
computers

Article

Hard Real-Time Task Scheduling in Cloud
Computing Using an Adaptive Genetic Algorithm

Amjad Mahmood 1, Salman A. Khan 2,* and Rashed A. Bahlool 3

1 Computer Science Department, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain;
amahmood@uob.edu.bh

2 Computer Engineering Department, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain
3 College of Information Technology, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain;

rashed.b63@gmail.com
* Correspondence: sakhan@uob.edu.bh; Tel.: +973-1743-7673

Received: 14 February 2017; Accepted: 29 March 2017; Published: 5 April 2017

Abstract: In the Infrastructure-as-a-Service cloud computing model, virtualized computing resources
in the form of virtual machines are provided over the Internet. A user can rent an arbitrary number
of computing resources to meet their requirements, making cloud computing an attractive choice
for executing real-time tasks. Economical task allocation and scheduling on a set of leased virtual
machines is an important problem in the cloud computing environment. This paper proposes a greedy
and a genetic algorithm with an adaptive selection of suitable crossover and mutation operations
(named as AGA) to allocate and schedule real-time tasks with precedence constraint on heterogamous
virtual machines. A comprehensive simulation study has been done to evaluate the performance
of the proposed algorithms in terms of their solution quality and efficiency. The simulation results
show that AGA outperforms the greedy algorithm and non-adaptive genetic algorithm in terms of
solution quality.

Keywords: cloud computing; real-time systems; task scheduling; genetic algorithms

1. Introduction

Cloud computing, or simply “the cloud” is on-demand delivery of computing resources over
the Internet on a pay-per-usage basis [1]. The pay-per-usage approach eliminates the requirement
for investment in the acquisition of hardware and software making cloud computing an attractive
option for many organizations [2,3]. In cloud computing, services are provisioned in the forms
of Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).
A cloud model in which a service provider hosts applications and makes them available to customers
is referred to as SaaS. In a PaaS model, hardware and software tools are made available to the users for
application development whereas an IaaS provides highly scalable virtualized computing resources
that can be adjusted on-demand. That is, a user can rent an arbitrary number of computing resources
to meet their requirements.

The focus of this study is on IaaS, where users can subscribe cloud resources for the execution
of a set of hard real-time tasks. In cloud computing, a virtual machine (VM) provides a certain
level of computational power, memory, and other resources. The VMs may have heterogeneous
processing power and characteristics, providing flexible and efficient computation capabilities to the
users. This makes cloud computing an attractive choice for executing applications that exhibit high
task and data parallelism [4]. Many of these applications (e.g., object recognition, navigation systems,
mission critical systems, financial systems, etc.) are real-time that require completion of their workload
within a given deadline. An application may consist of a number of tasks each having a deadline.
A task may communicate with other tasks and consequently have precedence constraint, that is, a task

Computers 2017, 6, 15; doi:10.3390/computers6020015 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://www.mdpi.com/journal/computers

Computers 2017, 6, 15 2 of 21

cannot start its execution until a set of other tasks is completed. In a cloud computing environment,
tasks must be assigned and scheduled on VMs in such a way that the system resources are utilized
effectively and a certain objective function is optimized [5]. To be specific, the problem considered in
this paper is defined as “Given a set of real-time tasks represented as a Directed Acyclic Graph (DAG) to be
executed on a set of virtual machines provided on a cloud-computing infrastructure, perform an off-line mapping
of tasks to the virtual machines such that the total execution and communication cost are minimized subject to a
number of system constraints”.

Scheduling of real-time tasks in distributed and grid computing platforms is an established
NP-complete problem [6]. The problem becomes even more challenging when a large number of tasks
are executed in a cloud computing environment [7] and hence finding the exact solutions for large
problem sizes is computationally intractable. Consequently, a good solution can only be obtained
through heuristics.

The task scheduling problem has been extensively studied for multiprocessor, grid, and distributed
systems and numerous heuristics have been proposed [8–10]. These algorithms for traditional distributed
and parallel systems, however, cannot work well in the new cloud computing environment [4,11].
This makes the problem of task-scheduling in cloud computing a promising research direction and
has attracted several researchers to develop efficient heuristics. Most of the work on task allocation
and scheduling in the cloud environment is focused on the minimization of energy consumption,
makespan, and economic cost of renting virtual machines and the provision of the desired level of
quality of service (QoS) [5,12–15]. However, there is not much work that explicitly deals with the
allocation and scheduling of hard real-time tasks in a cloud environment to minimize execution and
communication costs.

In this paper, we model the hard real-time task scheduling as an optimization problem subject
to a set of constraints. The cost model includes the processing and communication costs and the
constraints capture task precedence and deadline requirements. We propose an efficient greedy
algorithm and an adaptive genetic algorithm. For the genetic algorithm, we propose a topology
preserving two-dimensional solution encoding scheme. We also design a variety of topology preserving
crossover and mutation operators that exploit the solution encoding scheme to escape from local
optima, consequently resulting in high quality solutions. An adaptive strategy for the automatic
selection of suitable crossover and mutation operators during the execution of a GA has also been
proposed. Both adaptive and non-adaptive versions of GA, along with the proposed greedy algorithm,
have been empirically studied to evaluate their performance.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 presents
our system models, objective function, and constraints. The proposed algorithms are presented in
Section 4, followed by simulation results and performance comparison of the proposed algorithms in
Section 5. Finally, we give the conclusion in Section 6.

2. Literature Review

Task allocation and scheduling problems have been extensively studied and efficient algorithms
have been proposed for distributed systems [9,16–20], grid computing [6,10,21–24], and multiprocessor
systems [8,25]. These studies, however, schedule tasks on a fixed number of processors and the
cost of renting machines is not a dominant factor. Cloud computing, on the other hand, provides
scalable resources. Virtual machines can be rented with an option of renting virtual machines that
have different computing speeds and costs. The users have to pay for the rented machines even if
they are not fully utilized. Therefore, the efficient use of the virtual machine is of a vital importance in
the cloud computing environment. Within this context, effective and efficient scheduling algorithms
are fundamentally very important [4,11,26,27]. This has attracted the attention of many researchers to
study the task scheduling problem in a cloud computing environment.

Most of the work on task allocation and scheduling in a cloud environment is focused on
the minimization of energy consumption, makespan, economic cost of renting virtual machines,

Computers 2017, 6, 15 3 of 21

and providing the desired level of quality of service (QoS) [5,12–15]. Wu et al. [13] proposed a task
scheduling algorithm based on several quality of service (QoS) metrics. The QoS metrics include load
balancing, average latency, and makespan. They calculate priorities of tasks based on a number of
attributes. The tasks having higher priority are scheduled first on the machine which produces the
best completion time. An algorithm to schedule workflow tasks with multi-objective QoS is proposed
in [27]. The QoS parameters include the schedule time, total cost of executing tasks, as well as balancing
the load among resources. A task scheduler based on a genetic algorithm is proposed by Jang et al. [28]
to maximize overall QoS. They used response time and processing cost as a metric to measure QoS.
Scheduling algorithms that attempt to maximize profit while providing a satisfactory level of QoS as
specified by the consumer are proposed by Lee et al. [14].

Razaque et al. [29] proposed an efficient task-scheduling algorithm for workflow allocation
based on the availability of network bandwidth. An algorithm based on a nonlinear programming
model for divisible task scheduling was proposed to assign tasks to each VM. Min-Min and Min-Max
algorithms are proposed in [30]. The Min-Min algorithm calculates the execution times for all tasks on
all available resources, and then it chooses the task with the least completion time and assigns it to
the corresponding executing resource. Two on-line resource allocation algorithms to schedule tasks
with precedence constraints on heterogeneous cloud systems are proposed by Li et al. [31], which
dynamically adjust resource allocation based on the information of the actual task execution.

Tsai et al. [32] proposed a differential evolution algorithm to schedule a set of tasks to
minimize makespan and total cost. They embed the Taguchi method within a differential evolution
algorithm (DEA) framework to exploit better solutions on the micro-space to be potential offspring.
A hyper-heuristic algorithm is proposed by Tsai et al. [33] to schedule tasks on a cloud computing
system to minimize makespan. Their algorithm uses diversity detection and improvement detection
operators to dynamically select the most suitable heuristic from a pool of heuristics to find better
candidate solutions. Other well-known metaheuristics such as Particle Swarm Optimization (PSO),
Cuckoo Search Algorithm (CSA), and Bat algorithm have also been used to schedule tasks on cloud
systems [15,34–36].

