For the i-th column of the
adder, xi and yi are the bits of X and Y, respectively; ci is the carry-in bit; ci+1 is the carry-out ; and si
is the sum bit. The propi signal must be set to xi ⊕ y1, and the geni signal can be set to either xi or yi to
add xi and yi [22]. If xi and yi together are a function of five or fewer inputs, then the LUT6 can be
configured as two LUT5s, generating either xi or yi at O5, routing it to geni and generating xi ⊕ yi at
O6 to drive propi. If xi and yi together are a function of six inputs, then the LUT6 can be configured to
generate xi ⊕ yi at O6 to drive propi and xi or yi can be applied to the bypass input and configured to
drive the geni input. A disadvantage of this configuration is that the bypass flip-flop cannot be used.

Normally, a LUT6 can be used to either generate a function of six inputs at O6 or to generate
two functions of five inputs at O5 and O6 [25,26]. However, there are several useful cases where one
function of six variables can be output at O6 and a separate function of five shared variables can be
output at O5. Suppose xi is a function of one variable connected to I6 and yi is a function of five
variables connected to I5:I1. The function yi is stored in M[31:0], so yi is output at O5. If xi is “0”, yi is
also output at O6. If xi is “1”, the function stored in M[63:32] is output at O6. If yi is stored in M[63:32],
then xi ⊕ yi is generated at O6 and yi is generated at O5. This can be used to add xi and yi without
using the bypass input when xi is a function of one variable and yi is a function of up to five variables.
Figure 6 shows the connections for this configuration. This frees the bypass input to be connected
to the bypass flip-flop to implement additional registers. Input I6 has the shortest delay path, and I1
has the longest [25], so this method also allows faster inputs to be used if yi is a function of less than
five variables. The carry into the proposed adder, c0, can be used to implement subtraction or to add
an extra bit to the least significant column.

Figure 6. Proposed two-operand adder; computing SUM = X + Y.
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5. Proposed Multipliers

This section describes how the proposed array multipliers are implemented and pipelined.

5.1. Partial-Product Selection and Generation

MacSorley’s algorithm adds zero when (b2ρ+1, b2ρ, b2ρ−1) = (1, 1, 1) by generating Pρ = (00 . . . 00)
and setting opρ = 0. In the proposed multiplier, Pρ = (11 . . . 11) is generated, and opρ is set to
“1”. This complements each bit in Pρ and adds “1” to subtract zero [32]. With this modification, the
operation bit opρ = b2ρ+1, as opposed to MacSorley’s algorithm where opρ is a function of three
variables. This eliminates the logic resources and additional delay required to generate opρ and
simplifies the layout on the FPGA fabric. Table 4 shows the proposed partial-product selection (cf.
Table 2), and Table 5 shows the proposed partial-product generation (cf. Table 3).

Table 4. Proposed partial-product selection (j = 2ρ).

bj+1 bj bj−1 b′ρ Pρ

0 0 0 0 0
0 0 1 1 +A
0 1 0 1 +A
0 1 1 2 +2A
1 0 0 −2 −2A
1 0 1 −1 −A
1 1 0 −1 −A
1 1 1 0 −0

Table 5. Proposed partial-product generation.

Pρ pρ,m pρ,m−1 pρ,m−2 · · · pρ,2 pρ,1 pρ,0 opρ

+0 0 0 0 · · · 0 0 0 0
+A am−1 am−1 am−2 · · · a2 a1 a0 0
+2A am−1 am−2 am−3 · · · a1 a0 0 0
−0 1 1 1 · · · 1 1 1 1
−A am−1 am−1 am−2 · · · a2 a1 a0 1
−2A am−1 am−2 am−3 · · · a1 a0 1 1

5.2. Combined Partial-Product Generation and Addition

Partial-product generation and addition of a second value are combined into a generate-add
unit, which is the main building block of the proposed array multipliers. The arithmetic operation
is shown in Figure 7. Each unit generates one radix-4 partial product, Pρ, with a leading “1” and the
most-significant bit (MSB) complemented to implement sign extension. The operation bit, opρ, and
the (m + 1) MSBs of the output from the previous generate-add unit, Xρ−1, are added to produce an
accumulated sum, Xρ. The two LSBs of Xρ are bits p2ρ+1 and p2ρ of the final product, so they are
not added in the next unit. The generate-add unit is shown in Figure 8. It is implemented using an
(m + 2)-bit proposed two-operand adder as described in Section 4, with Xρ−1 and Pρ as the X and Y
addends, respectively.
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Xρ−1: xρ−1,m+2 xρ−1,m+1 · · · xρ−1,i+2 · · · xρ−1,2
+Pρ: 1 pρ,m pρ,m−1 · · · pρ,i · · · pρ,0
+opρ: opρ

= Xρ: xρ,m+2 xρ,m+1 xρ,m xρ,m−1 · · · xρ,i · · · xρ,0

Figure 7. Arithmetic for the partial-product generation and addition operation.

Figure 8. Combined partial-product generation and addition unit.

