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Abstract: Non-volatile memories (NVMs) offer superior density and energy characteristics compared
to the conventional memories; however, NVMs suffer from severe reliability issues that can easily
eclipse their energy efficiency advantages. In this paper, we survey architectural techniques for
improving the soft-error reliability of NVMs, specifically PCM (phase change memory) and STT-RAM
(spin transfer torque RAM). We focus on soft-errors, such as resistance drift and write disturbance, in
PCM and read disturbance and write failures in STT-RAM. By classifying the research works based
on key parameters, we highlight their similarities and distinctions. We hope that this survey will
underline the crucial importance of addressing NVM reliability for ensuring their system integration
and will be useful for researchers, computer architects and processor designers.

Keywords: reliability; non-volatile memory; PCM; STT-RAM; soft-error; read disturbance;
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1. Introduction

The power budget and memory capacity requirements placed on next-generation computing
systems have motivated researchers to explore alternatives of conventional memories, such as DRAM
and SRAM. Non-volatile memories, such as PCM and STT-RAM, are widely seen as promising
candidates for filling this gap due to their attractive properties, such as high density, near-zero standby
power and better-than-flash performance and endurance [1]. While performance and energy issues
in these memories have been extensively addressed in the last decade, the reliability challenges,
which are becoming increasingly severe with ongoing process scaling, have not been investigated in as
much detail.

For example, in PCM, resistance drift can cause a different value to be read than what was
originally stored. Due to this, a four-level (two-bit) PCM cell may show a 106-times higher error rate
than the DRAM and may provide lower effective density than a three-level cell due to the strong
ECC requirement of the four-level cell [2]. Furthermore, the heat produced for writing one PCM cell
can alter the value stored in many nearby cells (e.g., up to 11 cells in a 64 byteblock [3]). Similarly,
in STT-RAM, a read operation can change the value stored in the cell being read. Due to these, the error
rate of non-volatile memories (NVMs) can far exceed the correction capability of practical ECCs [4,5],
and hence, high-overhead ECC or scrubbing mechanisms will be required to maintain acceptable
levels of yield, performance and energy efficiency [3,6].

Although device-level techniques have been proposed for addressing these issues,
these techniques forgo architecture-level optimization opportunities, and hence, using them in isolation
can lead to under-/over-protection with high overheads. It is clear that the reliability challenges of
these NVMs can easily eclipse their energy and density advantages, and unless these challenges are
addressed at the architecture and system level, integration of NVMs in product systems will remain
infeasible. Architectural techniques can complement device-level techniques and will become not only
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attractive, but even imperative at small feature sizes. Recently, several techniques have been proposed
for fulfilling these needs.

Contributions: In this paper, we present a survey of techniques for addressing soft-errors in
non-volatile memories. While we focus on STT-RAM and PCM in this paper, many of these techniques
may be applicable to other NVMs also, such as resistive RAM. Figure 1 presents the overview of this paper.
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Figure 1. Overall organization of the paper.

We first highlight the need for improving NVM reliability (Section 2.1). We then discuss the data
storage mechanisms and error phenomena for both PCM and STT-RAM (Sections 2.2–2.7). Afterwards,
we present an overview and classification of research works based on key parameters and also
summarize the main ideas of these works (Section 3). Then, we discuss the reliability techniques for
PCM (Sections 4 and 5) and STT-RAM (Sections 6 and 7). In these sections, we organize the works in
one group each, although many of them belong to more than one group. Finally, we present concluding
remarks and an outlook on future challenges (Section 8).

Scope of the paper: For striking a balance between comprehensiveness and conciseness, we limit the
scope of this article as follows. We focus on techniques for improving reliability and not those for improving
performance or energy efficiency. We do not include those works where the reliability issue is created due to
aggressive performance optimization. We discuss soft-errors and not hard-errors (e.g., due to limited write
endurance [7,8]). We include system- and architecture-level projects and not device-/circuit-level projects.
We mainly focus on the qualitative insight of research works and only include selected quantitative results
to highlight the horizon of opportunity. This paper is expected to be a valuable resource for researchers,
chip designers, computer architects, system developers and others. The following acronyms are used
frequently in this paper: a error-correction b error-detection (aECbED), bit-line (BL), Bose, Chaudhuri
and Hocquenghem code (BCH code), energy delay product (EDP), error-correcting pointers (ECP),
last level cache (LLC), low current long latency (LCLL), magnetic tunnel junction (MTJ), multi-level cell
(MLC), read disturbance error (RDE), single-level cell (SLC), source-line (SL), verify and correct (VnC),
word-line (WL), write disturbance (WD) error (WDE).

2. Background and Motivation

In this section, we first underscore the importance of improving NVM reliability. We then explain
the working principle of PCM and STT-RAM along with reliability issues. We also discuss simple
(naive) solutions to these reliability issues and show their limitations.
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2.1. Need for Improving NVM Reliability

Conventionally, SRAM, eDRAM (embedded DRAM) and DRAM have been used for designing
cache and main memory. However, SRAM consumes large leakage power, whereas eDRAM and
DRAM consume large refresh power. While architecture-level techniques can partially offset these
challenges, the energy efficiency goals of future processors demand the fundamental redesign of
memory systems [9]. Since the high density and near-zero standby power consumption of NVMs
can compensate for their higher write latency/energy, NVM memory systems can offer better energy
efficiency and even better performance than SRAM or DRAM memory systems [10]. Thus, the reliability
issue remains a critical bottleneck in the adoption of NVMs in mainstream computing systems.

Maintaining low error rates is important for achieving high yield and density. With increasing
core count, the cache and main memory capacity is on the rise [11], and due to this, the overhead of
correction techniques, such as scrubbing, is also growing [12]. STT-RAM and PCM are used for cache
and main memory where any additional latency leads to a large impact on system performance. Hence,
the use of conventional reliability techniques, such as heavyweight ECCs, will nullify the density,
performance and energy advantages of these NVMs [6,13,14]. Parametric variations, such as process,
voltage and temperature variations, can further exacerbate the NVM reliability issue [15]. For these
reasons, improving NVM reliability is of paramount importance.

2.2. PCM Data Storage Mechanism

PCM uses GeSbTe (Germanium-Antimony-Tellurium or GST) material for data storage [13,16].
The application of an electric pulse generates heat, which can change the state of GST between
crystalline (SET) and amorphous (RESET) states that show low and high resistance, respectively, and
this refers to a single-level cell. Since the resistance difference between the crystalline and amorphous
state is three–four orders of magnitude [2], PCM allows storing multiple bits by assigning different
resistance ranges to different symbols, and this is referred to as a multi-level cell.

2.3. PCM Resistance Drift Error

MLC PCM represents data using non-stable states (e.g., semi-amorphous). Due to this, cell resistance
increases with time, and the levels with higher initial resistance show a larger amount of drift [13]. If
cell resistance reaches that of the next level, the value read from the cell may be different from that
originally stored, and thus, drift can lead to errors (refer to Figure 2). A rise in temperature, e.g., due to
3D-stacking, further increases the drift errors [17,18].
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Figure 2. Illustration of the resistance drift phenomenon in multi-level cell (MLC) PCM with static
sensing (Φ1, Φ2 and Φ3 are boundary resistance thresholds). Two solution schemes: time-aware
sensing [13,18–20] and tri-level cell [2,21].

We now discuss some simple techniques to address drift errors.

1. To correct drift errors in MLC PCM, scrubbing can be used. In DRAM, different bit errors happen
independently, and hence, the probability of multi-bit errors is small. Due to this, even simple
scrub schemes suffice for DRAM and incur very low overhead, for example one read and write
needs to be issued only once every 200 K cycles [16]. However, in MLC PCM, if one cell drifts
to the incorrect state, other cells are also highly likely to drift in the near future. Due to this
correlation, multi-bit errors are much more likely in MLC PCM, and hence, a simple scrub scheme
would need to read PCM in almost every cycle to keep the error rate at an acceptable level [2,16].
Furthermore, scrubbing leaves very little bandwidth for useful operations. Further, reducing
the capacity of MLC PCM to reduce the scrubbing rate is infeasible since the memory capacity
becomes too small to be useful [2].