There are a number of papers that explicitly deal with the task allocation and scheduling of
real-time tasks in a cloud environment. An algorithm to schedule non-preemptive real-time tasks to
maximize the total utility was proposed by Liu et al. [37]. The proposed algorithm maximizes the total
utility by accepting, scheduling, and aborting real-time services when necessary. Their simulation
results show that the performance of the proposed algorithms is significantly better than the Earliest
Deadline First (EDF) and the traditional utility accrual scheduling algorithms. Kumar et al. [4]
formulated the real-time task allocation problem as a constrained optimization problem to minimize
the economic cost of executing a set of tasks. They proposed a greedy and temporal overlap scheme
to schedule the tasks. They, however, consider that only the execution cost and communication cost
has not been taken into consideration. Kim et al. [38] modeled a real-time service as a real-time
virtual machine request and proposed a number of algorithms to reduce power consumption.
The developmental genetic programming approach has been proposed by Deniziak [39] to schedule
soft real-time applications specified as a set of distributed echo algorithms. Their objective was to
minimize the total costs of the IaaS services, while guaranteeing QoS.

In contrast to the above studies, this paper focuses on the minimization of total processing
and communication costs for a set of tasks with hard deadlines to be executed on virtual machines.
Our mathematical model provides a more realistic scenario for the cloud computing environment.
Furthermore, our proposed adaptive genetic algorithm defines problem specific solution coding and
algorithmic operators as well as a technique for adaptively selecting suitable GA operators from a
pool during the search process. The selection of these operators is based on their performance instead
of a random selection of operators. Such a scheme has not been used previously which is a novel
contribution of this work. Our simulation results show that the proposed adaptive GA outperforms
the classical GA and the greedy algorithm in terms of solution quality.

Computers 2017, 6, 15 4 of 21

3. System Model and Problem Formulation

The problem considered in this paper is the allocation and scheduling of a set of hard real-time
tasks on virtual machines in a cloud computing environment. In this section, we present our task
model, cloud model, and problem formulation as an optimization problem. The notations and their
semantics used throughout this paper are given in Table 1.

Table 1. Notations.

Notation Description

N Total number of tasks
M Total number of virtual machines

VM Set of virtual machine
mk A virtual machine; mk ε VM
T Set of tasks
ti A task in T; ti ε T
di Deadline of task ti

Pre(ti) Immediate predecessor of task ti
aPre(ti) A set of all the predecessors of task ti
Succ(ti) Immediate successors of task ti

Sk Speed of virtual machine mk (in cycle per unit time)
ck Cost of virtual machine per unit of time
wi Workload of task ti (in cycles)

ECik The execution cost of task ti on virtual machine mk.
ETik The execution time of task ti on virtual machine mk.
ESTi Earliest start time of task ti
LSTi Latest start time of task ti
STi Actual start time of task ti
FTi Finish time of task ti
vij Volume of data transmitted from task ti to task tj
bkl Communication cost from virtual machine mk to ml per unit data volume
X An N ×M matrix corresponding to a task allocation
xik An element of X

3.1. Task Model

Assume that we have a set of real-time tasks, T = {t1, t2, . . . tN}. Each task ti ∈ T has a workload
denoted by wi (measured in number of cycles) and a deadline denoted by di. A task may communicate
with other tasks and hence have a precedence relationship. The tasks with a precedence constraint
can be represented by a directed acyclic graph DAG(T,E), where T is the set of tasks and E represents
the set of directed arcs or edges between tasks to represent dependencies. An edge eij ∈ E between
task ti and tj represents that task ti should complete its execution before tj can start. With each edge
eij ∈ E, we assign vij that represents the amount of data transmitted from ti to tj. A typical DAG is
shown in Figure 1.

Computers 2017, 6, x FOR PEER REVIEW 5 of 21

Figure 1. A DAG with 10 tasks.

For our task model, we further define the following.

Definition 1. In a DAG(T,E), 푃푟푒(푡) = 푡 푡 ∈ 푇, 푒 ∈ 퐸 is a set of immediate predecessors of task ti and
푆푢푐푐(푡) = 푡 푡 ∈ 푇, 푒 ∈ 퐸 is a set of tasks that are immediate successors of ti.

Definition 2. If Pre(ti) is the set of predecessors of task ti, then ti cannot start its execution on a virtual machine
unless all of its predecessor tasks have been executed.

Definition 3. A set of tasks aPre(ti) = {푡 , 푡 , 푡 … , 푡 } is the set of all the predecessors of task ti, if
푒 , 푒 … 푒() , 푒 ∈ 퐸	푎푛푑	푃푟푒 푡 = ∅ , that is, there is a direct path from tp and ti and tp does not have

any predecessor.

In Figure 1, we can see that

Succ(t4) = ∅ and Succ(t6) = {t8, t9}.
Pre(t2) = {t0} and Pre(t5) = {t2}.
aPre(t5) = {t0,t2} and aPre(t7) = {t0,t1,t3}.

Definition 4. If wi is the workload of task ti ∈ T and sk is the speed of the virtual machine mk, then the time
required to execute task 푡 on mk, denoted by ETik, is given by

k

i
ik s

ET w
 (1)

Definition 5. If di is the deadline and ETij is the execution time of task ti on the virtual machine mk, respectively,
then the Latest Start Time (LSTi) of task ti is given by

ikii ETdLST (2)

Definition 6. If STik and ETik are the actual start time and execution time of task ti on the virtual machine mk,
respectively, then the Finish Time of task ti (FTi) is given by

ikii ETSTFT (3)

Definition 7. The earliest start time of task ti (ESTi) is given by

)(if 0

max
)(

i

jtPrej
i

tPre

FT
EST i (4)

3.2. Cloud Model

Figure 1. A DAG with 10 tasks.

Computers 2017, 6, 15 5 of 21

For our task model, we further define the following.

Definition 1. In a DAG(T,E), Pre(ti) =
{

tj
∣∣tj ∈ T, eji ∈ E

}
is a set of immediate predecessors of task ti and

Succ(ti) =
{

tj
∣∣tj ∈ T, eij ∈ E

}
is a set of tasks that are immediate successors of ti.

Definition 2. If Pre(ti) is the set of predecessors of task ti, then ti cannot start its execution on a virtual machine
unless all of its predecessor tasks have been executed.

Definition 3. A set of tasks aPre(ti) =
{

tj, tk, tl . . . , tp
}

is the set of all the predecessors of task ti, if{
ejk, ekl . . . e(p−1)p, epi ∈ E and Pre

(
tj
)
= ∅

}
, that is, there is a direct path from tp and ti and tp does not have

any predecessor.

In Figure 1, we can see that

Succ(t4) = ∅ and Succ(t6) = {t8, t9}.
Pre(t2) = {t0} and Pre(t5) = {t2}.
aPre(t5) = {t0,t2} and aPre(t7) = {t0,t1,t3}.

Definition 4. If wi is the workload of task ti ∈ T and sk is the speed of the virtual machine mk, then the time
required to execute task ti on mk, denoted by ETik, is given by

ETik =
wi
sk

(1)

Definition 5. If di is the deadline and ETij is the execution time of task ti on the virtual machine mk, respectively,
then the Latest Start Time (LSTi) of task ti is given by

LSTi = di − ETik (2)

Definition 6. If STik and ETik are the actual start time and execution time of task ti on the virtual machine mk,
respectively, then the Finish Time of task ti (FTi) is given by

FTi = STi + ETik (3)

Definition 7. The earliest start time of task ti (ESTi) is given by

ESTi =

 max
j∈Pre(ti)

{
FTj
}

0 if Pre(ti) = φ
(4)

3.2. Cloud Model

Assume there are M virtual machines. Each virtual machine mk has a computation speed sk
(number of cycles per unit time) and a cost ck. If a cloud provider charges the user on actual usage,
then the cost to execute task ti on the virtual machine mk is given by

ECik = ETik × ck (5)

Computers 2017, 6, 15 6 of 21

However, cloud providers charge the users a cost of Ck for leasing a virtual machine mk for a
minimum of L time units (minutes, hours, etc.) regardless of the actual utilization. For example, if
L = 10 min and Ck = $0.3, then a user will be charged a minimum of $0.3 even if the actual usage of the
virtual machine is less than 10 min. Under this scenario, the execution cost of task ti on mk, if no other
task is schedule on the same virtual machine, is given by

ECik =

⌈
ETik

L

⌉
× Ck (6)

We assume bkl is the data communication cost per unit data volume between the virtual machines
mk and ml. If two virtual machines are on the same physical machine, then the communication cost
is zero.