Bit i of partial product Pρ, pρ,i, is a function of five inputs:

pρ,i = f (b2ρ+1, b2ρ, b2ρ−1, ai, ai−1). (4)

The inputs for each bit, pρ,i, are connected to the I5:I1 inputs of a LUT6. xρ−1,i+2 is connected
to I6 of the same LUT6. The M[31:0] LUT5 is configured to generate pρ,i, and the M[63:32] LUT5 is
configured to generate pρ,i. O6 then generates xρ−1,i+2 ⊕ pρ,i and drives propi. O5 generates pρ,i and is
selected to drive geni. This is done for all of the partial-product bits except the MSB, pρ,m. The MSB is
complemented for sign extension by generating pρ,m in the M[31:0] LUT5 and pρ,m in the the M[63:32]
LUT5. O6 then generates xρ−1,m+2 ⊕ pρ,m and drives propm. O5 generates pρ,m and is selected to drive
genm. The leading “1”, 22ρ+m+1, is added by configuring the M[31:0] LUT5 to generate “1”, configuring
the M[63:32] LUT5 to generate “0” and wiring “0” to I6, so that genm+1 = 1 and propm+1 = 0⊕ 1 = 1.
To summarize, the M[31:0] LUT5s generate the bits of Pρ; the M[63:32] LUT5s generate the complement
of those bits; and the bits of Xρ−1 to be added are wired to the I6 inputs. The operation bit, opρ, is
added by wiring b2ρ+1 to c0. The sum produced at the XORCY output is xρ,i, which is added to pρ+1,i−2
in the next generate-add unit.

Table 6 is the truth table for a LUT6 that generates the partial product pρ,i and adds it to the bit
input to I6, e.g., xρ−1,i+2. Note that the values for O6 are stored in M[63:32], and the values for O5 are
stored in M[31:0].
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Table 6. Truth table to generate pρ,i and add it to the bit connected to the I6 input.

bj+1 bj bj−1 ai ai−1 pρ,i pρ,i

I5 I4 I3 I2 I1
Pρ pρ,i

O6 O5
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 0
0 0 1 0 0 +A ai 1 0
0 0 1 0 1 +A ai 1 0
0 0 1 1 0 +A ai 0 1
0 0 1 1 1 +A ai 0 1
0 1 0 0 0 +A ai 1 0
0 1 0 0 1 +A ai 1 0
0 1 0 1 0 +A ai 0 1
0 1 0 1 1 +A ai 0 1
0 1 1 0 0 +2A ai−1 1 0
0 1 1 0 1 +2A ai−1 0 1
0 1 1 1 0 +2A ai−1 1 0
0 1 1 1 1 +2A ai−1 0 1
1 0 0 0 0 −2A ai−1 0 1
1 0 0 0 1 −2A ai−1 1 0
1 0 0 1 0 −2A ai−1 0 1
1 0 0 1 1 −2A ai−1 1 0
1 0 1 0 0 −A ai 0 1
1 0 1 0 1 −A ai 0 1
1 0 1 1 0 −A ai 1 0
1 0 1 1 1 −A ai 1 0
1 1 0 0 0 −A ai 0 1
1 1 0 0 1 −A ai 0 1
1 1 0 1 0 −A ai 1 0
1 1 0 1 1 −A ai 1 0
1 1 1 0 0 −0 1 0 1
1 1 1 0 1 −0 1 0 1
1 1 1 1 0 −0 1 0 1
1 1 1 1 1 −0 1 0 1

5.3. Optimizations for the Generate-Add Unit

The most-significant LUT, shown in Figure 8, can be simplified and eliminated. Inspection of the
circuit shows that the propm+1 input to the MUXCY is always “1”. This means that the genm+1 input
to the MUXCY is never used, so it is a don’t-care. This could be implemented by storing all “1”s in the
M[63:32] LUT5 and wiring “1” to the I6 input, which frees the M[31:0] LUT5 to be used for another
purpose. When this is done, the Xilinx tools optimize the entire LUT6 away. The Verilog models used
in this work simply assign “1” to the propm+1 input of the CARRY4 primitive.

Pipelined array multipliers reported in previous work [22] had an interesting result for delay.
10× 10 multipliers were slower than 12× 12 multipliers (2.402 ns vs. 2.144 ns), and 14× 14 multipliers
were slower than 16× 16 multipliers (2.471 ns vs. 2.160 ns). These multipliers were implemented using
the generate-add structure shown in Figure 8, which requires m + 2 LUT6s. When m + 2 is a multiple
of four, (m + 2)/4 slices are fully utilized. Inspection of Figure 1 shows that the XORCY output and
the MUXCY output are registered using the same flip-flop. When m + 2 is a multiple of four, such as
for 10× 10 and 14× 14 multipliers, the xρ,m+2 output from the MUXCY cannot be registered within the
same slice because the xρ,m+1 output and the other XORCY outputs use all of the available flip-flops.
This forces xρ,m+2 to be routed outside of the slice to an available flip-flop, causing the additional delay
due to longer and slower interconnect.

This problem is avoided by noting that xρ,m+2 = xρ,m+1. The xρ,m+1 output is used in the next
row instead of xρ,m+2 so that the MUXCY output does not need to be registered. Figure 9 shows
the arithmetic that is performed (cf. Figure 7). The optimized generate-add unit generates Pρ with
a leading “1” and the MSB complemented to implement sign extension as in the original generate-add
unit. The operation bit, opρ, and the (m + 1) MSBs of Xρ−1, using xρ,m+1 instead of xρ,m+2, are added
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to produce an accumulated sum, Xρ. The MSB of the output, xρ,m+2, is not needed in the next row, so
it is not produced.

Xρ−1: xρ−1,m+1 xρ−1,m+1 · · · xρ−1,i+2 · · · xρ−1,2
+Pρ: 1 pρ,m pρ,m−1 · · · pρ,i · · · pρ,0
+opρ: opρ

= Xρ: xρ,m+1 xρ,m xρ,m−1 · · · xρ,i · · · xρ,0

Figure 9. Arithmetic for the optimized generate-add operation.