2. In MLC PCM, the resistance margins between consecutive levels increase exponentially,
for example when the ratio of consecutive resistance values is five (i.e., R00/R01 = R01/R10 =

R10/R11 = 5), data remain valid for two years; however, if this ratio is two, the data remain valid
for 1 h only (assuming room temperature) [17]. Thus, a simple strategy to address drift errors is to
widen the resistance margin between neighboring states. This, however, requires increasing the
resistance of the largest resistance states [17], which degrades endurance and energy efficiency
due to the requirement of increased programming current. The write endurance of MLC PCM is
much smaller than that of SLC PCM (105 vs. 108 writes), and drift mitigation mechanisms may
further aggravate the endurance issue [3,16,17], for example due to scrub operations or increased
resistance margins.

2.4. PCM Write Disturbance Error

To SETa PCM cell, the temperature is kept higher than crystallization temperature (∼300 ◦C),
but lower than melting temperature (∼600 ◦C) for a large time duration. To RESETa cell, it is heated
above melting temperature and rapidly quenched. Thus, the heat produced for writing one cell can
propagate and change the resistance states of adjacent cells, and this is referred to as WDE. If a cell
is being RESET, an adjacent idle cell with a value of zero is vulnerable [22,23], and thus, WDE is a
data value-dependent error. The WDE phenomenon is illustrated in Figure 3. Since the SET current is
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nearly half of the RESET current, WDE due to the SET operation is negligible [3]. WDE is becoming
increasingly severe with decreasing feature size, especially at the sub-20-nm node [24].

1

1

1

0

01 0

0

Vulnerable0

Wordline

Bitline W

Invulnerable

W = Write Operation

Figure 3. Illustration of write disturbance error.

Some simple schemes to address WDE are as follows:

1. Increasing the inter-cell space reduces WDE; however, it nullifies the density advantage of PCM [22].
2. Since WDE only happens in adjacent idle cells of a cell being written, another approach involves

ascertaining all of the vulnerable cells and writing them irrespective of whether their values
are changed [3]. However, since PCM has high write latency/energy and a short lifetime [25],
this approach leads to very high overhead.

3. The third approach, termed verify and correct (VnC), checks both the written cell and neighboring
cells and performs RESET operations where required. However, VnC causes large performance
loss [26]. Furthermore, since WDE affects nearby cells (and not the cell being written), performing
VnC can disturb other cells, leading to cascading errors.

2.5. STT-RAM Data Storage Mechanism

STT-RAM uses an MTJ for data storage, which contains two ferromagnetic layers [27–29], as shown
in Figure 4a. The magnetic orientation of one layer is fixed, whereas that of the second layer can be
changed by applying a current. MTJ resistance is low when these two layers have the same orientation
and high when these two layers have different orientations, and thus, the relative magnetization
orientation of two layers determines the resistance of MTJ. MLC STT-RAM can be designed in two
ways [30]. In the “parallel MTJs” design, the free layer is partitioned into soft and hard domains,
each of which can store a bit (Figure 4b), and in the “series MTJs” design, two MTJs with disparate
characteristics are vertically stacked (Figure 4c). The parallel MLC has a smaller write current and area,
but also has a higher error rate than series MLC [30].
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Figure 4. (a) SLC STT-RAM; (b) parallel and (c) serial MLC STT-RAM designs.

There are multiple strategies for mapping data to MLC memory (refer to Figure 5).

1. Direct (or naive) mapping: An N-byte block can be stored in N/2 MLC STT-RAM cells, such that
even bits are stored in soft-bits and odd bits stored in hard-bits. This cache line is referred to as
the mixed line. This has the disadvantage that for any access, both soft and hard-bits need to be
accessed, and hence, a two-step read/write is required.

2. Interleaved mapping: The least-significant bits (LSBs) are stored in soft-bits, and most-significant
bits (MSBs) are stored in hard-bits. This allows accessing LSBs with smaller latency. The limitation
of interleaved mapping is that it requires additional circuitry to regenerate the original data.

3. Cell-split mapping: Two N-byte blocks are stored in N MLC cells, such that one block is stored
entirely in soft-bits and another block is stored entirely in hard-bits. Since only one-step read/write
is required for accessing soft-bits, this strategy provides better performance if hot data blocks can
be mapped to soft-bits.
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Figure 5. (a) Direct, (b) interleaved and (c) split-cell strategies for mapping data to MLC memory.

2.6. STT-RAM Read Disturbance Error

In STT-RAM, feature size scaling has led to a reduction in write current; however, read current has
not reduced as much since the correct data may not be sensed on using low-current value [31], as shown
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in Figure 6. At a large feature size (e.g., 130 nm), read current is much lower than the write current;
however, for sub-32-nm nodes, the read current approaches so close to the write current that a read
may alter the stored value, and this is referred to as RDE. RDE is data dependent, e.g., using the read
current from BL to SL disturbs cells storing “1” only and not “0”. Even with strong ECCs, the RDE rate
at small feature sizes can exceed that acceptable for on-chip caches [4]. In STT-RAM, reads and writes
cannot be independently optimized, e.g., reducing the MTJ thermal stability for improving switching
performance increases the probability of read disturbance, and thus, RDE mitigation involves tradeoffs.
For these reasons, RDE is expected to become the most severe bottleneck in STT-RAM scaling and
performance [4,32].

180 130 90 65 45 32 22 15
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0.1
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Figure 6. Scaling of the read/write current in STT-RAM [31].

Some simple strategies for addressing RDE are discussed below.

1. The margin between read and write currents can be increased by increasing the write current;
however, this will further increase the already high write power of STT-RAM.

2. To address RDE, low-current sense amplifiers can be used, which have a larger sensing period.
This approach does not create RDE, but may increase sensing latency by three times [33,34],
which harms performance.

3. Since after a read operation, the data value is stored in sense amplifiers and remains free of RDE,
a third approach consists of writing this stored data value back to STT-RAM cells, and this is
referred to as the restore/refresh-after-read [4,31] or high-current restore-required (HCRR) read
approach [34]. However, these restore operations consume bandwidth and reduce cache/memory
availability. Furthermore, this scheme does not leverage the properties of the data value (e.g.,
zero data) and cache access behavior to avoid unnecessary restore operations.

4. By reducing the number of reads/writes from STT-RAM cache by techniques such as cache
bypassing [35], both RDE and write errors can be reduced [6].

5. A recently-proposed magnetic RAM, named SOT-RAM (spin orbit torque RAM), does not suffer
from RDE [36], and hence, this can be used as an alternative of STT-RAM.

2.7. STT-RAM Write Errors

In STT-RAM, a write operation may not succeed due to the stochastic switching characteristics of
MTJ, and this leads to write errors. Furthermore, the error rate of the 0→ 1 transition is significantly
higher than that of the 1 → 0 transition [37]. The error probability can be reduced by using a large
duration and magnitude of the write pulse; however, due to parametric variations, precise control of
these is challenging [30].

Writing an MLC STT-RAM may require one or two steps, as shown in Figure 7. For writing 00
or 11, a high current is applied to change both soft- and hard-bits. For writing 01 or 10, in the first
step, a high current is applied to write 00 or 11, and in the second step, a low current is applied to
only change the soft-bit. This write scheme can show two types of errors. First, on writing the soft-bit,
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the hard-bit may also get written, which is called “overwrite” error. Second, if the write current is
not sufficient to change the soft-bit, “incomplete write” error occurs. On changing both bits (Step 1),
only incomplete write error can happen; however, on changing only the soft-bit (Step 2), both kinds of
errors can occur. Simple strategies for addressing write errors include ECC and repeatedly performing
VnC operations, and their limitations have been discussed above.
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Figure 7. (a) Read and (b) write operation in MLC STT-RAM.

Table 1 summarizes the characteristics of different errors. Clearly, due to the differences in the
behavior of these errors, unique architecture-level techniques are required for mitigating them.

Table 1. An overview of reliability issues discussed in this paper († since SLC PCM uses wide resistance
margins, drift does not lead to errors in it [16]). SLC, single-level cell; MLC, multi-level cell.