Definition 8. The communication cost between virtual machines can be given by

B =

 0 · · · b1m
...

. . .
...

bm1 · · · 0

Note that B is a symmetrical matrix, where bkl = blk. The matrix also contains zeros at the diagonal
representing bkk = 0. This implies the fact that the communication cost between tasks assigned to the
same virtual machine is zero.

3.3. Cost Function

The total cost to execute all the tasks consists of two components: total communication cost and
total execution cost. If X denotes an M×N matrix whose entry xik = 1 if task ti is scheduled on virtual
machine mk, and xik = 0 otherwise, then the total communication cost (CC) is given by:

CC(X) =
N

∑
i=1

∑
j∈Pre(ti)

M

∑
k=1

M

∑
l=1

xik × xjl × vij × bkl (7)

Similarly, the execution cost of all the tasks is given by:

EC(X) =
N

∑
i=1

M

∑
k=1

xik × ECik (8)

Total cost, TC(X), is the sum of CC(X) and EC(X), that is

TC(X) = CC(X) + TC(X) (9)

The task scheduling problem can now be defined as a 0–1 decision problem to find X that
minimizes TC(X) under some constraints. That is,

Minimize TC(X) = CC(X) + TC(X)

Subject to:
M

∑
k=1

xik foreachi, 1 ≤ i ≤ N (10)

FTi ≤ di foreachi, 1 ≤ i ≤ N (11)

STi ≥ ESTi foreachi, 1 ≤ i ≤ N (12)

Computers 2017, 6, 15 7 of 21

The first Constraint (10) specifies that each task should be scheduled on exactly one virtual
machine. The second Constraint (11) specifies the real-time constraint and the last Constraint (12)
specifies that a task cannot start before the completion of all of its predecessor tasks.

4. Proposed Algorithms

In this section, we first present an efficient greedy algorithm followed by an adaptive genetic
algorithm (AGA).

4.1. Greedy Algorithm

Greedy algorithms have been extensively studied. These algorithms are best known for their
simple implementation and speed. They may, however, not give the optimal solutions. Nevertheless,
greedy algorithms are simpler to implement as compared to other heuristics.

The pseudo code of our proposed greedy algorithm is given in Algorithm 1. The algorithm first
orders all the tasks based on increasing order of their deadlines (line 1) and initially allocates all the
tasks in increasing order of their deadlines to the lowest cost virtual machine (lines 2–8). Note that if
all the tasks can complete on the lowest cost machine without violating any of the constraints, then
it is the optimal solution since the communication cost (CC) will be zero and the execution cost (CE)
is minimal. However, if the schedule violates any of the constraints, then one or more tasks should
be allocated and scheduled on other virtual machines in such a way that none of the constraints are
violated. Therefore, the proposed algorithm scans the generated schedule to determine the tasks that
do not meet their deadlines (lines 9–11), and relocates and reschedules them on virtual machines that
incur the minimum cost provided that the rescheduled tasks meet their deadlines on the selected VMs
(lines 12–17). The overall complexity of the algorithm is O(n2m).

Algorithm 1 Pseudocode of the greedy algorithm.

1. T = tasks set sorted in increasing order of their deadlines
2. Find a virtual machine mk such that ck is minimum
3. for (i=1;i<N;i++) {
4. ti = ith task in T
5. Allocate ti to mk (xjl = 1)

6. Schedule← schedule + ti

7. Calculate FTi using Equation (3)
8. }
9. for (i=1;i<N;i++) {
10. ti = ith task the Schedule
11. if (FTi > Di) {
12. Find a virtual machine mk such that
13. ECik + ∑j∈Pre (ti) ∑M

l=1 xjl .vij.bkl + ∑j∈Succ (ti) ∑M
l=1 xjl .vij.bkl is minimum and FTi ≤ Di

14. Allocate ti to mk (xik = 1)
15. Calculate FTi using Equation (3)
16. }
17. }

4.2. Proposed Adaptive Genetic Algorithm

The genetic algorithm (GA) is one of the most well-known evolutionary algorithms that is
based on the concept of natural evolution [40]. The algorithm operates in an iterative manner and
maintains a set of solutions, known as populations, in each iteration. Each solution in the population
is referred to as a chromosome. A number of these chromosomes are selected in each iteration through

Computers 2017, 6, 15 8 of 21

a selection process and are subjected to crossover and mutation operators. The purpose of these two
operators is to perturb the existing solutions and generate new solutions, where the new solutions
inherit characteristics from the chromosomes in the previous iteration, in addition to introducing new
characteristics in the new solutions (called offspring). At the end of the execution of the algorithm,
the resulting set of solutions is reported as the best solutions found by the algorithm. In order to
effectively make use of the advantage of searching global spaces to find good solutions to our problem,
GA operators such as the crossover and mutation have to be altered accordingly, such that it would be
applicable to the problem. In addition, the generation of the initial population consisting of feasible
solutions has a large impact on its overall performance. The pseudo-code of the non-adaptive genetic
algorithm for the task allocation problem is given in Algorithm 2.

In the non-adaptive genetic algorithm, only a single type of crossover and mutation (discussed
later in this section) are performed. Since our solution encoding scheme enables us to define different
types of crossover and mutation operators, we propose an adaptive genetic algorithm (AGA) that
follows a strategy for the automatic selection of suitable crossover and mutation operators during the
execution of a GA. The proposed operator selection strategy helps keep a balance between exploration
and exploitation in the search process, resulting in better quality solutions. The pseudo-code of the
proposed adaptive GA is given in Algorithm 3. The following subsections first describe the solution
encoding and an algorithm to generate the initial population, and then presents a variety of selection,
crossover, mutation, and replacement operators. We then present our proposed method for the
selection of crossover and mutation operators from a pool of different types of crossover and mutation
operators based on their fitness values.

Algorithm 2 Pseudocode of non-adaptive genetic algorithm.

1. Generate initial population using algorithm given in Algorithm 4
2. Evaluate the fitness of the initial population
3. while (not termination condition) {
4. Select_parents
5. Perform Crossover
6. Perform mutation
7. //Perform feasibility test
8. for each child
9. for (i=1;i<=N;i++)
10. if (FTi > Di) {
11. drop child from the population
12. break
13. }
14. Evaluate the fitness of feasible children
15. Replace the current population for the next generation
16. }

Computers 2017, 6, 15 9 of 21

Algorithm 3 GA with adaptive selection of crossover and mutation.

1. Generate initial population using algorithm given in Algorithm 4
2. Evaluate the fitness of the initial population
3. Assign initial fitness values to crossover and mutation operators
4. Calculate operators’ probabilities using Equation (13)
5. ub=number of unique fitness values
6. no_iter=0
7. cType=select_crossover_type //crossover type to be performed
8. mType=select_mutation_type //mutation type to be performed
9. while (not termination condition) {
10. Select_parents
11. Perform cTpe Crossover
12. Ua=no of children with unique fitness values
13. Fc[i]=ua/fb
14. Perform mType mutation
15. //Perform feasibility test
16. for each child
17. for (i=1;i<=N;i++)
18. if (FTi > Di) {
19. drop child from the population
20. break
21. }
22. Evaluate the fitness of feasible children
23. Find fb and fw
24. fm=fb/fw
25. if (no_iter = min_itr) {
26. Determine fitness of crossover and mutation using exponential moving average of FCOv and FMUv
27. Update probabilities of crossover types and mutation types
28. cType=select_crossover_type
29. mType=select_mutation_type No_iter=1
30. }
31. Replace the current population for the next generation
32. }

4.2.1. Solution Encoding and Generation of Initial Population

In the genetic algorithm, a schedule (solution) is represented by a chromosome. For a task
scheduling problem, a chromosome can be viewed as a two dimensional array of length N, where N is
the number of tasks. The first row of a chromosome is an ordered list of tasks (from left to right) and
the second row represents the corresponding virtual machine number on which a task is assigned for
execution, as shown in Figure 2. The latest start time, completion time, and earliest start time for each
task in the schedule can be calculated using Equations (1), (3), and (4), respectively.