The most-significant LUT6 of the optimized generate-add unit is configured differently than the
other LUT6s. The MSB from the previous unit, xρ−1,m+1, is connected to one of the shared I5:I1 inputs,
and “1” is input to I6. The M[31:0] LUT5 is configured to produce pρ,m at O5 to drive the genm signal.
The M[63:32] LUT5 is configured to produce the function f = xρ−1,m+2 ⊕ pρ,m at O6 to drive the propm

signal. Since xρ−1,m+2 = xρ−1,m+1,
f = xρ−1,m+1 ⊕ pρ,m. (5)

Table 7 gives the truth table the for the most-significant LUT6 of an optimized generate-add unit.

Table 7. Truth table for the most-significant LUT6 of an optimized generate-add unit.

bj+1 bj bj−1 am−1 xρ−1,m+1 f pρ,m

I5 I4 I3 I2 I1
xρ−1,m+2 Pρ pρ,m

O6 O5
0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 1 +A am−1 0 1
0 0 1 0 1 0 +A am−1 1 1
0 0 1 1 0 1 +A am−1 1 0
0 0 1 1 1 0 +A am−1 0 0
0 1 0 0 0 1 +A am−1 0 1
0 1 0 0 1 0 +A am−1 1 1
0 1 0 1 0 1 +A am−1 1 0
0 1 0 1 1 0 +A am−1 0 0
0 1 1 0 0 1 +2A am−1 0 1
0 1 1 0 1 0 +2A am−1 1 1
0 1 1 1 0 1 +2A am−1 1 0
0 1 1 1 1 0 +2A am−1 0 0
1 0 0 0 0 1 −2A am−1 1 0
1 0 0 0 1 0 −2A am−1 0 0
1 0 0 1 0 1 −2A am−1 0 1
1 0 0 1 1 0 −2A am−1 1 1
1 0 1 0 0 1 −A am−1 1 0
1 0 1 0 1 0 −A am−1 0 0
1 0 1 1 0 1 −A am−1 0 1
1 0 1 1 1 0 −A am−1 1 1
1 1 0 0 0 1 −A am−1 1 0
1 1 0 0 1 0 −A am−1 0 0
1 1 0 1 0 1 −A am−1 0 1
1 1 0 1 1 0 −A am−1 1 1
1 1 1 0 0 1 −0 1 1 0
1 1 1 0 1 0 −0 1 0 0
1 1 1 1 0 1 −0 1 1 0
1 1 1 1 1 0 −0 1 0 0

Figure 10 shows the optimized generate-add unit. The optimized generate-add unit uses only
m + 1 LUT6s and avoids the delay of routing a MUXCY output out of a slice to be registered.
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Figure 10. Optimized generate-add unit.

5.4. Array Structure and Pipelining

An array of dn/2e optimized generate-add units is used to implement an m × n multiplier.
Optimized generate-add units are connected in an array structure as shown in Figure 11.
Each generate-add unit requires m + 1 LUT6s, so the number of LUT6s required to implement an m× n
array multiplier is:

#LUT6s = dn/2e(m + 1). (6)

Figure 11. Array structure of proposed multiplier, m = n = 6.

The multiplier can be pipelined to reduce cycle time and increase throughput for applications
that can tolerate increased latency. Figure 12 shows the connections for optimized generate-add units
in a pipelined m× n array multiplier with dn/4e stages. The multiplier can be pipelined by placing a
register after every two generate-add units to increase the maximum clock frequency with a modest
increase in latency. All m bits of operand A and m + 2 bits output from the second generate-add
unit are registered at the end of the first stage. The three LSBs of operand B are not needed after the
first stage, so only n− 3 bits are registered. The two LSBs from the output of the first generate-add
unit are also registered for a total of 2m + n + 1 bits registered at the end of the first stage. In each
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subsequent stage, four fewer bits of B are registered while four additional LSBs from generate-add
units are registered, so 2m + n + 1 flip-flops are used to implement pipeline registers in each stage.
There are dn/4e − 1 pipeline registers, and m + n flip-flops are needed to register the output, so the
number of flip-flops required for an dn/4e-stage pipelined array multiplier is:

#FFsdn/4e = dn/4e(2m + n + 1)−m− 1. (7)

Each of the LUT6s used to implement the array multiplier has two flip-flops, so there are
dn/2e(2m + 2) flip-flops available within the footprint of the multiplier. If m ≥ n, there are enough
flip-flops to implement an dn/4e-stage pipeline with a significant number left over for other uses.
This does not imply that all flip-flops used to implement the pipeline must be placed within the
footprint of the multiplier. It does imply that a large number of multipliers can be densely placed on
the FPGA fabric, and there will be enough flip-flops available within the logic of the multipliers for
pipelining. Other designs that use the bypass input only have one flip-flop available per LUT6 and
would not have enough flip-flops available for deep pipelining. If the product is truncated or rounded,
the LSBs of the generate-add units do not need to be registered, and additional flip-flops are available
for other uses.

Figure 12. Pipelined m× n array multiplier with dn/4e stages.