Memory SLC MLC Where When Comments

Resistance drift PCM No† Yes Same cell Over time Change in resistance changes the bit stored
Write disturbance PCM Yes Yes Nearby cells During write Write to a cell changes neighboring cells
Read disturbance STT-RAM Yes Yes Same cell During read Read changes the stored value

Write failure STT-RAM Yes Yes Same cell During write Written value is incorrect

These NVMs show a few other types of errors, as well. For example, compared to SLC STT-RAM,
MLC STT-RAM uses a narrow resistance margin. Due to this, adjacent states show overlap [30], and
hence, an incorrect value may be read, leading to read errors. Similarly, the stochastic bit-flip due to
random thermal fluctuation can lead to retention failure in STT-RAM [27,36]. Furthermore, a decision
failure occurs when the datum stored is incorrectly sensed on a read operation.

3. Classification and Overview

Table 2 organizes the works based on the memory technology, cell-type (SLC/MLC) and reliability
issues addressed by them. Table 3 classifies the works based on processing unit, processor component
and their figures of merit. Due to their high density and low leakage, NVMs are primarily beneficial
for large capacity storage structures, such as caches and main memory in CPU and RF (register file)in
GPU. Hence, most works have addressed these components. Since the first and last level caches have
different characteristics and optimization targets [32,38], the table also classifies the works based on
this factor. Since reliability improvements may be achieved at the cost of performance and power,
many works analyze the performance/energy impact of their technique, and this is also shown in
the table.
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Table 2. A classification based on memory technology, cell-type and reliability issues addressed.

Classification References

Memory technology

STT-RAM [4,6,27,30,32,34,36,37,39–46]
PCM [2,3,13,16–23,26,47–52]

MLC or SLC

MLC [2,3,5,6,13,16–21,30,47,49–51]
SLC Nearly all others

Vulnerability addressed

Resistance drift [2,13,16–18,20,21,47,49,50,52]
Write-disturbance [3,22,23,26,48]
Read-disturbance [4,32,34,36,39,43,45]

STT-RAM write error [5,6,30,37,40–42,44–46]

Table 3. A classification based on the processing unit, component, optimization objective and management
approach. VnC, verify and correct.

Classification References

Processing unit

GPU [43]
Vector processor [45]

CPU Nearly all others

Processor component where NVM is used

Main memory [2,3,16,18,21–23,26,34,47,49–52]
Last level Cache [4,30,32,36,39,41,42,44]
First level cache [32,36]

Register file [43]
Scratchpad [45]

Optimization objective

Reliability Nearly all
Performance [2,4–6,22,23,30,32,34,36,37,39–44,47,49–52]

Energy [4,6,16–18,23,30,32,34,36,37,39,40,42,43,45,47,49–51]

Architectural management approach

ECC [3,5,6,16,27,40–42,44,47,49,52]
Data-duplication [39,49]

Partial data mapping [2,3,5,21,30,51]
Leveraging asymmetry of 0→ 1 and 1→ 0 transitions [37,40,41]

Gray coding [5,18,20,21]
Bit-inversion [3,17,20,27]
Bit-rotation [17]

Compression [3,26,39,49]
Use of buffer [5,43]
VnC scheme [3,22,37,42,44]

Scrubbing scheme [16,21,47]

Table 3 also classifies the works based on their key ideas and management approaches. We now
comment on these and other key ideas.

1. Both ECC and data-duplication approaches increase the redundancy for enhancing reliability.
2. In MLC PCM and MLC STT-RAM, some states show higher error rates than others

(refer to Sections 4.1 and 7.1). Hence, some works use the partial data mapping approach to
avoid error-prone states. An example of this is ternary coding, where only three out of four states
in a two-bit MLC are used for storing data. The limitation of partial data mapping, however, is
that it may require additional conversion steps, since other processor components may still use
binary coding. Other schemes to avoid error-prone or vulnerable states include bit-inversion and
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bit-rotation. A limitation of data-dependent techniques, such as rotation and inversion, is that
they may not work well in the presence of random, encrypted or compressed data.

3. Some works propose techniques based on asymmetric error rates of 0→ 1 and 1→ 0 transitions.
4. Some works use different data-encoding schemes than the traditional binary encoding. For example,

partial data mapping techniques may use ternary encoding, and some works use Graycoding to
reduce the number of bit transitions. A few works use WOM (write-once-memory) codes [48].

5. Some works use data compression [53] for various optimizations, e.g., to make space for storing
ECC [3] or for performing duplication [39], to compensate capacity loss due to partial data
mapping [3], to facilitate switching from MLC to SLC mode [49] and to reduce the number of bits
vulnerable to RDE [39] and WDE [26]. The efficacy of these techniques, however, depends on the
compressibility of data.

6. Some works perform VnC (also called write-read-verify) operations to reduce the error rate in
write operations. Others perform scrubbing (which resembles DRAM refresh) to address PCM
drift errors. The difference between these is that VnC is generally performed immediately after
a write operation to remove the errors in the write operation, whereas scrubbing is performed
periodically at idle times to remove the errors accumulated after a write operation. Furthermore,
the scrubbing scheme reads and writes the same data assuming that stored data are correct,
whereas the VnC scheme checks for the correctness of stored data and, in the case of errors, issues
further writes.

7. Some techniques combine multiple resilience strategies to lower their individual overheads.
For example, on using VnC with ECC, VnC steps can be stopped once the number of errors is
within the correction capability of ECC, which reduces VnC overhead. Similarly, the error rate
reduction brought by VnC allows using an ECC with a lower error correction capability, which
reduces ECC overhead.

8. Some techniques predict cache/RF read/write intensity or reuse distance [4,6,43]. This information
can be recorded using a compiler [43] or hardware [4,6].

9. Some techniques use ECCs with different correction capabilities to deal with different error
rates [6,20,40,41,52].

10. Some techniques hide the latency of WDE correction [22] by storing this in a buffer and scheduling
it later when the cache or main memory is idle.

11. Due to the limited write endurance of PCM, many PCM management techniques account for its
endurance, as well [13,17,18,21,47,50–52].

12. A few other management techniques include early write termination [30,37], changing the
operational mode of STT-RAM at runtime [32], cache bypassing [6], page remapping [23] and
using data migration in the cache [6].

4. Addressing PCM Resistance Drift Errors

Since drift depends on time elapsed and temperature, some works perform PCM reads in a
time-aware [13,18–20] and a temperature-aware [18] manner, which involves changing threshold
resistance based on time and/or temperature (refer to Figure 2). Some works statically divide the
resistance spectrum such that larger margins are used for states with a higher drift rate [21,50].
Some works perform memory page allocation in a temperature-aware manner [17], whereas others
perform the runtime transition of a memory page or a cache block between drift-prone MLC and
drift-free SLC [17,49]. We now review some of these works.

4.1. Partial Data Mapping

Seong et al. [2] note that in a four-level cell (4LC) PCM, one of the four levels shows the highest
resistance drift. They present a three-level cell (3LC) PCM, which removes the most error-prone level
and, thus, reduces the errors caused by this and the nearby level. For utilizing 3LC, they propose
schemes to convert between a binary and a ternary number system. They show that compared to 4LC,
3LC reduces the error rate by five orders of magnitude and achieves 1.33× higher density than SLC
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PCM. In fact, since 4LC would require very strong ECC with many redundant bits, 3LC can achieve
higher density than even 4LC. Furthermore, the soft-error rate of 3LC is smaller than that of DRAM
without requiring scrubbing or ECC. Further, the performance with 3LC is much higher than that with
4LC and close to that with SLC.

Yoon et al. [21] discuss the 4LC-PCM architecture for achieving acceptable error rates. For a 16-GB
4LC-PCM memory, they suggest refreshing each bank independently with a refresh interval of 210 s
(17 min), which provides 97% bank availability and is over double the time required to refresh the
entire memory. Further, since the frequency of the occurrence of four states is different in typical
applications, they propose mapping two less frequent states to two error-prone levels (01 and 10).
Furthermore, they propose increasing the resistance margin at the amorphous side and reducing it at
the crystalline side, which reduces drift errors. Using these two optimizations with a 10-bit correcting
ECC and 17-min refresh allows keeping the error level acceptable for a practical system. However,
even with these optimizations, 4LC has a high error rate and large performance overhead, and hence,
they propose removing the most error-prone state to achieve a 3LC design. 3LC requires no ECC or
refresh for 16 years. They store three bits in two 3LCs, which has a density of 1.5 bits/cell. Since two
3LCs have nine levels, of which only eight levels are used to encode three bits, one level remains free.
This level is used as a spare when a cell reaches its endurance limit (refer to Table 4), and this allows
tolerating hard errors. This along with simpler ECC (due to the low error rate of 3LC) allows 3LC to
achieve density close to that of 4LC. They show that their 3LC design provides higher performance
and lower energy consumption than the 4LC design.