Computers 2017, 6, 15 9 of 20

and the second row represents the corresponding virtual machine number on which a task is assigned

for execution, as shown in Figure 2. The latest start time, completion time, and earliest start time for

each task in the schedule can be calculated using Equations (1), (3), and (4), respectively.

Figure 2. A schedule representation as a chromosome.

Task T0 T1 T2 T3 T4

VM 0 3 2 0 1

In order to ensure that a schedule satisfies the precedence constraint, we scheduled the tasks by

their topological order [41]. We use the algorithm given in Algorithm 4 to generate the initial

population. The algorithm not only schedules the tasks by their topological order but also marks

segment boundaries (tasks within a segment boundary can be executed in any order without violated

precedence constraint, and therefore they can be rearranged in any sequence). These segment

boundaries are required for our specialized crossover and mutation operators. Figure 3 shows three

chromosomes generated by the algorithm for the given DAG.

Algorithm 4 The initial solution’s generation algorithm.

1. p = 0
2. while (p<popsize) {
3. s = 0
4. pos = 0
5. T = Taskset
6. while (𝑇 ≠ ∅) {
7. s++ // Segment number
8. count = 0 // Number of tasks in segment
9. 𝐿 = Ø
10. for each 𝑡𝑖 ∈ 𝑇
11. if (𝑎𝑃𝑟𝑒(𝑡𝑖) = Ø) {
12. 𝐿 = 𝐿 ∪ {𝑡𝑖}
13. count++
14. }
15. if (p=0) {
16. boundry[l].start = pos //Segment start and end positions
17. boundry[l].end = pos + (count -1)
18. }
19. while(𝐿 ≠ Ø) {
20. t = random(W) //Select a task randomly
21. chromosome[0][pos] = t
22. chromosome[1][pos] = random(1 … m) //Allocate task to a

VM
23. 𝑇 = 𝑇 – {𝑡}
24. 𝐿 = 𝐿 – {𝑡}
25. 𝑎𝑃𝑟𝑒(𝑗) = 𝑎𝑃𝑟𝑒(𝑗) − {𝑡} 𝑓𝑜𝑟 ∀𝑗 𝑎𝑃𝑟𝑒(𝑗) ≠ Ø 𝑎𝑛𝑑 𝑡 ∈ 𝑎𝑃𝑟𝑒(𝑗)
26. pos++
27. }
28. }
29. if (feasible(chromosome)) {
30. Add chromosome to population
31. p++
32. }
33. }

Figure 2. A schedule representation as a chromosome.

Computers 2017, 6, 15 10 of 21

In order to ensure that a schedule satisfies the precedence constraint, we scheduled the tasks by
their topological order [41]. We use the algorithm given in Algorithm 4 to generate the initial population.
The algorithm not only schedules the tasks by their topological order but also marks segment boundaries
(tasks within a segment boundary can be executed in any order without violated precedence constraint,
and therefore they can be rearranged in any sequence). These segment boundaries are required for our
specialized crossover and mutation operators. Figure 3 shows three chromosomes generated by the
algorithm for the given DAG.

Algorithm 4 The initial solution’s generation algorithm.

1. p = 0
2. while (p<popsize) {
3. s = 0
4. pos = 0
5. T = Taskset
6. while (T 6= ∅) {
7. s++ // Segment number
8. count = 0 // Number of tasks in segment
9. L = Ø
10. for each ti ∈ T
11. if (aPre(ti) = Ø) {
12. L = L ∪ {ti}
13. count++
14. }
15. if (p=0) {
16. boundry[l].start = pos //Segment start and end positions
17. boundry[l].end = pos + (count -1)
18. }
19. while(L 6= Ø) {
20. t = random(W) //Select a task randomly
21. chromosome[0][pos] = t
22. chromosome[1][pos] = random(1 . . . m) //Allocate task to a VM
23. T = T – {t}
24. L = L – {t}
25. aPre(j) = aPre(j) − {t} f or ∀j aPre(j) 6= Ø and t ∈ aPre(j)
26. pos++
27. }
28. }
29. if (feasible(chromosome)) {
30. Add chromosome to population
31. p++
32. }
33. }

Computers 2017, 6, 15 11 of 21

Computers 2017, 6, 15 10 of 20

Figure 3. An initial population generated using the initial population generation algorithm.

4.2.2. Crossover Operator

In order to produce offspring, two parents are selected from the population in order to mate.

The selection methods used in our work are random selection and roulette-wheel selection. For the

random selection method, we randomly select two parents from the current population, whereas in

the roulette-wheel method, a chromosome with a higher fitness value has higher chances of being

selected for mating. The selected parents are then subjected to the crossover operator. We propose

two crossover operators as explained below.

Type 1 Crossover: This crossover operator swaps corresponding randomly selected segments of

two chromosomes. This ensures that the topological order in both children is preserved. Figure 4

illustrates how this crossover is performed on the second segment of the chromosomes.

Figure 4. Type 1 crossover performed on the second segment.

Type 2 Crossover: In type 2 crossover, we only swap the second row of the randomly selected

segments, thereby changing only the VMs on which the tasks are scheduled without disturbing the

schedule, as shown in Figure 5.

Figure 3. An initial population generated using the initial population generation algorithm.

4.2.2. Crossover Operator

In order to produce offspring, two parents are selected from the population in order to mate.
The selection methods used in our work are random selection and roulette-wheel selection. For the
random selection method, we randomly select two parents from the current population, whereas in
the roulette-wheel method, a chromosome with a higher fitness value has higher chances of being
selected for mating. The selected parents are then subjected to the crossover operator. We propose two
crossover operators as explained below.

Type 1 Crossover: This crossover operator swaps corresponding randomly selected segments of
two chromosomes. This ensures that the topological order in both children is preserved. Figure 4
illustrates how this crossover is performed on the second segment of the chromosomes.

Computers 2017, 6, 15 10 of 20

Figure 3. An initial population generated using the initial population generation algorithm.

4.2.2. Crossover Operator

In order to produce offspring, two parents are selected from the population in order to mate.

The selection methods used in our work are random selection and roulette-wheel selection. For the

random selection method, we randomly select two parents from the current population, whereas in

the roulette-wheel method, a chromosome with a higher fitness value has higher chances of being

selected for mating. The selected parents are then subjected to the crossover operator. We propose

two crossover operators as explained below.

Type 1 Crossover: This crossover operator swaps corresponding randomly selected segments of

two chromosomes. This ensures that the topological order in both children is preserved. Figure 4

illustrates how this crossover is performed on the second segment of the chromosomes.

Figure 4. Type 1 crossover performed on the second segment.

Type 2 Crossover: In type 2 crossover, we only swap the second row of the randomly selected

segments, thereby changing only the VMs on which the tasks are scheduled without disturbing the

schedule, as shown in Figure 5.

Figure 4. Type 1 crossover performed on the second segment.

Type 2 Crossover: In type 2 crossover, we only swap the second row of the randomly selected
segments, thereby changing only the VMs on which the tasks are scheduled without disturbing the
schedule, as shown in Figure 5.

Computers 2017, 6, 15 12 of 21

Computers 2017, 6, 15 11 of 20

Figure5. Type 2 crossover performed on the second segment.

4.2.3. Mutation Operator

The mutation operator randomly selects a gene in a chromosome and changes it with a given

probability. We propose three different types of mutations as explained below:

Type 1 Mutation: A gene in a chromosome is selected with a probability pm and the corresponding

virtual machine number is changed to another randomly selected virtual machine.

Type 2 Mutation: In this mutation type, two genes which lie in the same segment are selected and

swapped. The segment is selected randomly with a probability pm.

Type 3 Mutation: In this mutation, two randomly selected tasks within the same segment are

swapped. The segment is selected randomly with a probability pm.