The proposed array multipliers can also be pipelined with dn/2e stages to further increase the
maximum clock frequency. This is accomplished by placing pipeline registers after every generate-add
unit. As with the dn/4e-stage pipeline, this requires 2m + n + 1 bits to be registered in each stage plus
m + n bits for the output register, so the number of flip-flops required for an dn/2e-stage pipelined
array multiplier is:

#FFsdn/2e = dn/2e(2m + n + 1)−m− 1. (8)

There are not enough flip-flops available within the footprint of the multiplier to implement
an dn/2e-stage pipeline. Unused flip-flops in nearby logic can be used to make up the difference
if available. The number of required flip-flops can be reduced by using shift-register LUTs (SRLs).
A single SRL can be used to replace a number of flip-flops connected as a shift register, such as the
least-significant bits of the product that are shifted through each stage. The two flip-flops associated
with the SRL are available for use, so using SRLs increases the number of flip-flops available in the
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multiplier footprint while reducing the number that is required. When SRLs are used to replace chains
of three or more flip-flops, the Vivado synthesis default, there are more than enough flip-flops within
the multiplier footprint to implement the dn/2e-stage pipeline. As noted earlier, this does not imply
that pipeline flip-flops must be placed with the footprint. Routing into or out of an SRL may be longer
than the longest route between two flip-flops in a chain that it replaces, so it may be on the critical path
and increase the delay of the multiplier.

The proposed array structure is easy to layout. LUT6s are placed in the fabric much like a
mirror image of how they are shown in the schematic of Figure 11, which simplifies routing, as well.
Deeper pipelining, i.e., using dn/2e instead of dn/4e stages, reduces delay significantly.

5.5. Row 0 Generate-Add Estimation Unit

The generate-add unit in the first row, ρ = 0, does not have an input value X−1 to add. The unit
only needs to generate P0 and add op0 and 2m to produce X0, the input to the next generate-add unit.
Figure 13 shows the arithmetic for the Row 0 generate-add unit. If a maximum absolute error of one
unit in the last place (ulp) can be tolerated, the generate-add unit in the first row can be replaced with
an estimation unit that uses only d(m + 1)/2e LUT6s instead of m + 1. Figure 14 shows the Row 0
generate-add estimation unit, which produces an estimate, X̃0, instead of X0.

2m: 1
+P0: 1 p0,m p0,m−1 p0,m−2 · · · p0,3 p0,2 p0,1 p0,0
+op0: op0

= X0: x0,m+1 x0,m x0,m−1 x0,m−2 · · · x0,3 x0,2 x0,1 x0,0

Figure 13. Arithmetic for the Row 0 generate-add unit.

Figure 14. Row 0 generate-add estimation unit.

For any adjacent pair of bits in P0, each bit is a function of four variables:

p0,i+1 = f (b1, b0, ai+1, ai) (9)

p0,i = f (b1, b0, ai, ai−1). (10)

Together, p0,i+1 and p0,i are a function of five variables,

(p0,i+1, p0,i) = f (b1, b0, ai+1, ai, ai−1). (11)

The two bits can be computed using two LUT5s in the same LUT6, generating p0,i+1 at O6 and
p0,i at O5. This allows P0 to be generated using only d(m + 1)/2e LUT6s instead of the m + 1 LUT6s
required for a generate-add unit, but does not allow the fast carry chain to be used. Table 8 gives the
truth table for a LUT6 that generates adjacent partial products p0,i+1 and p0,i in the top row, Row 0.
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The least-significant LUT6 can generate p0,1 and p0,0, but cannot properly add op0 because there
cannot be a carry-out to the next LUT6. One option is to discard op0 and simply output x̃0,1 = p0,1 and
x̃0,0 = p0,0. Another option is to generate p0,1 and p0,0, add op0 and output x̃0,1 = x0,1 and x̃0,0 = x0,0

if there is no carry out or x̃0,1 = 1 and x̃0,0 = 1 if there is a carry out. Another option is to output
a function of p0,1, p0,0 and op0 that has a desired statistical result, such as an average error of zero.

Table 8. Truth table to generate p0,i+1 and p0,i in Row 0.

b1 b0 ai+1 ai ai−1 p0,i+1 p0,i

I5 I4 I3 I2 I1
P0 p0,i+1 p0,i

O6 O5

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0

0 1 0 0 0 +A ai+1 ai 0 0
0 1 0 0 1 +A ai+1 ai 0 0
0 1 0 1 0 +A ai+1 ai 0 1
0 1 0 1 1 +A ai+1 ai 0 1

0 1 1 0 0 +A ai+1 ai 1 0
0 1 1 0 1 +A ai+1 ai 1 0
0 1 1 1 0 +A ai+1 ai 1 1
0 1 1 1 1 +A ai+1 ai 1 1

1 0 0 0 0 −2A ai ai−1 1 1
1 0 0 0 1 −2A ai ai−1 1 0
1 0 0 1 0 −2A ai ai−1 0 1
1 0 0 1 1 −2A ai ai−1 0 0

1 0 1 0 0 −2A ai ai−1 1 1
1 0 1 0 1 −2A ai ai−1 1 0
1 0 1 1 0 −2A ai ai−1 0 1
1 0 1 1 1 −2A ai ai−1 0 0

1 1 0 0 0 −A ai+1 ai 1 1
1 1 0 0 1 −A ai+1 ai 1 1
1 1 0 1 0 −A ai+1 ai 1 0
1 1 0 1 1 −A ai+1 ai 1 0

1 1 1 0 0 −A ai+1 ai 0 1
1 1 1 0 1 −A ai+1 ai 0 1
1 1 1 1 0 −A ai+1 ai 0 0
1 1 1 1 1 −A ai+1 ai 0 0

The LUT5s that output x̃0,i for m− 1 ≥ i ≥ 2 generate x̃0,i = p0,i. The sum of p0,m and the two
constant “1”s is p0,m, p0,m, p0,m. The LUT5s that output x̃0,m+1 and x̃0,m generate x̃0,m+1 = p0,m and
x̃0,m = p0,m. As described in Section 5.3, the generate-add unit in the second row uses x̃0,m+1 for x̃0,m+2

and complements it internally, so x̃0,m+2 does not need to be generated. The only error introduced into
X̃0 is the error from the least-significant LUT6, so the maximum absolute error is easily constrained to
1 ulp. Although not shown in Figure 14, p0,m could be generated using a single LUT5 and used for
x̃0,m+2, x̃0,m+1 and x̃0,m.