Table 4. Illustration of 3-on-2 coding [21].

First Cell State Second Cell State 3-Bit Data

S0 S0 000
S0 S1 001
S0 S3 010
S1 S0 011
S1 S1 100
S1 S3 101
S3 S0 110
S3 S1 111
S3 S3 invalid

4.2. Selectively Using SLC Mode

Zhang et al. [17] present a drift-resistant PCM architecture. They note that in the four-level
PCM, states 00 and 11 are drift-resistant, 01 is less prone to drift and 10 is most prone to drift. Hence,
they selectively use bit-inversion, -rotation or both to store most of the values in 00 or 11 patterns,
instead of 01 or 10 patterns. Bit-inversion is useful for changing the pattern from 10 (high-drift)
to 01 (low-drift). Rotating for an odd number of times can change the state to the low-drift or
drift-resistant state, e.g., rotating 0110 once gives 0011, where 00 and 11 are drift resistant. These
strategies are illustrated in Figure 8.
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Rotate

01 10 00 11

Invert

01 01 10 10

Rotate Invert

01 10 10 10 00 11 01 01 11 00 10 10

(a)

(b)

(c)

Data

MLCs

11: drift insensitive state

10: less-drift sensitive state

01: highly-drift sensitive state

00: drift insensitive state

Figure 8. Converting original data to drift-tolerant data using (a) bit-rotation, (b) bit-inversion and (c)
a combination of both [17].

Further, since SLC PCM does not suffer from drift, their technique allows switching from MLC
to SLC at page-granularity when PCM shows drift-sensitive behavior. SLC pages do not require
rotation/inversion, and their lower error rate partially offsets the performance loss due to reduced
capacity. Since drift is strongly impacted by temperature, the page allocation mechanism observes the
temperature of memory portions and preferentially allocates pages from lower temperature portions.
Furthermore, MLC and SLC pages are mapped to low and high temperature portions, respectively.
Compared to the scheme of increasing resistance margins to address drift, their technique brings a
large reduction in the error rate.

Jalili et al. [49] present a drift-mitigation technique that works by converting drift-sensitive blocks
to drift-immune blocks. Their technique uses data compression and selectively switches between MLC
and SLC modes since SLC is drift free. Based on the width of compressed blocks, three cases arise
(refer to Figure 9). In Case 1, the compressed block has less than 50% of the original size, and hence, it
is stored in SLC mode, which provides reliability and performance benefits. In Case 2, the compressed
width is greater than 50%; hence, pattern 11 is removed from the compressed stream since 11 is drift
resistant. Then, the compressed block is stored in MLC, and the compressed block with the omitted 11
pattern is stored in SLC mode. Thus, only drift-sensitive patterns are backed up in SLC mode. In Case
3, the compressed width is even larger than that required in Case 2. In this case, the compressed block
is stored in MLC. Furthermore, the 11 pattern is removed from the stream and the beginning with the
right most cell of SLC, a cell is set for the error-prone 01 pattern and reset for the 00 and 10 patterns.
At the time of reading, for Case 2, the 11 pattern is removed from the compressed stream, and the
remaining pattern is compared against its backup in SLC. Since Case 3 is not an error-free formation,
after performing a check along the lines of Case 2, ECC also needs to be checked to detect any errors.
Their technique reduces the error rate while improving the performance and energy efficiency.
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Figure 9. Compression-based technique for addressing PCM resistance drift [49].
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4.3. Non-Uniform Partitioning of the Resistance Spectrum

Asadinia et al. [50] note that traditional MLC PCM devices divide the resistance range uniformly.
Although this reduces the maximum read latency, it leads to equal energy/latency for all of the states.
To address the drift issue and also improve performance, they propose dividing the large resistance
range of PCM in non-uniform regions having different read/write energy and latency, and thus,
the resistance margins are contracted or expanded. The access latency of the most expanded region
(close to fully amorphous) is one cycle, while that of the most contracted region (close to crystalline)
is slightly higher than that in traditional MLC. Further, since few data patterns occur with much
higher frequency in applications than other patterns, their technique maps these frequent patterns
to low-latency/energy states. This improves performance and energy efficiency. The decision to use
non-uniform or uniform division is taken based on the value locality characteristic of the application.
Further, by virtue of using a larger margin at the amorphous end and a smaller margin at the crystalline
end, their technique reduces errors due to drift, since states closer to the amorphous end are most
prone to drift. Compared to traditional PCM, their technique improves the PCM lifetime, performance
and energy efficiency and achieves the same error rate at a lower energy overhead.

4.4. Performing Reads in a Time- and Temperature-Aware Manner

Xu et al. [13] propose a time-aware PCM read technique to address PCM drift. Their technique
records the time duration for which the data value is stored in the PCM cell. At PCM read, this
time duration decides the quantization and interpretation of the cell resistance. They show that their
technique improves MLC PCM reliability significantly, and on using BCH and LDPC (low-density
parity check) codes, the time duration, for which data can reside in PCM while the drift error rate still
remains acceptable, increases by four and seven orders of magnitude, respectively.

Liu et al. [19] note that time-aware PCM read schemes (e.g., [13]) ignore the inter-cell age
variations, and hence, for cells written a long time after the oldest cell was written, these techniques
record the resistance incorrectly. They present a technique that also accounts for both inter-cell and
intra-block variations in age to achieve a high accuracy of quantization. The time-aware technique [13]
uses the ages of the oldest level k cell and the oldest level k + 1 cell for computing the quantization
threshold between levels k and k + 1 (where 1 ≤ k ≤ N, N = 4 for 4LC), whereas their technique
uses the ages of the oldest level k cell and the youngest level k + 1 cell. Further, for reducing the
quantization error of cells read soon after being written, an adaptive writing scheme is used. If a cell is
written much later than the time the corresponding block is created, the reference resistance does not
remain fixed, but is increased to allow a sufficient quantization margin for recently-written cells. Their
technique brings a significant reduction in the quantization error rate.

Jalili et al. [18] propose performing PCM read operations in a time- and temperature-aware
manner for tolerating drift errors instead of correcting them by ECC. They use PCM as a 3D-stacked
memory where the operating temperature is even higher than that in 2D memory. In their technique,
at the time of PCM write, the current time is also recorded with the block. At PCM read, the memory
controller determines the extent of drift based on the time elapsed and temperature. They note that on
using narrow resistance margins, drift has no impact on a large fraction (e.g., 60%) of memory accesses,
and this also saves write energy. However, for remaining cases where the elapsed time, or temperature,
or both are high, margins cannot avoid the drift errors. To address them, the reference voltage of the
read-circuit is updated to account for drift. For this, they use an analytical model for predicting drift
behavior for a given temperature, elapsed time and initial resistance. Using this model, the PCM read
circuit estimates the resistance drift and calibrates the threshold voltage for adaptively sensing the
state of the cell. Thus, their technique interprets the cell state in a dynamic manner. They show that
their technique reduces the PCM error rate by six orders of magnitude.
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4.5. Using Error Correction Strategies

Yang et al. [20] propose techniques to address drift errors in MLC PCM. They note that drifts
from 10 to 01 and 01 to 00 lead to soft-errors and 00 to 01 lead to hard-errors (since the cell gets stuck
at a value and can no longer be written). They use Gray coding, which maps 11 to 10 and 10 to 11
(the mapping of 00 and 11 is not changed). This changes the 10→ 01 drift to the 11→ 01 drift. Then,
two-bit interleaving is used to store left-side and right-side bits of two-bit cells separately. Due to
this interleaving, the data in left-side bits show a low error rate, and hence, only simple ECC (e.g.,
Hamming code) is used for them. The data in right-side bits show a much higher error rate, and hence,
stronger ECC (two error correction) is used for them. For the right-side bits, they partition the block
at sub-block granularity and store the data in inverted form to address stuck-at-fault (hard) errors.
They also tune threshold resistance to lower hard- and soft-error rates even further. They show that for
a desired data retention time and number of programming steps, an optimal value of the threshold
resistance exists. Using all of the techniques together brings a large reduction in the error rate, which
allows using simpler ECC for the same reliability and the same ECC for even stronger reliability.