Figure 6 illustrates the operation of different types of mutation operators.

Figure 6. Three types of mutation.

4.2.4. Replacement

A population replacement method is used to determine which solutions should be moved to the

next generation. We used two techniques as discussed below.

Elitist Selection: The chromosomes with the highest fitness values are selected for the next generation.

Replacement of parents with children: In this replacement method, feasible children replace their parent

chromosomes. If a child is infeasible, then the parent with the highest fitness value moves to the next

generation.

4.2.5. Adaptive Selection of Crossover and Mutation

The variety of crossover and mutation operators presented in Sections 4.2.3 and 4.2.4 have to be

utilized based on the performance or fitness of the operators in the previous iterations. This can be

achieved by using a roulette wheel selection technique by assigning each crossover and mutation

type a probability proportional to its fitness (both crossover and mutations use a separate roulette

wheel). That is, the probability of an operator being selected can be defined as

Figure 5. Type 2 crossover performed on the second segment.

4.2.3. Mutation Operator

The mutation operator randomly selects a gene in a chromosome and changes it with a given
probability. We propose three different types of mutations as explained below:

Type 1 Mutation: A gene in a chromosome is selected with a probability pm and the corresponding
virtual machine number is changed to another randomly selected virtual machine.

Type 2 Mutation: In this mutation type, two genes which lie in the same segment are selected and
swapped. The segment is selected randomly with a probability pm.

Type 3 Mutation: In this mutation, two randomly selected tasks within the same segment are
swapped. The segment is selected randomly with a probability pm.

Figure 6 illustrates the operation of different types of mutation operators.

Computers 2017, 6, 15 11 of 20

Figure5. Type 2 crossover performed on the second segment.

4.2.3. Mutation Operator

The mutation operator randomly selects a gene in a chromosome and changes it with a given

probability. We propose three different types of mutations as explained below:

Type 1 Mutation: A gene in a chromosome is selected with a probability pm and the corresponding

virtual machine number is changed to another randomly selected virtual machine.

Type 2 Mutation: In this mutation type, two genes which lie in the same segment are selected and

swapped. The segment is selected randomly with a probability pm.

Type 3 Mutation: In this mutation, two randomly selected tasks within the same segment are

swapped. The segment is selected randomly with a probability pm.

Figure 6 illustrates the operation of different types of mutation operators.

Figure 6. Three types of mutation.

4.2.4. Replacement

A population replacement method is used to determine which solutions should be moved to the

next generation. We used two techniques as discussed below.

Elitist Selection: The chromosomes with the highest fitness values are selected for the next generation.

Replacement of parents with children: In this replacement method, feasible children replace their parent

chromosomes. If a child is infeasible, then the parent with the highest fitness value moves to the next

generation.

4.2.5. Adaptive Selection of Crossover and Mutation

The variety of crossover and mutation operators presented in Sections 4.2.3 and 4.2.4 have to be

utilized based on the performance or fitness of the operators in the previous iterations. This can be

achieved by using a roulette wheel selection technique by assigning each crossover and mutation

type a probability proportional to its fitness (both crossover and mutations use a separate roulette

wheel). That is, the probability of an operator being selected can be defined as

Figure 6. Three types of mutation.

4.2.4. Replacement

A population replacement method is used to determine which solutions should be moved to the
next generation. We used two techniques as discussed below.

Elitist Selection: The chromosomes with the highest fitness values are selected for the next generation.
Replacement of parents with children: In this replacement method, feasible children replace their parent
chromosomes. If a child is infeasible, then the parent with the highest fitness value moves to the
next generation.

4.2.5. Adaptive Selection of Crossover and Mutation

The variety of crossover and mutation operators presented in Sections 4.2.3 and 4.2.4 have to be
utilized based on the performance or fitness of the operators in the previous iterations. This can be
achieved by using a roulette wheel selection technique by assigning each crossover and mutation type
a probability proportional to its fitness (both crossover and mutations use a separate roulette wheel).
That is, the probability of an operator being selected can be defined as

pi =
Fi

O
∑

j=1
Fj

(13)

Computers 2017, 6, 15 13 of 21

where pi is the probability of operator i being selected, Fi is the fitness of operator i, and O is the total
number of operators.

We define the population diversity and local search ability to calculate the fitness of crossover
and mutation types, respectively. Population diversity is used to determine the fitness of each type of
crossover since it is a crucial factor in avoiding premature convergence. At each iteration, the fitness of
a crossover type i is calculated by dividing the number of unique fitness values after the crossover (ua)
by the number of unique fitness values before the crossover is performed (ub). That is, the finesses of a
crossover operator i are given by

Fi =
ua

ub
(14)

A selected crossover type is applied for a given number of iterations (min-itr) before making a new
selection using the roulette wheel. The fitness of an operator after min-itr is taken as an exponential
moving average that gives more weight to the recent performance of the operator to avoid any abrupt
changes to any operator’s fitness.

On the other hand, the fitness of a mutation type i is measured based on its local search ability.
This is determined by dividing the number of chromosomes produced by the mutation operator with
a better fitness value (fb) by the number of chromosomes produced by the mutation operator with a
lower fitness value (fw). That is

Fi =
fb
fw

(15)

Similar to crossover, the fitness of a mutation type is the exponential moving average during its
recent application in min-itr consecutive iterations.

5. Simulation Results and Discussion

We evaluated the performance of the proposed algorithms, i.e., greedy search algorithm,
non-adaptive GA, and AGA. The algorithms were implemented in C++ and run on PCs with an
Intel i7 processor and 8 GB RAM running on the Microsoft Windows 10 platform. This section provides
details of the experimental setup and the set of experiments performed to evaluate the performance
of the greedy algorithm and the non-adaptive GA and AGA in terms of their solution quality and
run time.

5.1. Experimental Setup

The test data was generated randomly similar to other studies. The basic inputs to the algorithms
are DAGs of varying sizes, workload and deadlines of tasks, amount of data transferred between tasks,
unit data communication cost, speed of virtual machines, and cost of virtual machines.

The DAGs were generated using the TGFF utility [42]. The number of tasks were varied from 10 to
300 per task graph. The workloads for the tasks were generated within the range of [10, 4500] similar to
the ones used in [4]. The execution time for a task on different machines was calculated by dividing the
work load by the speed of the virtual machine. We used the technique proposed by Balbastre et al. [43]
to assign the deadlines to each task in the task graph. The amount of data transmitted between
dependent tasks was generated randomly in the range of [50, 1500]. The maximum number of virtual
machines was taken as 50. The processing speed and cost of the virtual machine were assigned
randomly from a set of typical values taken from [4,32,33]. The communication cost per unit data
between two virtual machines was generated randomly in the range [1, 5].

The results were generated for the greedy and the genetic algorithms. The greedy algorithm was
executed once for each input combination of virtual machines and task graphs. For genetic algorithms,
the same initial population was used for all experiments for each test case, and 30 independent runs
were executed following the standard practice for statistically analyzing the performance of iterative
heuristics. The results for GA and AGA were statistically validated using the Wilcoxon-ranked-sum
test at a 95% confidence level.

Computers 2017, 6, 15 14 of 21

5.2. Results for Genetic Algorithm

A total of seven parameters were used for the analysis of the non-adaptive genetic algorithm in
order to find the best possible parameter combinations. These parameters are the replacement methods,
population size, parent selection type, crossover rate, crossover type, mutation rate, and the mutation
type. Table 2 shows different parameter values used in the simulations. Different combinations of these
parameter values resulted in 432 combinations. With these 432 combinations, extensive effort was
made on DAGs of 10 and 20 tasks to find the best parameter setup. Consequently, four combinations
as shown in Table 3 were found to generate the best quality results which were used for subsequent
testing with other DAGs.

Table 2. Parameter settings for GA.

Parameter Parameter Setting

Replacement method 1: Children replacing parents
2: Elitist method

Population size 20, 30, and 40

Parents selection method 1: Random
2: Roulette-wheel

Crossover rate 0.7, 0.8, and 0.9

Crossover type 1 and 2 (see Section 4.2.3)

Mutation rate 0.05 and 0.1

Mutation type 1, 2 and 3 (see Section 4.2.4)

Table 3. Selected parameter combinations for GA. Combo = Combination, RA = replacement approach,
Pop. = population size, C type = crossover type, C rate = crossover rate, M type = mutation type,
and M rate = mutation rate.