6. Results

The proposed multipliers are compared to Xilinx LogiCORE IP v12.0 multipliers [37] for signed
(n× n)-bit units. Results for 6-, 8-, 10-, 12-, 14-, 16-, 20-, 24-, 32- and 64-bit operands are given for
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single-cycle and pipelined units. Results from other work on GPC-based tree multipliers are compared,
and the differences are discussed.

6.1. Methodology

Version 2014.4 of the Xilinx Vivado Design Suite was used. Designs were synthesized
with the strategy set to “Vivado Synthesis Defaults” and implemented with the strategy set to
“Performance_Retiming”. The -shreg_min_size parameter was set to the default value of three to
synthesize pipelined versions of the proposed multipliers using SRLs and set to 99 to synthesize
versions using flip-flops only. Designs were synthesized for the Virtex-7 XC7VX330T-FFG1157 (-3 speed
grade) device with a timing constraint of 1 ns on the inner clock. All results are post place-and-route.

LogiCORE IP multipliers were created using the IP Catalog in Vivado. Area-optimized and
delay-optimized units were synthesized for each operand size. Structural models of the proposed
multipliers were implemented in Verilog. Single-cycle versions for each multiplier were created.
Pipelined versions were created for LogiCORE multipliers using the optimal number of stages specified
in the IP customization dialog. Pipelined versions of the proposed designs were created using dn/4e
and dn/2e stages. dn/4e-stage versions were synthesized using flip-flops only (no SRLs). Flip-flop-only
designs and designs using SRLs were synthesized for dn/2e-stage versions. Input and output ports
were double registered to reduce dependence on I/O placement [38]. CARRY4 primitives were placed
manually using the RLOC constraint, which specifies the relative location of primitives in the FPGA
fabric. Placement of LUTs was done by the tools with no constraints. Placement of flip-flops was also
done by the tools, and they were not constrained to the footprint of the multiplier. A separate clock on
the inner level was used to measure the delay through each multiplier.

6.2. Single-Cycle Multipliers

Tables 9 and 10 show synthesis results for single-cycle multipliers. The total number of LUTs
used and the delay in nanoseconds of each multiplier are reported. The LUT-delay product (LDP) is
computed as the total number of LUTs multiplied by the delay. This is analogous to the area-delay
product of a VLSI design and gives a metric for comparing overall design efficiency, with lower values
indicating higher efficiency. The reciprocal of LDP gives a metric for comparing throughput.

Table 9. Synthesis results for LogiCORE IP single-cycle multipliers.

Total Delay Normalized
Type n LUTs (ns) LDP LUTs Delay LDP

Xilinx 6 40 2.581 103.2 1.000 1.000 1.000
Xilinx 8 72 2.662 191.7 1.000 1.000 1.000
Xilinx 10 110 3.533 388.6 1.000 1.000 1.000
Xilinx 12 158 3.666 579.2 1.000 1.000 1.000
Xilinx 14 214 3.728 797.8 1.000 1.000 1.000
Xilinx 16 280 3.937 1102.4 1.000 1.000 1.000
Xilinx 20 431 4.702 2026.6 1.000 1.000 1.000
Xilinx 24 617 4.885 3014.0 1.000 1.000 1.000
Xilinx 32 1089 5.514 6004.7 1.000 1.000 1.000
Xilinx 64 4261 7.259 30930.6 1.000 1.000 1.000

The area optimization for LogiCORE IP multipliers is most effective when both operands are
unsigned [38]. Signed area-optimized LogiCORE multipliers were found to use more LUTs and to
have a higher LUT-delay product than delay-optimized units for each of the operand sizes tested,
so delay-optimized multipliers are used as the baseline for comparison. The total number of LUTs,
maximum delay and LUT-delay product for each design are normalized to the delay-optimized
LogiCORE multiplier of the same size.
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The proposed single-cycle designs use 47%–51% fewer LUTs than the baseline LogiCORE
multipliers, which allows approximately twice as many to be implemented in the same logic fabric.
They are slower than baseline multipliers, and the normalized delay generally increases as n increases.
For n ≤ 20, the decrease in LUTs is more significant than the increase in delay, so those units have
a 12%–46% lower LUT-delay product than baseline multipliers.

Table 10. Synthesis results for the proposed single-cycle multipliers.

Total Delay Normalized
Type n LUTs (ns) LDP LUTs Delay LDP

New 6 21 2.649 55.6 0.525 1.026 0.539
New 8 36 3.594 129.4 0.500 1.350 0.675
New 10 55 4.250 233.8 0.500 1.203 0.601
New 12 78 5.248 409.3 0.494 1.432 0.707
New 14 105 5.820 611.1 0.491 1.561 0.766
New 16 136 6.875 935.0 0.486 1.746 0.848
New 20 210 8.509 1786.9 0.487 1.810 0.882
New 24 300 10.509 3152.7 0.486 2.151 1.046
New 32 528 13.956 7368.8 0.485 2.531 1.227
New 64 2080 26.323 54751.8 0.488 3.626 1.770

6.3. Pipelined Multipliers

Tables 11–15 show synthesis results for pipelined multipliers. The number of pipeline stages
and the number of flip-flops (FFs) are reported. The number of flip-flops includes pipeline registers
and one output register, but does not include the input registers or the second set of registers used
to reduce dependence on I/O placement. Values are normalized to Xilinx LogiCORE IP multipliers
reported in Table 11.