Yoon et al. [52] present a technique to protect NVMs against both soft- and hard-errors. In the
conventional coarse-grain remapping technique, the failure of even one cache block leads to remapping
or disabling of a 4-KB page. In their technique, when the number of errors in a 64-B block exceed
the correction capability (four bits), only this failed block is remapped. Further, they use the healthy
cells of worn-out blocks to record the redirection address. To avoid chained remapping on failure of a
remapped block, the final address is stored in the original failed block itself (refer to Figure 10). To
reduce the latency of accessing remapped data, remapping pointers are stored in a cache.

ptr

data

ptr

ptr

Figure 10. Example of chained remapping (solid line) and limiting the number of redirections by
directly storing the final address (dashed line) [52].

They use a 6EC7ED (6-bit error-correction 7-bit error-detection)BCH code and use it for tolerating
initial wear-out errors. They further note that a bit wears out in a long time, but after it wears out, it may
always provide incorrect data. By comparison, soft-errors happen rarely. Based on this, they use simple
ECC for most blocks with little or no errors and strong ECC for blocks with multi-bit errors. They use
three ECC schemes: fast, slow and memory-ECC. Fast-ECC detects at most seven errors, but corrects
at most two errors, and thus, it handles two wear-out errors in a block. If fast-ECC detects more than
two errors, slow-ECC is used, which corrects at most four errors, and for more errors, memory-ECC
is invoked. Mem-ECC can correct at most six errors, and it ascertains whether an error is a wear-out
error by writing and verifying the data. On detecting five or a higher number of errors, the failed block
is remapped, which avoids the need for calling memory-ECC again for this block. Their technique
improves NVM lifetime significantly and incurs only a small performance loss.

4.6. Using Scrubbing

Awasthi et al. [16] present scrub mechanisms to address the drift issue in MLC PCM. For an
ECC code that can correct K errors, performing a scrubbing operation after K errors, but before the
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occurrence of the K + 1-th error can protect the data. They observe that with increasing the K value,
the time difference between the K-th and K + 1-th error also increases, and hence, they propose using
multi-bit ECCs, which allow using larger scrub intervals. They further propose improvements to
simple scrub schemes. For instance, if the K + 1-th error happens quickly after the K-th error, the data
cannot be corrected. To avoid this, they propose a “headroom” scheme, where a scrub operation is
issued on detecting K− h errors (instead of K errors), where h shows the headroom. However, scrub
operations lead to extra writes, which increase the hard error rates due to the small write endurance of
PCM. Hence, the value of h can be intelligently chosen to balance uncorrectable soft-error rates and
hard-error rates. Their second scheme works by increasing the frequency of read (for drift detection)
operations gradually as a larger number of drift-errors is encountered since the lines with very few
errors are not expected to require correction. The third scheme uses adaptive scrub-read rates, such
that after each interval of P writes, the uncorrectable errors in the previous interval are examined,
and the rate is doubled if errors exceeded a threshold. They show that compared to a simple scrub
scheme, their technique brings significant reduction in uncorrectable errors, scrub-related writes and
scrub energy.

5. Addressing PCM Write Disturbance Errors

We now discuss techniques for addressing WDE. These techniques mitigate WDE along the
word-line [3,26,48] or bit-line [22,23,48]. Some techniques specifically mark a few blocks as unused,
which avoids the need for correcting WDE in them [22,48].

5.1. Using the Data-Encoding Scheme

Jiang et al. [3] propose a technique to address WDE in SLC and MLC PCM. They assume that the
inter-cell distance along BL is large enough, whereas that along WL is reduced, and thus, WDE happens
only along WL. Their technique attempts to compress a block. Assuming a 64-B (512 b) block, if it can
be compressed to at most 369 bits, the compressed block is encoded using (3,4) encoding (explained
below), which requires at most 492 bits. Then, the 20-bit 2EC3ED BCH code is added for protecting the
encoded pattern, as shown in Figure 11. An uncompressed block is not encoded. While writing an
encoded block, their technique checks the number of WDEs and completes a write if at most two WDEs
are present (since the BCH code can correct two errors), otherwise, it attempts VnC. While writing
uncompressed block, the write terminates only when no WDE is present.

512b

369b

492b

512b

Original data

Compression

(3,4 encoding)

+20b for BCH

Data stored in PCM

Figure 11. Flow diagram of the technique of Jiang et al. [3].

Their technique uses the (p, q) (q > p > 1) encoding scheme, which uses a q-bit code to encode
p-bit data (refer to Figure 12). Since this encoding requires a larger number of bits, their technique
chooses WDE-resistant codes. They note that since WDE happens only if a nearby cell is zero, out of
four two-bit patterns, viz. 00, 01, 10 and 11, the 00 pattern leads to WDEs. Hence, their (3,4) encoding
removes eight four-bit patterns with 00 (e.g., 1100, 0011, 0100, etc.) and uses the remaining eight
patterns to represent three bits (from 000 to 111). This encoding decreases the frequency of vulnerable
patterns, although it cannot remove them entirely. They also propose WDE mitigation strategies for
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MLC PCM. Their technique mitigates WDE, which allows designing highly-dense PCM chips and also
reduces the performance penalty of VnC.

000 100

001 101

010 110

011 111

00: 100

01: 101

10: 110

11: 111

0000 0001 1000 1001

0010 0011 1010 1011

0100 0101 1100 1101

0110 0111 1110 1111

000: 0101 100: 1011

001: 0110 101: 1101

010: 0111 110: 1110

011: 1010 111: 1111

(a) (2,3) encoding (b) (3,4) encoding

Figure 12. Illustration of (p, q) encoding, (a) (2,3) encoding, (b) (3,4) encoding [3].

5.2. Consolidating Correction Operations

Wang et al. [22] note that increasing the inter-cell spacing in PCM to address WDE stretches the
cell-size from 4F2 to 12F2, which reduces the density. They propose a technique to address WDE along
BL to allow designing a 4F2 cell, which is the minimum size for diode-switch-based PCM. They use
the scheme of Jiang et al. [3] to mitigate WDE along WL and, thus, focus on reducing WDE along
BL. Furthermore, they use ECP [54] for correcting hard-errors in PCM. The ECP technique works by
encoding and storing the addresses of failed cells and allows tolerating errors in memory bit locations
by keeping pointers for them and using backup cells for replacement [54]. Wang et al. note that, after
applying the scheme of Jiang et al. [3], a PCM block write causes on average only two WDEs in each
of its nearby blocks, and hence, immediately correcting them is an overkill on performance. Hence,
their lazy correction scheme records error locations and values in ECP and corrects errors only when
they exceed the correction capability of ECP. ECP entries are preferentially allocated to hard-errors and
then to WDEs. If all ECP entries are used by hard-errors, WDEs are addressed by the VnC scheme.
The ECP chip itself is designed using a lower density cell (8F2/cell), and hence, writing ECP does not
cause cascading WDEs. Lazy correction consolidates multiple correction operations into one, and this
correction can even be done by the regular write operation. However, compared to WDE-free PCM,
this scheme still requires two extra “pre-write” read operations for storing old data and two extra
“post-write” read operations for verification.

To hide the latency of “pre-write” reads, their second scheme issues them when the write request
is waiting in the write queue. Since memory controller buffers write and issue them when the queue
is full, write requests see a large waiting time, and thus, pre-reads can be issued during this time.
To further reduce the impact of WDE on write-intensive applications, they note that VnC is not
required for a block flagged as “no-use” by the OS. Based on this, they propose a (y : z) (0 < y ≤ z)
allocation scheme, which uses only y out of z successive strips (rows having the same index from
all memory banks) for storing data. For example, the (1:2) scheme uses alternate strips and, thus,
requires no VnC at all, whereas the (2:3) scheme requires only one neighboring cell and not both
neighboring cells. Thus, the (y : z) allocation scheme exercises a tradeoff between memory capacity
and performance and can reduce the performance penalty for high-priority applications. Compared
to the 8F2/cell WDE-free [3] design, their 4F2/cell design with the proposed techniques achieves
significantly larger density. Furthermore, compared to the VnC scheme, their techniques provide a
large performance improvement.