Combo RA Pop. Selection C Type C Rate M Type M Rate

1 Elitist 40 Random 1 0.9 2 0.1
2 Elitist 40 Random 2 0.8 3 0.1
3 Elitist 40 Roulette-wheel 1 0.9 2 0.05
4 Elitist 40 Roulette-wheel 2 0.9 3 0.1

Table 4 provides the results for the four combinations for each test case. It is observed from these
tables that for the majority of test cases, Combination 4 produced the best results. More specifically,
Combination 4 generated the minimum cost for 20, 30, 80, 100, and 200 tasks. Combination 2 produced
the best results for four test cases, which were 60, 150, 250, and 300. The other two combinations
produced the best results for only one test case each, making them the worst performers. Therefore,
based on the results, it can be fairly claimed that Combination 4 was much better than combinations
1 and 2, while showing relatively better performance than Combination 3 as far as the quality of results
is concerned.

With regards to the execution time, a clear trend is observed in Figure 7, favoring combination 1.
While all four combinations require more or less the same execution times with smaller DAGs of 10
to 30 tasks, the difference in runtime becomes more prominent for test cases with a higher number
of tasks. Therefore, while Combination 1 lags behind other combinations in terms of the quality of
solutions, it outperformed the other three combinations with regards to the execution time.

Computers 2017, 6, 15 15 of 21

Table 4. Average cost for the four combinations. The best results are highlighted in bold.

No. of Tasks Combination 1
Average Cost

Combination 2
Average Cost

Combination 3
Average Cost

Combination 4
Average Cost

10 152.92 ± 2.98 176.44 ± 3.42 191.07 ± 3.26 156.69 ± 3.03
20 327.74 ± 4.35 336.57 ± 4.69 346.27 ± 4.83 324.96 ± 4.32
30 403.36 ± 4.92 399.81 ± 5.01 431.04 ± 5.03 381.43 ± 5.14
40 753.56 ± 6.25 756.76 ± 6.13 734.59 ± 5.96 746.92 ± 5.89
60 1114.66 ± 7.23 1088.56 ± 7.17 1123.06 ± 6.93 1090.37 ± 7.07
80 1393.10 ± 9.12 1401.43 ± 9.08 1445.16 ± 8.83 1387.88 ± 9.13

100 1776.54 ± 11.72 1672.05 ± 10.84 1691.36 ± 10.21 1663.99 ± 11.36
150 2356.24 ± 10.23 2312.95 ± 9.92 2402.09 ± 10.73 2387.36 ± 11.15
200 2659.68 ± 11.69 2728.16 ± 12.32 2749.42 ± 12.11 2626.52 ± 11.89
250 3582.56 ± 13.71 3533.26 ± 12.53 3613.21 ± 12.66 3552.67 ± 14.83
300 4098.61 ± 13.63 3947.81 ± 14.56 4105.31 ± 13.95 4052.33 ± 14.36

Computers 2017, 6, x FOR PEER REVIEW 14 of 20

of tasks. Therefore, while Combination 1 lags behind other combinations in terms of the quality of
solutions, it outperformed the other three combinations with regards to the execution time.

Table 4. Average cost for the four combinations. The best results are highlighted in bold.

No. of Tasks Combination 1
Average Cost

Combination 2
Average Cost

Combination 3
Average Cost

Combination 4
Average Cost

10 152.92 ± 2.98 176.44 ± 3.42 191.07 ± 3.26 156.69 ± 3.03
20 327.74 ± 4.35 336.57 ± 4.69 346.27 ± 4.83 324.96 ± 4.32
30 403.36 ± 4.92 399.81 ± 5.01 431.04 ± 5.03 381.43 ± 5.14
40 753.56 ± 6.25 756.76 ± 6.13 734.59 ± 5.96 746.92 ± 5.89
60 1114.66 ± 7.23 1088.56 ± 7.17 1123.06 ± 6.93 1090.37 ± 7.07
80 1393.10 ± 9.12 1401.43 ± 9.08 1445.16 ± 8.83 1387.88 ± 9.13
100 1776.54 ± 11.72 1672.05 ± 10.84 1691.36 ± 10.21 1663.99 ± 11.36
150 2356.24 ± 10.23 2312.95 ± 9.92 2402.09 ± 10.73 2387.36 ± 11.15
200 2659.68 ± 11.69 2728.16 ± 12.32 2749.42 ± 12.11 2626.52 ± 11.89
250 3582.56 ± 13.71 3533.26 ± 12.53 3613.21 ± 12.66 3552.67 ± 14.83
300 4098.61 ± 13.63 3947.81 ± 14.56 4105.31 ± 13.95 4052.33 ± 14.36

Figure 7. Comparison of execution times for the four combinations.

5.3. Comparison of GA, Adaptive GA, and Greedy Algorithms

This section provides a comparative analysis of the greedy algorithm, GA, and AGA. For AGA,
the pool of crossover and mutation operators was used as given in Table 5. Note that the pool contains
the four best combinations as given in Table 3 as well as some other combinations that gave results
comparable to the best four combinations. Initial fitness values for each crossover and mutation type
were calculated using Equations (14) and (15), respectively, after applying each operator individually
to the same initial population for a single run. The parameter min-itr was set to five iterations after
experimenting with a number of other values.

Table 5. Pool of crossover and mutation operators used in AGA.

Crossover Pool Mutation Pool
Type Rate Type Rate

1 0.9 1 0.05
1 0.8 2 0.05
1 0.7 2 0.1
2 0.9 3 0.05
2 0.8 3 0.1

0
100
200
300
400
500
600
700
800
900

10 20 30 40 60 80 100 150 200 250 300

Ru
n

tim
e

(s
ec

)

Number of tasks

Combination 1
Combination 2
Combination 3
Combination 4

Figure 7. Comparison of execution times for the four combinations.

5.3. Comparison of GA, Adaptive GA, and Greedy Algorithms

This section provides a comparative analysis of the greedy algorithm, GA, and AGA. For AGA,
the pool of crossover and mutation operators was used as given in Table 5. Note that the pool contains
the four best combinations as given in Table 3 as well as some other combinations that gave results
comparable to the best four combinations. Initial fitness values for each crossover and mutation type
were calculated using Equations (14) and (15), respectively, after applying each operator individually
to the same initial population for a single run. The parameter min-itr was set to five iterations after
experimenting with a number of other values.

Table 5. Pool of crossover and mutation operators used in AGA.

Crossover Pool Mutation Pool

Type Rate Type Rate

1 0.9 1 0.05
1 0.8 2 0.05
1 0.7 2 0.1
2 0.9 3 0.05
2 0.8 3 0.1

Computers 2017, 6, 15 16 of 21

Table 6 provides the cost obtained by each algorithm. For GA and AGA, the average cost (averaged
over 30 runs) is reported. The results indicate that the greedy algorithm produced solutions of inferior
quality as compared to GA and AGA, as expected. With respect to the mutual comparison of GA
and AGA, the results indicate that AGA outperformed GA in all test cases. These observations are
elaborated through Figure 8 which clearly indicates that AGA produced solutions with the lowest
cost for all the test cases. Table 7 reflects the percentage improvement achieved by AGA with respect
to the other three algorithms. The results indicate that the improvements achieved by an AGA with
respect to the greedy algorithm were significantly high, in the range of 12% to over 35%. As far
as a GA and AGA are concerned, the percentage improvements by an AGA were in the range of
over 1.79% to 8.43%. These improvements were subjected to statistical testing. The results of this
statistical testing indicated that a huge majority of improvements achieved by an AGA were statistically
significant. Two exceptions were test cases with 20 and 40 tasks where the improvements were not
statistically significant.

Table 6. Cost comparison of Greedy, GA, and AGA algorithms.