Table 11. Synthesis results for LogiCORE IP pipelined multipliers.

Total Delay Normalized
Type n Stages LUTs (ns) FFs LUTs Delay FFs LDP

Xilinx 6 3 40 1.413 55 1.000 1.000 1.000 1.000
Xilinx 8 3 72 1.518 81 1.000 1.000 1.000 1.000
Xilinx 10 4 113 1.338 150 1.000 1.000 1.000 1.000
Xilinx 12 4 161 1.416 192 1.000 1.000 1.000 1.000
Xilinx 14 4 217 1.516 253 1.000 1.000 1.000 1.000
Xilinx 16 4 283 1.506 305 1.000 1.000 1.000 1.000
Xilinx 20 5 440 1.639 517 1.000 1.000 1.000 1.000
Xilinx 24 5 626 1.694 694 1.000 1.000 1.000 1.000
Xilinx 32 5 1099 1.836 1154 1.000 1.000 1.000 1.000
Xilinx 64 6 4288 2.358 4418 1.000 1.000 1.000 1.000

Table 12 shows proposed multipliers using an dn/4e-stage pipeline and no SRLs. These versions
use 47%–52% fewer LUTs than the baseline LogiCORE multipliers, which allows 1.90–2.10-times as
many to be implemented in the same logic fabric. These versions use fewer flip-flops than LogiCORE
multipliers. The LUTs used to implement each proposed multiplier have more associated flip-flops
available for use than are used in the design because the bypass inputs are not used. These versions
are generally slower than LogiCORE multipliers.

Table 13 shows proposed multipliers using an dn/2e-stage pipeline and no SRLs. These versions
use 47%–52% fewer LUTs and are 0%–23% faster than the baseline LogiCORE multipliers.
These versions use more flip-flops than LogiCORE multipliers, and more flip-flops than are available
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from the associated LUTs used in the designs. If extra flip-flops are available from nearby logic, these
versions offer LUT-delay products that are 52%–61% lower than baseline LogiCORE multipliers.

Table 12. Synthesis results for the proposed multipliers, dn/4e-stage pipeline, no SRLs.

Total Delay Normalized
Type n Stages LUTs (ns) FFs LUTs Delay FFs LDP

New 6 2 21 1.984 31 0.525 1.404 0.563 0.737
New 8 2 36 2.038 41 0.500 1.343 0.506 0.671
New 10 3 55 1.943 82 0.487 1.452 0.547 0.707
New 12 3 78 2.108 98 0.484 1.489 0.510 0.721
New 14 4 105 1.988 157 0.484 1.311 0.621 0.635
New 16 4 136 2.176 179 0.481 1.445 0.587 0.694
New 20 5 210 2.232 284 0.477 1.362 0.549 0.650
New 24 6 300 2.347 413 0.479 1.385 0.595 0.664
New 32 8 528 2.396 743 0.480 1.305 0.644 0.627
New 64 16 2080 2.855 3023 0.485 1.211 0.684 0.587

Table 13. Synthesis results for proposed multipliers, dn/2e-stage pipeline, no SRLs.

Total Delay Normalized
Type n Stages LUTs (ns) FFs LUTs Delay FFs LDP

New 6 3 21 1.119 50 0.525 0.792 0.980 0.416
New 8 4 36 1.175 91 0.500 0.774 1.123 0.387
New 10 5 55 1.232 144 0.487 0.921 0.960 0.448
New 12 6 78 1.283 209 0.484 0.906 1.090 0.439
New 14 7 105 1.312 286 0.484 0.865 1.130 0.419
New 16 8 136 1.402 375 0.481 0.931 1.230 0.447
New 20 10 210 1.465 589 0.477 0.894 1.139 0.427
New 24 12 300 1.700 851 0.479 1.004 1.226 0.481
New 32 16 528 1.667 1519 0.480 0.908 1.316 0.436
New 64 32 2080 2.083 6111 0.485 0.883 1.383 0.429

Table 14 shows proposed multipliers using an dn/2e-stage pipeline and SRLs to save flip-flops.
These versions use 42%–49% fewer LUTs and are 1%–22% faster than the baseline LogiCORE
multipliers. These versions use fewer flip-flops than LogiCORE multipliers, and enough flip-flops are
available from the associated LUTs. They have a 46%–55% lower LUT-delay product than baseline
multipliers, indicating a potential 1.86–2.21-times increase in throughput for a fixed number of LUTs.

Table 14. Synthesis results for the proposed multipliers, dn/2e-stage pipeline, using SRLs.

Total Delay Normalized
Type n Stages LUTs (ns) FFs LUTs Delay FFs LDP

New 6 3 23 1.193 46 0.575 0.844 0.836 0.485
New 8 4 42 1.176 77 0.583 0.775 0.951 0.452
New 10 5 65 1.251 116 0.575 0.935 0.773 0.538
New 12 6 92 1.318 163 0.571 0.931 0.849 0.532
New 14 7 123 1.292 218 0.567 0.852 0.862 0.483
New 16 8 158 1.349 281 0.558 0.896 0.921 0.500
New 20 10 240 1.441 431 0.545 0.879 0.834 0.480
New 24 12 338 1.674 613 0.540 0.988 0.883 0.534
New 32 16 582 1.824 1073 0.530 0.993 0.930 0.526
New 64 32 2198 2.050 4193 0.513 0.869 0.949 0.446
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Table 15 shows proposed multipliers using an dn/2e-stage pipeline, SRLs and a Row 0 estimation
unit instead of a generate-add unit. These versions use 45%–49% fewer LUTs and are 4%–19%
faster than the baseline LogiCORE multipliers. These versions use fewer LUTs and flip-flops than
versions that use a generate-add unit, but may have slightly longer delay. They have a 49%–57%
lower LUT-delay product than baseline multipliers, indicating a potential 1.97–2.33-times increase in
throughput for a given number of LUTs.