5.3. Reducing Correction Overhead on the Critical Path

Wang et al. [26] note that since PCM consumes much greater write power than DRAM, PCM writes
are performed at the granularity of cell groups. Different cell groups proceed independently. In a
group, k-bits can be simultaneously SET or RESET, but not mixed. For example, for k = 2, bits that
are four cells apart can be simultaneously written, and multiple rounds of SET and RESET operations
are required to write a cache block. This is illustrated in Figure 13. Thus, the slowest cell group(s),
termed as the critical group(s), determines the total write latency. Since the number of critical groups
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is smaller than that of the non-critical groups, WDEs from critical groups are also smaller, and hence,
they can be preferentially mitigated to avoid their performance penalty.

64B cache block

b0 b1 b2 b3 b4 b5 b6 b7

Group0 Group1
Group

N-1

b0

b1

b4

b5

b2 b6

SET

phase

RESET

phase

b3 b7

time

Same

division

Void

RESET

SET

Unchanged

Figure 13. Illustration of 2Xdivision write on an eight-cell group [26].

Their technique works separately on each group. In each round of RESET, their technique
uses both write-data verification and WDE verification to detect disturbed cells after RESET. Then,
their technique ascertains whether correcting the disturbed cells by additional RESET operations
will increase the total write latency. If so, this group is a critical group, and hence, the unused
ECP [54] entries are leveraged to correct them; and this latency is hidden by overlapping with ongoing
RESET/SET rounds. Otherwise, this is not a critical group, and as such, their technique corrects
these cells within the cell group before proceeding to the SET round. During a write operation, their
technique tries to free some ECP entries if they correspond to WDEs. For further optimization, their
technique performs data compression and does not correct the bits of the block that remain unused due
to compression. They show that by using only two ECP entries for correcting WDE, their technique
almost completely removes the performance overhead of WDE.

5.4. Using Page Remapping Scheme

Wang et al. [23] note that since most writes to main memory are directed to a few pages, they are
primarily responsible for WD. Their technique works by redirecting such hot pages in a spare area,
(1) WD in neighboring pages due to remapped hot pages and (2) WD in hot pages due to neighboring
pages being able to both be avoided (refer to Figure 14). Thus, the page remapping approach leads to a
two-fold reduction in WDE. Further, by reducing the writes to PCM main memory, their technique
also improves the PCM lifetime.
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Figure 14. Page remapping-based write disturbance error (WDE) mitigation technique, (a before
remapping, (b) after remapping [23].

5.5. Using Layout and Coding Schemes

Eslami et al. [48] present the cell layout and coding scheme to mitigate WDE in PCM. They
propose a checkerboard layout of PCM cells where nearby cells along BL and WL are designated as
white and black, as shown in Figure 15. Only white cells are used first, which avoids the need for
correcting black cells. After white cells exhaust their lifetime, they are no longer used, and then, black
cells are used. This layout allows reducing the distance along BL and WL by (1/

√
2)×, while still

ensuring WDE-free operation between white cells and between black cells. This approach maintains
host-visible capacity to be the same as the WDE-free baseline while doubling the PCM lifetime. They
further propose the use of WOM code (refer to Rivest et al. [55] for a background on WOM codes).
They use a code-rate of 2/3 and shrink the BL spacing to 2/3 times the minimum spacing for WDE-free
operation. This scheme also maintains host-visible capacity the same as the baseline, while increasing
the lifetime by 2.15 times.

Bitline

Wordline

Figure 15. Checkerboard configuration of the PCM array to address WDE [48].

6. Addressing STT-RAM Read Disturbance Errors

We now discuss techniques for addressing RDE in STT-RAM. Some techniques avoid restore
operations by using LCLL reads [34], data compression [39], data-duplication [39], by exploiting
cache/RF access properties [4,43] and by using an SRAM buffer to absorb reads for minimizing reads
from STT-RAM [43]. Furthermore, restores can be scheduled at idle times to avoid their performance
impact. Some techniques restore only cells with a “1” value [4,43], since only these cells may be
disturbed during reads on using the current direction the same as writing “0”.
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6.1. Avoiding Redundant Restore Operations

The technique of Wang et al. [4] seeks to avoid restore operations for blocks that are expected to
see a write operation in the near future. In a cache hierarchy, the same data may be present in SRAM
L1 cache and STT-RAM L2 cache, and hence, a read-disturbed line in L2 need not be immediately
corrected. Based on this, their technique delays restore operation till the line is evicted from L1 and
decides about the restore based on status of the line at the time of eviction from L1. In L1, they store a
bit to show whether the line is loaded directly from main memory or from L2. Furthermore, when an
L2 read is performed to load a line in L1, the dirty bit of L2 is also copied in L1, which is termed as
the “P” bit. Further, each L2 line also stores a bit that is set after a read to it, indicating that the line is
read-disturbed. At the time of eviction of an L1 cache line that was loaded directly from main memory,
the line is evicted without restore, but if it was loaded from L2, then the line needs to be restored in L2.
If the line is found in L2, it is restored in L2, but if the line is not found in L2, the evicted L1 line is
directly written back to memory if its “P” bit is clear; and a restore operation is skipped if the “P” bit
is set. Thus, since a read-disturbed L2 line cannot be written back to memory, their technique evicts
such an L2 line and, instead, writes back the corresponding L1 line when it is evicted to maintain data
integrity.

They further note that in STT-RAM, “1” and “0” bits are written by applying SL to BL current
and BL to SL current, respectively, and a read operation can also use similar directions. On using
the “writing-0-like” current, only cells with the “1” bit are disturbed and vice versa. Based on this,
at the time of a restore operation, their technique first identifies the disturbed cells by reading the
disturbed line using the inverted reading current and, then, only restores the disturbed cells. By virtue
of reducing restore operations, their technique achieves a large performance improvement compared
to the restore-after-read technique. This is illustrated in Figure 16.

1 0 1 1 0 0 1 1

? 0 ? ? 0 0 ? ?

1 0 1 0 0 0 1 1

1 0 1 1 0 0 1 1

1st read, current direction same as writing 

‘0’. Cells storing ‘1’ may be disturbed 

2nd selective read, current direction same as 

writing ‘1’. Only cells that previously

stored ‘1’ are read this time.

If a ‘0’ is detected in 2nd read, it shows an 

error. Only this bit is restored.

Figure 16. Data-aware selective restore operation [4].

The size of GPU RF is orders of magnitude larger than that of CPU RF and is even larger than that
of the L1 and L2 caches on GPU [55,56]. Since SRAM consumes large leakage power, Zhang et al. [43]
propose using STT-RAM for designing RF in GPU and present a technique to reduce the restore
requirement. They characterize the RF access pattern and observe that most registers are read only once,
whereas most of the remaining registers are read only two or three times. Based on this, they determine
the last read to a register and avoid the restore operation after the last read operation. To reduce
the restore requirement for repeatedly accessed registers, they record the number of references for
every read operand of all of the instructions and store this along with the instruction. Based on this,
registers with multiple reads (e.g., more than three) are stored in an SRAM buffer since SRAM does
not suffer from RDE. Further, during bank conflicts, they propose restoring only 1’s regardless of
whether they were disturbed. Although this consumes additional energy, it avoids the read operation
before the restore operation to identify disturbed cells. In absence of conflicts, a read is performed to
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identify disturbed cells, and only these cells are restored to save energy. They show that their technique
mitigates the performance/energy penalty of STT-RAM register restores.