No. of Tasks Greedy GA AGA

10 198.23 152.92 146.65
20 358.59 324.96 319.26
30 417.11 381.43 362.47
40 898.79 734.59 718.44
60 1232.35 1088.56 1046.31
80 1524.85 1387.88 1332.21
100 1896.32 1663.99 1551.68
150 2621.58 2312.95 2171.58
200 2889.73 2626.52 2438.52
250 4117.54 3533.26 3258.65
300 4426.36 4052.33 3813.08

Computers 2017, 6, x FOR PEER REVIEW 16 of 21

10 198.23 152.92 146.65

20 358.59 324.96 319.26

30 417.11 381.43 362.47

40 898.79 734.59 718.44

60 1232.35 1088.56 1046.31

80 1524.85 1387.88 1332.21

100 1896.32 1663.99 1551.68

150 2621.58 2312.95 2171.58

200 2889.73 2626.52 2438.52

250 4117.54 3533.26 3258.65

300 4426.36 4052.33 3813.08

Figure 8. Comparison of cost for Greedy, GA, and AGA.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 60 80 100 150 200 250 300

C
o

st
 (T

C
(x

))

Number of Tasks

Greedy Non-adaptive GA Adaptive GA

Figure 8. Comparison of cost for Greedy, GA, and AGA.

Computers 2017, 6, 15 17 of 21

Table 7. Percentage improvement obtained by Adaptive GA with respect to Greedy, and GA.

Tasks Adaptive GA vs. Greedy Adaptive GA vs. GA

10 35.17 4.28
20 12.32 1.79
30 15.07 5.23
40 25.10 2.25
60 17.78 4.04
80 14.46 4.18
100 22.21 7.24
150 20.72 6.51
200 18.50 7.71
250 26.36 8.43
300 16.08 6.27

Figure 9 illustrates the run time comparison of GA and AGA. It is observed in the figure that
AGA takes more time as compared to GA for all test cases. This increase in time is due to the selection
of the crossover and mutation operators from the pool and updating their fitness values.

Computers 2017, 6, x FOR PEER REVIEW 16 of 20

Table 7. Percentage improvement obtained by Adaptive GA with respect to Greedy, and GA.

Tasks Adaptive GA vs. Greedy Adaptive GA vs. GA
10 35.17 4.28
20 12.32 1.79
30 15.07 5.23
40 25.10 2.25
60 17.78 4.04
80 14.46 4.18
100 22.21 7.24
150 20.72 6.51
200 18.50 7.71
250 26.36 8.43
300 16.08 6.27

Figure 9 illustrates the run time comparison of GA and AGA. It is observed in the figure that
AGA takes more time as compared to GA for all test cases. This increase in time is due to the selection
of the crossover and mutation operators from the pool and updating their fitness values.

Figure 9. Run time comparison of GA and AGA.

Another measure used to assess the effectiveness of the approach used in AGA was population
diversity. Diversity is a measure used to calculate the average distance of each chromosome from the
mean value. Diversity is calculated in every iteration during the execution of the algorithm [44]. The
effect of the four different GA combinations as well as that of AGA on the population diversity was
investigated. The purpose was to observe whether AGA was capable of reducing the possibility of
premature convergence and preventing the algorithm from getting stuck in local minima. As an
example, Figure 10 shows the diversity plots for one typical run for the four GA combinations as well
as adaptive GA, while using the DAG of 60 tasks, and while running each algorithm for 500 iterations.
The figure indicates that an AGA maintained sufficient diversity until the end of execution, while a
GA with four combinations was unable to maintain diversity for longer durations. More specifically,
for combinations 1 and 3, the diversity almost became zero before 330 iterations. Combinations 2 and
4 were better than the other two combinations in the sense that the diversity was maintained until
around 400 iterations. However, for an AGA, the population had non-zero diversity even at the end
of execution as is evident from Figure 10e. Therefore, it can be confidently claimed that an AGA was
better than the other four combinations in terms of maintaining population diversity and
consequently giving solutions of better quality.

0
100
200
300
400
500
600
700
800
900

1 0 2 0 3 0 4 0 6 0 8 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

RU
N

TI
M

E
(S

EC
)

NUMBER OF TASKS

GA

AGA

Figure 9. Run time comparison of GA and AGA.

Another measure used to assess the effectiveness of the approach used in AGA was population
diversity. Diversity is a measure used to calculate the average distance of each chromosome from the mean
value. Diversity is calculated in every iteration during the execution of the algorithm [44]. The effect of the
four different GA combinations as well as that of AGA on the population diversity was investigated.
The purpose was to observe whether AGA was capable of reducing the possibility of premature
convergence and preventing the algorithm from getting stuck in local minima. As an example,
Figure 10 shows the diversity plots for one typical run for the four GA combinations as well as
adaptive GA, while using the DAG of 60 tasks, and while running each algorithm for 500 iterations.
The figure indicates that an AGA maintained sufficient diversity until the end of execution, while a GA
with four combinations was unable to maintain diversity for longer durations. More specifically, for
combinations 1 and 3, the diversity almost became zero before 330 iterations. Combinations 2 and 4
were better than the other two combinations in the sense that the diversity was maintained until
around 400 iterations. However, for an AGA, the population had non-zero diversity even at the end
of execution as is evident from Figure 10e. Therefore, it can be confidently claimed that an AGA was
better than the other four combinations in terms of maintaining population diversity and consequently
giving solutions of better quality.

Computers 2017, 6, 15 18 of 21

Computers 2017, 6, x FOR PEER REVIEW 17 of 20

(a) (b)

(c) (d)

(e)

Figure 10. Diversity plots for the typical runs for 60 tasks using (a) Combination 1; (b) Combination
2; (c) Combination 3; (d) Combination 4; and (e) AGA.

6. Conclusions

Infrastructure-as-a-Service cloud computing model is an attractive choice for economically
executing real-time tasks on a set of leased virtual machines. Task allocation and scheduling on virtual
machines is a well-known NP-hard problem. This paper presented an efficient greedy algorithm and a
genetic algorithm with adaptive selection of crossover and mutation from a pool of crossover and
mutation types. The selection of crossover and mutation is based on the previous performance of the
operators. The adaptive GA uses population diversity to determine the fitness of each type of crossover
while the fitness of mutation is determined in terms of its ability to find a better quality solution (i.e.,
intensification). The basic idea is to leverage the strength of different types of crossovers and mutations
during the course of GA iterations. The simulation results show that AGA with the adaptive selection
of crossover and mutation outperforms the non-adaptive version of GA and the greedy algorithm in
terms of solution quality. As a future work, we will test the performance of the algorithms with larger

0
5

10
15
20

1 45 88 13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

Di
ve

rs
ity

Iterations

Diversity plot for 60 tasks, Combination
1

0

5

10
15

20

1 45 88 13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

Di
ve

rs
ity

Iterations

Diversity plot for 60 tasks, Combination 2

0

5

10

15

20

1 45 88 13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

Di
ve

rs
ity

Iterations

Diversity plot for 60 tasks, Combination 3

0

5

10

15

20

1 41 81 12
1

16
0

20
0

23
9

27
9

31
9

35
8

39
8

43
8

47
7

Di
ve

rs
ity

Iterations

Diversity plot for 60 tasks, Combination 4

0

5

10

15

20

1 38 74 11
1

14
7

18
3

22
0

25
6

29
2

32
9

36
5

40
1

43
8

47
4

Di
ve

rs
ity

Iterations

Diversity plot for 60 tasks, Adaptive GA

Figure 10. Diversity plots for the typical runs for 60 tasks using (a) Combination 1; (b) Combination 2;
(c) Combination 3; (d) Combination 4; and (e) AGA.

6. Conclusions

Infrastructure-as-a-Service cloud computing model is an attractive choice for economically
executing real-time tasks on a set of leased virtual machines. Task allocation and scheduling on virtual
machines is a well-known NP-hard problem. This paper presented an efficient greedy algorithm and
a genetic algorithm with adaptive selection of crossover and mutation from a pool of crossover and
mutation types. The selection of crossover and mutation is based on the previous performance of
the operators. The adaptive GA uses population diversity to determine the fitness of each type of
crossover while the fitness of mutation is determined in terms of its ability to find a better quality
solution (i.e., intensification). The basic idea is to leverage the strength of different types of crossovers
and mutations during the course of GA iterations. The simulation results show that AGA with the

Computers 2017, 6, 15 19 of 21

adaptive selection of crossover and mutation outperforms the non-adaptive version of GA and the
greedy algorithm in terms of solution quality. As a future work, we will test the performance of the
algorithms with larger task graphs and by increasing the size of the pool of crossover and mutation
operators. Developing hyperheuristics for this problem can also be another promising direction.