Table 15. Synthesis results for the proposed multipliers, dn/2e-stage pipeline, using SRLs, estimated X0.

Total Delay Normalized
Type n Stages LUTs (ns) FFs LUTs Delay FFs LDP

New 6 3 22 1.294 42 0.550 0.916 0.763 0.504
New 8 4 38 1.233 75 0.528 0.812 0.926 0.429
New 10 5 60 1.279 114 0.531 0.956 0.760 0.508
New 12 6 86 1.290 161 0.534 0.911 0.839 0.487
New 14 7 116 1.333 216 0.535 0.879 0.854 0.470
New 16 8 150 1.368 279 0.530 0.908 0.915 0.481
New 20 10 230 1.424 429 0.523 0.869 0.830 0.454
New 24 12 326 1.465 611 0.521 0.865 0.880 0.450
New 32 16 566 1.775 1071 0.515 0.967 0.928 0.498
New 64 32 2166 2.076 4191 0.505 0.880 0.949 0.445

6.4. Layout

Figure 15 shows a screen capture of the implementation of a proposed 6× 6 single-cycle array
multiplier (cf. the mirror image of Figure 11). Nine slices are shown in the screen capture, and
primitives in the lower-right slice are annotated (cf. Figure 1). The four MUXCYs, four XORCYs and
the fast carry chain for the slice are instantiated as a single Xilinx primitive called a CARRY4. Primitives
that are used are indicated by a cyan background color. Note that in Figure 11, carries propagate
from the right side of the figure to the left side, so that the most-significant bit of the product is on
the left side and the least-significant bit is on the right side. In the screen capture, carries propagate
from the bottom of the image to the top. The two slices in the left column of slices correspond to the
generate-add unit that generates P0 and outputs X0. The two slices in the middle column of slices
correspond to the generate-add unit that generates P1 and adds it to X0 to output X1. The two slices
in the right column of slices correspond to the generate-add unit that generates P2 and adds it to X1

to output X2. The flip-flops that are indicated as used are part of the registers used for the input and
output ports to reduce dependence on I/O placement as noted in Section 6.1.

Figure 16 shows a screen capture of the implementation of a proposed 16× 16 pipelined multiplier,
with an eight-stage pipeline using SRLs. The image on the left shows wiring from the I/O pads used
for the bits of operand A to the first register for operand A. The flip-flops for the first register are
generally located near the corresponding I/O pad. The wiring from the first register for operand A to
the second register for operand A is not shown. Most of the flip-flops used for the second register for
operand A are located near the multiplier logic at the top of the image. The image on the right shows
the wiring from the second register for the output P to the I/O pads used for the bits of P. The flip-flops
for the first output register for P are generally located close to the logic for the multiplier at the top of
the image. This figure shows the importance of double-registering the input and output ports. If they
were not double-registered, delays from long routing lines from I/O pads to the multiplier would
give misleading results for the speed of a multiplier when used as part of a larger unit, such as a finite
impulse response (FIR) filter that is not connected directly to I/O pads.
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Figure 15. Implementation of the proposed 6× 6 single-cycle array multiplier.

Figure 16. Implementation of the proposed 16× 16 pipelined multiplier (with an eight-stage pipeline
using SRLs) showing wiring from the I/O pads for operand A on the left and wiring to the I/O pads
for output P on the right.
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Figure 17 shows a screen capture of the implementation of the same 16× 16 eight-stage pipelined
multiplier shown in Figure 16. This image shows a close-up view the multiplier logic shown at the top
of the images in Figure 16. The eight generate-add units of the multiplier each occupy five slices in
a column. The SRLs used in the multiplier are implemented using LUT6s in nearby slices. Most of
the flip-flops in the slices are used for generate-add units, showing that the bypass inputs are indeed
available and the bypass flip-flops can be used. The implementation was not constrained to use only
those flip-flops. The tools implemented most of the pipeline registers using them, but left some of
them unused and available while using some flip-flops in nearby slices.

Figure 17. Implementation of the proposed 16× 16 pipelined multiplier (with an eight-stage pipeline
using SRLs) showing the usage of LUT6s, CARRY4s and flip-flops.

Figure 18 shows a screen capture of the same multiplier shown in Figure 17, plus the wiring from
the pipeline register between the third and fourth pipeline stage to the inputs of the generate-add
unit in the fourth stage. It can be seen that many of the flip-flops in the pipeline register are bypass
flip-flops. However, some are not, and some are not in slices occupied by generate-add units. If many
of the proposed dn/2e-stage multipliers using SRLs were located next to each other, there would be
enough flip-flops associated with the generate-add units and SRLs to implement all of the pipeline
registers and an output register for each multiplier. However, without constraining the placement of
those flip-flops, the tools would likely place some of the flip-flops for one multiplier in slices occupied
by another multiplier. Further research is needed to determine if constraining flip-flops for a multiplier
to the logic used to implement the same multiplier would yield any improvements in delay.