6.2. Compressing Data to Reduce RDEs

Mittal et al. [39] use data compression and selective duplication to address RDE in STT-RAM
LLC. For all-zero data, their technique does not write any bits to the STT-RAM block since the data can
be reconstructed from compression encoding bits on a future read operation. This avoids all restore
operations for such data and also reduces read/write latency for them. For data with a compressed
width (CW) of at most 32 B (assuming a 64-B block size), two copies are kept in the block. On the
next read operation, one copy gets RDE, which is not corrected since the second copy still remains
free of RDE. This avoids one restore operation for such data (0 < CW ≤ 32 B). Due to the reduced
locality in LLC, many LLC blocks are read only once, and hence, this approach can reduce a large
fraction of restore operations. For uncompressed data and those with a compressed width greater
than 32 B, a single copy is kept. Figure 17 summarizes the working of their technique. On read to
a block with single copy, the restore operation is performed. Compared to LCLL and restore-after-read,
their technique provides higher performance and energy efficiency.

Compressor

CW=0

0<CW 32B

32B<CW<64B

CW=64B

CW CW

CW

CW

0B written/read, 

All restores avoided

64B written/read, 

1 restore avoided

<64B written/read,

No restore avoided

64B written/read,

No restore avoided

Cache write data

STT-RAM block

Duplication

Summary

CW?

Figure 17. Data compression and selective duplication-based technique for addressing read disturbance
error (RDE) [39].

6.3. Selectively Using RDE-Free Cells or Reading Strategies

Zhang et al. [32] present a reconfigurable cache cell design for addressing RDE in STT-RAM
caches. The conventional STT-RAM (called “C-mode”) requires one MTJ. They use two MTJs for
storing a value and its complement and, thus, use differential sensing (i.e., compare the difference)
instead of comparing against a threshold. This “D-mode” design increases the sense margin, reduces
read errors and is more tolerant to process variation and the impact of process scaling. Although
D-mode provides better read performance especially at smaller process nodes, its area and dynamic
write power are 2× compared to C-mode. Hence, they design a reconfigurable cell that can operate as
two C-mode cells or one D-mode cell. Based on this, they also propose a cache architecture where two
nearby cache lines (each having its tag and valid bits) act as a “super-line”. A super-line can store two
values in C-mode or one value in D-mode, and a suitable mode can be chosen at runtime based on
cache level and application behavior.

They note that for L1 cache, read performance is critical, and writes account for a sizable fraction
(e.g., 20%) of cache accesses. Furthermore, in an application phase, memory locations with high write
traffic are rarely read, and in the later phase, the same location may be repeatedly read and infrequently
written. Based on this, the L1 super-line only stores one line. Initially, writes happen in C-mode,
and the neighboring line remains invalid. After a fixed number of consecutive reads to a location,
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the super-line switches to D-mode for future reads. A write again switches it to C-mode, and thus,
intermittent reads/writes happen in C-mode, whereas consecutive reads happen in D-mode. In LLCs,
frequently-accessed locations are switched to D-mode to boost read performance, and remaining lines
operate in C-mode to boost capacity. Since writes contribute a much smaller fraction in LLCs, writes
are allowed in D-mode also. They show that their cache design provides better performance and
performance/watt compared to SRAM and STT-RAM (with all C-mode and reduced retention).

Jiang et al. [34] note that neither restore-after-read nor LCLL read provide better performance for
all applications/phases. This is because when a memory bank is relatively idle, the inter-arrival time
between reads is high. Hence, restore-after-read takes less time since the latency of restore operations
is hidden. However, when the bank is busy, LCLL takes a smaller time to complete read operations.
They propose a “smash-read” operation, which increases read current (20 µA) to the level of write
current (30 µA) for reducing the read latency from 13 cycles to nine cycles and then uses the restore
operation to address RDE. Further, they propose a “flexible-read” scheme, which issues a smash-read
or LCLL read based on whether the number of entries in a bank queue is smaller than or larger than a
preset threshold, respectively. This threshold is dynamically adapted for different banks depending on
the distribution of accesses to them. Compared to LCLL and restore-after-read, their “flexible-read”
scheme provides better main memory performance and energy efficiency.

6.4. Tolerating RDE Using the Approximate Computing Approach

The approximate computing paradigm exploits the inherent error tolerance of applications and the
perceptual limitations of humans to trade precision for efficiency gains [57]. Ranjan et al. [45] present
an approximate computing approach that explores the energy-quality tradeoff by allowing STT-RAM
errors to save energy. They study three types of errors: (1) RDE due to reducing read duration and
increasing the read current; (2) incorrect reads due to reduced read current; (3) write error due to
lower write current, duration or both. They employ an additional peripheral circuitry, which allows
adjusting the magnitude and duration of read/write currents to change the probability of these three
errors. Based on these, they architect a configurable-quality memory array, which allows read/write
operations with variable quality levels. In their technique, the error-probability for different groups of
bits can be specified for controlling the magnitude of errors. They investigate the interrelationship
between quality and bit-cell level energy with the help of a device-level simulator. They use this array
as a scratchpad and determine the minimal quality requirement for every load/store operation for
minimizing the total energy for a desired quality of result.

7. Addressing STT-RAM Write Errors

We now discuss techniques for addressing STT-RAM write errors. Some techniques divide the
cache into different portions with different characteristics [6,40]. For MLC STT-RAM, some works
assume a “parallel MTJs” design [30], whereas others assume a “series MTJs” design [5,6].

7.1. Partial Data Mapping

Hong et al. [30] note that in MLC STT-RAM, due to the limited difference between the resistance
values of consecutive states and process variation, a state in MLC STT-RAM may be incorrectly read.
To avoid this, they remove the 01 state, which has the largest overlap with adjacent states in the
parallel MLC. Thus, their MLC stores only three states, which improves read stability by reducing
the overlap between states and has only a small impact on density (bits stored per area) since 3LC
has a smaller area than 4LC. Furthermore, it simplifies the cache controller design since the number
of resistance transitions per bit-line is reduced. Data are stored in 3LC in ternary coded form, and
since STT-RAM is generally used for designing LLC, the latency of ternary coding can be hidden. The
MLC write operations are of three types: hard transition, which switches both hard and soft domains,
soft transition, which switches only the soft domain, and two-step transition, whereby a hard and
a soft transition are applied in succession. The soft transition leads to the largest write errors since
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in the case of insufficient switching current, no transition may take place (incomplete-write), and in
the case of large current, both hard and soft domains may be switched. By removing the 01 state, the
3LC cache removes the state with the largest probability of error. Still, the 11 to 10 transition may lead
to errors, and to avoid this, they use a high current, which can change both hard and soft domains.
Furthermore, the soft domain is continuously monitored, and the write current is terminated as soon
as the soft domain is switched to the desired state. Their 3LC cache achieves higher performance and
lower energy than SLC STT-RAM LLC and higher reliability compared to MLC STT-RAM.

Wen et al. [5] present a technique to improve the read/write reliability of MLC STT-RAM. For
“series MTJs” MLC, they show that the 10 state has a larger overlap with the nearby state than the
01 state. Hence, they remove the 10 state from MLC, which improves read stability and also reduces
the number of erroneous transitions during MLC write operations. They use two tri-state cells to
encode three binary bits. Out of nine combinations of two tri-state cells, they also remove the 0101
state, since it shows the largest error rate. Further, they use Gray coding, which ensures that up to a
one-bit error (due to one erroneous transition) can occur in three-bit binary data. In their technique,
changing any arbitrary state XX to 10 requires two-step transitions, viz. XX → 11→ 01. To reduce
its performance overhead, they propose changing the state of all MLC cells to 11 before a write is
scheduled to this line, which hides the latency of XX → 11 transition and allows completing the write
in a single programming step. They proactively change the cell state to 11 when the data in the L2 line
will not be reused, which happens when: (a) a clean L1 cache line sees a write; (b) the L1 write miss is
followed by a read hit to the corresponding L2 line; and (c) the L1 write miss is followed by an L2 read
miss. Compared to traditional MLC STT-RAM, their technique improves read/write reliability by up
to five orders of magnitude and also boosts performance. Further, compared to the SLC STT-RAM
cache, their MLC STT-RAM cache achieves higher performance by virtue of higher capacity.

7.2. Using Heterogeneous Cells and/or ECCs

Wen et al. [6] show that compared to hard lines in split-cell mapping, mixed lines show lower
access latency, energy and better reliability (refer to Section 2.5 for an explanation of split-cell mapping
and mixed lines in MLC STT-RAM). Furthermore, hard lines show up to a five orders of magnitude
higher error rate than soft lines. Based on these observations, they propose a cache composed of
three lines: soft, hard and mixed. For soft and mixed lines, only low-overhead SECDED (single-error
correction, double error detection) ECC is used, and mixed lines are protected at finer granularity
than soft lines, since soft lines are most reliable. Since hard lines show a much higher frequency of
two-bit errors than one-bit errors, they propose an ECC for hard lines, which can dynamically change
between two modes. In the first mode, only one-bit errors are corrected for an overhead equal to
that of SECDED. In the second mode, two-bit errors are corrected with relatively longer latency, but
shorter than that of BCH codes. Although the storage requirement of their ECC is the same as that of
BCH, the latency approaches that of the common case (one-bit error). They also use a data migration
strategy for optimizing the use of three types of ways. For a write access directed to hard ways, a
prediction is made whether it is a dead or a burst write. Dead writes are bypassed from the cache,
and burst writes are swapped with the corresponding soft way. Similarly, burst writes to mixed ways
are swapped with soft ways in the same set. Similarly, intensive reads to hard and mixed ways are
swapped. Thus, mixed ways allow redirecting some unreliable writes from hard ways to mixed ways.
They select a configuration where the cache is partitioned into hard, mixed and soft ways, such that
EDP is minimized. Compared to split-cell mapping with BCH code, their cache design provides energy
and performance benefits with the same level of reliability.

Wang et al. [40] present an adaptive ECC mechanism to reduce write failures in STT-RAM.
A write error in STT-RAM occurs when the write pulse is terminated before the resistance of the MTJ
is switched. Furthermore, the write error shows an asymmetric nature, such that the failure rate is
mainly determined by the probability of 0→ 1 switching (and not 1→ 0 switching), including 0→ 1
flips in ECC (if used). Due to this, the requirement of ECC varies across different cache ways and over
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time. Based on this, they propose an adaptive ECC technique to reduce ECC overhead while providing
the required ECC protection. They use a strong and a weak ECC scheme. They logically partition the
ways of a cache set into two groups that use strong and weak ECC, respectively. At the time of a write,
the ECC requirement of a data block is estimated based on its flips (as shown above) and a threshold.
Based on this, the block is written to a suitable group.

They propose strategies to find the suitable partition of cache ways in two groups based on the
ECC requirement of data blocks. Since most blocks have low flips, the weak ECC group generally
has higher capacity. To account for temporal variation in ECC, the number of ways in the strong
ECC group is increased compared to the average case to provide a safety margin. They also propose
dynamically adapting the threshold to decide data allocation based on a change in the miss rate. While
writing a block, only changed bits are updated, and hence, their technique also reduces the probability
of bit-flips due to writing data with the same number of 1’s in the same group. They show that their
technique provides better performance and energy efficiency, lower ECC overhead and comparable
write reliability compared to the traditional ECC mechanism.

7.3. Using Error-Aware Cache Replacement Policy

Monazzah et al. [37] present a cache replacement policy for reducing write errors in STT-RAM.
They note that the write error rate is directly related to the number of bit-transitions, i.e., the Hamming
distance between the existing and incoming data values. L2 cache writes occur on write-backs from L1
and insertions after L2 misses. Since the Hamming distance of incoming data with different existing
blocks can vary widely, the cache replacement policy that decides the location of incoming data has a
significant impact on the number of bit-transitions and, hence, the error rate. While the traditional
LRU (least-recently used) replacement policy replaces blocks based on their access pattern, their policy
selects a replacement candidate based on the number of 0 → 1 transitions on writing to that block.
1→ 0 transitions are ignored since their error rate is two orders of magnitude lower than that of 0→ 1
transitions. Their policy first searches the candidate from invalid blocks and, in their absence, from
valid blocks. The replacement policy is invoked on cache misses, and hence, its latency is hidden;
however, it can cause extra misses by replacing useful blocks. Compared to LRU replacement policy,
their technique reduces the write error rate while incurring only a small performance and energy
penalty. Their technique searches the most appropriate way from all of the available ways, whereas
the technique of Wang et al. [40] only searches the right group and uses the LRU policy within that
group to find the appropriate way.

7.4. Using VnC and ECC Schemes

Sun et al. [42] present two schemes to address write failure in STT-RAM-based caches. First,
they propose using VnC operations, where after every write, the stored value is read to ensure the
correct write, and in case of errors, VnC is again issued. Since a large fraction of cache write operations
bring the same data as that originally stored and STT-RAM write error happens only on a change in
the stored bit, the performance penalty of VnC remains small. However, this penalty increases with a
rising error rate, and for such cases, they propose using ECC with VnC, which reduces the requirement
of VnC operations since VnC needs to be issued only when errors exceed the correction capability of
ECC. They show that their technique can tolerate high write error rates with only a small performance,
area and energy penalty.

Ahn et al. [44] present a low-overhead ECC scheme for mitigating write errors in STT-RAM L2
cache. They observe that since bit transitions on writes are relatively infrequent, a large fraction of
writes is free of errors. Hence, allocating ECC for every cache block leads to resource inefficiency.
They propose sharing the ECC unit between cache blocks, and thus, the number of ECC blocks can
be less than the set-associativity, as shown in Figure 18. An error-free write does not use ECC. If the
number of errors on a write is within the correction capability of ECC, an ECC block is allocated,
whereas for a higher number of errors, the VnC scheme is used to reduce the number of bit-errors. If



Computers 2017, 6, 8 24 of 27

all ECC blocks are occupied, the data block corresponding to the oldest allocated ECC block is fully
corrected using VnC, and then, the ECC block is released. Their technique reduces the requirement of
VnC operations and the area overhead of ECC.

Block data Block data Block data ECCV WECCV W

Block data ECC Block data ECC Block data ECCSet k

Set k

N-way

N-way

M-way

(b)

(a)

Figure 18. (a) Conventional ECC scheme and (b) selective-ECC scheme (N > M) [44].

8. Conclusions and Future Outlook

In this paper, we presented a survey on techniques for improving the reliability of STT-RAM
and PCM. We summarized the key architectural management ideas used by the research projects
and organized them based on important parameters to underscore their differences and similarities.
We conclude this paper with a brief mention of future challenges and solution directions in this area.

Given the energy inefficiency of conventional memories and the reliability issues of NVMs, it is
likely that future systems will use a hybrid memory design to bring the best of NVMs and conventional
memories together. For example, in an SRAM-STT-RAM hybrid cache, read-intensive blocks can be
migrated to SRAM to avoid RDEs in STT-RAM, and DRAM can be used as cache to reduce write
operations to PCM memory for avoiding WDEs. However, since conventional memories also have
reliability issues [11], practical realization and adoption of these hybrid memory designs are expected
to be as challenging as those of NVM-based memory designs. Overcoming these challenges will
require concerted efforts from both academia and industry.

Existing NVM reliability solutions have mostly targeted CPU caches/memory. Given the
power-constrained computing horizon and the phenomenal growth in the use of GPUs, it is likely that
NVMs will be employed for designing RF, caches and memory in GPU in the very near future. However,
given the fundamental differences between the architecture of CPUs and GPUs, partial retrofitting of
existing NVM reliability solutions for GPUs is unlikely to be optimal or even infeasible. Hence, the
design of novel GPU-specific techniques will be an interesting challenge for computer-architects.

As the applications running on systems ranging from hand-held devices to massive data centers
and supercomputers become increasingly data intensive, their memory requirements are increasing at
a fast rate. Since the conventional memories cannot meet the capacity demands and power budgets
of these systems, NVMs appear to be the only viable solutions for these systems. Clearly, exploiting
the opportunities and addressing the challenges specific to each class of system will be important to
improve the efficiency of NVM reliability techniques.

Approximate computing offers a promising approach for reducing the correction overhead of
NVM errors [57]. For example, approximable data, such as least significant bits of floating-point data,
can be stored in NVM memory. Furthermore, ECC for such data can be skipped or the scrubbing
frequency can be reduced. Clearly, relaxing the requirement of fully-correct execution opens up a
variety of opportunities for managing the NVM reliability issue. However, to fully benefit from the
approximate computing approach, its scope needs to be extended from multimedia applications to a
wide range of general-purpose applications.
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