Figure 18. Implementation of the proposed 16× 16 pipelined multiplier (with an eight-stage pipeline
using SRLs) showing wiring from the third pipeline register to the fourth-stage generate-add unit.
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6.5. GPC-Based Tree Multipliers

Brunie et al. [18] present a data structure called a bit heap, which is similar to a BitMatrix
object [4,39,40]. Bit heaps and BitMatrix objects treat a set of operands to be summed as a collection
of individual weighted bits instead of a collection of operand vectors. The FloPoCo [41] arithmetic
generator operates on bit heaps, applying embedded multipliers, GPCs and 3× 3 multipliers [42] to
compute the sum. FloPoCo targets Altera and Xilinx FPGAs. Kumm and Zipf present two novel GPCs
specific to Xilinx FPGAs that exploit the slice structure and are more efficient than previous work in
terms of the ratio of the number of bits removed from the bit heap to the number of required LUTs.
They then use ILP to select GPCs to reduce a bit heap to two rows and report improvements over the
previous FloPoCo heuristic [19]. Mhaidat and Hamzah [20] present results for a Xilinx Spartan-6 FPGA,
which uses a 6-input LUT architecture. They report that their 32× 32 multiplier uses 1133 LUTs, which
is 2.15-times the number used by the proposed multipliers that do not use SRLs and 1.95-times the
number used by the proposed dn/2e-stage pipelined multipliers that use SRLs. They do not compare
their results to LogiCORE IP, so normalized results for LUTs or delay are not available for comparison
to proposed multipliers.

Two Altera ALMs can be used to implement a (6;3), a (1,5;3), a (2,3;3) or a (3,3;4) counter. (6;3) and
(1,5;3) counters are favored because they eliminate three partial-product bits per counter, compared to
(2,3;3) and (3,3;4) counters, which only eliminate two bits per counter. In Xilinx, three LUT6s would
be required to implement a (6;3) or a (1,5;3) counter, because only five inputs can be shared between
the LUT5s. A (2,3;3) counter could be implemented using two LUT6s, because there are only five
inputs, so LUT5s can be used. A (3,3;4) counter would require four LUT6s. (6;3) and (1,5;3) counters
can be used in Altera to eliminate 1.5 bits per ALM, but they would only eliminate one bit per LUT6 in
Xilinx. The differences between Xilinx and Altera are too great to assume that results for GPC-based
multipliers on Xilinx FPGAs would be comparable to results for Altera FPGAs presented in other work.

Parandeh-Afshar et al. compare LUT-based multipliers using GPCs to MegaWizard multipliers
in Altera FPGAs in [7] and give a graph of the results. Numerical results are estimated from their
graphs and tabulated in Table 16. Their radix-4 Booth multipliers have the best overall results.
They are faster than MegaWizard multipliers at the expense of additional LUTs for most operand sizes.
The normalized LUT-delay product ranges from 0.67 to 1.08. By contrast, the proposed multipliers are
significantly smaller and have a much lower LUT-delay product than Xilinx LogiCORE IP multipliers
when pipelined with dn/2e-stages. This indicates that the proposed method has a larger improvement
on Xilinx than [7] has on Altera.

Table 16. Results for GPC-based multipliers on Altera [7].

[7] Radix-4 Booth [7] Baugh-Wooley
Normalized to Normalized to

Altera MegaWizard Altera MegaWizard
n LUTs Delay LDP LUTs Delay LDP

10 1.00 0.67 0.67 1.12 1.28 1.43
12 1.00 0.79 0.79 1.10 1.02 1.12
14 1.07 0.82 0.88 1.13 1.10 1.24
16 1.22 0.84 1.02 1.26 0.95 1.20
20 0.97 0.83 0.81 1.03 0.92 0.95
24 0.97 0.83 0.81 1.05 0.94 0.99
32 1.21 0.89 1.08 1.25 0.98 1.23
64 1.16 0.82 0.95 1.16 0.98 1.14

7. Conclusions

This paper presents a novel two-operand adder that combines radix-4 partial-product generation
and addition and shows how it can be used in FPGAs based on 6-input LUTs to implement
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two’s-complement array multipliers. Synthesis results are compared to Xilinx LogiCORE IP multipliers.
The proposed array multipliers use approximately one-half of the LUTs needed by comparable
LogiCORE IP multipliers, which allows approximately twice as many to be implemented in the same
logic fabric. When deeply pipelined, the proposed multipliers are also faster than LogiCORE IP
multipliers in most cases. SRLs can be used so that there are more flip-flops associated with the
logic of the multiplier than required for pipelining, which allows a large number of deeply pipelined
multipliers to be densely placed in the FPGA fabric. If a maximum absolute error of 1 ulp is tolerable,
the number of required LUTs can be reduced further. The proposed multipliers are well suited
for multiply-intensive applications, such as digital-signal processing, image processing and video
processing, where they can be modified further using techniques, such as merged arithmetic and
truncated-matrix arithmetic, to optimize the overall system.
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Abbreviations

The following abbreviations are used in this manuscript:

ALM adaptive logic module
CLB configurable logic block
CPA carry-propagate adder
DSP digital signal processing
FIR finite impulse response
FPGA field-programmable gate array
GPC generalized parallel counter
ILP integer linear programming
LAB logic array block
LDP LUT-delay product
LUT lookup table
LUT5 5-input lookup table
LUT6 6-input lookup table
LSB least-significant bit
MSB most-significant bit
SRL shift register LUT
ulp unit in the last place
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