Author Contributions: Amjad Mahmood worked on the theoretical development of the proposed AGA and
the greedy algorithm and contributed to writing the relevant portions of the manuscript. Salman A. Khan
and Rashid A. Bahlool performed the experiments, analyzed the results and contributed in writing the relevant
portions of the manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luo, J.Z.; Jin, J.H.; Song, A.B.; Dong, F. Cloud Computing: Architecture and Key Technologies. J. Commun.
2011, 32, 3–21.

2. Abdullahi, M.; Ngadi, M. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of
Tasks on Cloud Computing Environment. PLoS ONE 2016, 11, 6–26.

3. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.; Katz, R.; Konwinski, A.; Zaharia, M. A view of cloud
computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

4. Kumar, K.; Feng, J.; Nimmagadda, Y.; Lu, Y.H. Resource allocation for real-time tasks using cloud computing.
In Proceedings of the IEEE 20th International Conference on Computer Communications and Networks
(ICCCN), Maui, HI, USA, 31 July–4 August 2011; pp. 1–7.

5. Awad, A.I.; El-Hefnawy, N.A.; Abdelkader, H.M. Enhanced Particle Swarm Optimization for Task Scheduling
in Cloud Computing Environments. Procedia Comput. Sci. 2015, 65, 920–929. [CrossRef]

6. Navimipour, N.J.; Khanli, L.M. The LGR method for task scheduling in computational grid. In Proceedings
of the International Conference on Advanced Computer Theory and Engineering, Phuket, Thailand,
20–22 December 2008; pp. 1062–1066.

7. Zhang, F.; Cao, J.; Li, K.; Khan, S.; Hwang, K. Multi-objective scheduling of many tasks in cloud platforms.
Future Gener. Comput. Syst. 2014, 37, 309–320. [CrossRef]

8. Davis, R.I.; Burns, A. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv.
2011, 43, 35. [CrossRef]

9. Braun, T.D.; Siegel, H.J.; Beck, N.; Bölöni, L.L.; Maheswaran, M.; Reuther, A.I.; Freund, R.F. A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput. 2001, 61, 810–837. [CrossRef]

10. Dong, F.; Akl, S.G. Scheduling Algorithms for Grid Computing: State of The Art and Open Problems; Technical
report 2006–504; Queen’s University: Kingston, ON, Canada, 2006.

11. Chen, X.; Zhang, J.; Li, J. Resource management framework for collaborative computing systems over
multiple virtual machines. Service Oriented Comput. Appl. 2011, 5, 225–243. [CrossRef]

12. Chen, H.; Zhu, X.; Guo, H.; Zhu, J.; Qin, X.; Wu, J. Towards energy-efficient scheduling for real-time tasks
under uncertain cloud computing environment. J. Syst. Softw. 2015, 99, 20–35. [CrossRef]

13. Wu, X.; Deng, M.; Zhang, R.; Zeng, B.; Zhou, S. A task scheduling algorithm based on QoS-driven in cloud
computing. Procedia Comput. Sci. 2013, 17, 1162–1169. [CrossRef]

14. Lee, Y.C.; Wang, C.; Zomaya, A.Y.; Zhou, B.B. Profit-driven scheduling for cloud services with data access
awareness. J. Parallel Distrib. Comput. 2012, 72, 591–602. [CrossRef]

15. Panda, S.K.; Gupta, I.; Jana, P.K. Allocation-aware Task Scheduling for Heterogeneous Multi-cloud Systems.
Procedia Comput. Sci. 2015, 50, 176–184. [CrossRef]

16. Kartik, S.; Murthy, S.R. Improved task-allocation algorithms to maximize reliability of redundant distributed
computing systems. IEEE Trans. Reliab. 1995, 44, 575–586. [CrossRef]

17. Mahmood, A. Task allocation algorithms for maximizing reliability of heterogeneous distributed computing
systems. Control Cybern. 2001, 30, 115–130.

18. Hsieh, C.C. Optimal task allocation and hardware redundancy policies in distributed computing systems.
Eur. J. Oper. Res. 2003, 147, 430–447. [CrossRef]

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.procs.2015.09.064
http://dx.doi.org/10.1016/j.future.2013.09.006
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1007/s11761-011-0087-6
http://dx.doi.org/10.1016/j.jss.2014.08.065
http://dx.doi.org/10.1016/j.procs.2013.05.148
http://dx.doi.org/10.1016/j.jpdc.2011.12.002
http://dx.doi.org/10.1016/j.procs.2015.04.081
http://dx.doi.org/10.1109/24.475976
http://dx.doi.org/10.1016/S0377-2217(02)00456-3

Computers 2017, 6, 15 20 of 21

19. Stavrinides, G.L.; Karatza, H.D. Scheduling multiple task graphs in heterogeneous distributed real-time
systems by exploiting schedule holes with bin packing techniques. Simul. Model Pract. Theory 2011, 19,
540–552. [CrossRef]

20. Zhang, Y.F.; Tian, Y.C.; Fidge, C.; Kelly, W. Data-aware task scheduling for all-to-all comparison problems in
heterogeneous distributed systems. J. Parallel Distrib. Comput. 2016, 93, 87–101. [CrossRef]

21. Kumar, S.; Dutta, K.; Mookerjee, V. Maximizing business value by optimal assignment of jobs to resources in
grid computing. Eur. J. Oper. Res. 2009, 194, 856–872. [CrossRef]

22. Kokilavani, T.; Amalarethinam, D. Load balanced min-min algorithm for static meta-task scheduling in grid
computing. Int. J. Comput. Appl. 2011, 20, 43–49.

23. Shojafar, M.; Pooranian, Z.; Abawajy, H.; Meybodi, M. An efficient scheduling method for grid systems
based on a hierarchical stochastic Petri net. J. Comput. Sci. Eng. 2013, 7, 44–52. [CrossRef]

24. Alkhanak, E.N.; Lee, S.P.; Rezaei, R.; Parizi, R.M. Cost optimization approaches for scientific workflow
scheduling in cloud and grid computing: A review, classifications, and open issues. J. Syst. Softw. 2013, 113,
1–26. [CrossRef]

25. Mahmood, A. A hybrid genetic algorithm for task scheduling in multiprocessor real-time systems. Stud.
Inform. Control 2000, 9, 207–218.

26. Liu, Z.; Qu, W.; Liu, W.; Li, Z.; Xu, Y. Resource preprocessing and optimal task scheduling in cloud computing
environments. Concurr. Comput. 2015, 27, 3461–3482. [CrossRef]

27. Sangwan, A.; Kumar, G.; Gupta, S. To Convalesce Task Scheduling in a Decentralized Cloud Computing
Environment. Rev. Comput. Eng. Res. 2016, 3, 25–34. [CrossRef]

28. Jang, S.; Kim, T.; Kim, J.; Lee, J. The study of genetic algorithm-based task scheduling for cloud computing.
Int. J. Control Autom. 2012, 5, 157–162.

29. Razaque, A.; Vennapusa, N.; Soni, N.; Janapati, G. Task scheduling in Cloud computing. In Proceedings of
the IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA,
29 April 2016; pp. 1–5.

30. Sindhu, S. Task scheduling in cloud computing. Int. J. Adv. Res. Comput. Eng. Technol. 2015, 4, 3019–3023.
31. Li, J.; Qiu, M.; Ming, Z.; Quan, G.; Qin, X.; Gu, Z. Online optimization for scheduling preemptable tasks on

IaaS cloud systems. J. Parallel Distrib. Comput. 2012, 72, 666–677. [CrossRef]
32. Tsai, J.T.; Fang, J.C.; Chou, J.H. Optimized task scheduling and resource allocation on cloud computing

environment using improved differential evolution algorithm. Comput. Oper. Res. 2013, 40, 3045–3055.
[CrossRef]

33. Tsai, C.W.; Huang, W.C.; Chiang, M.H.; Chiang, M.C.; Yang, C.S. A hyper-heuristic scheduling algorithm for
cloud. IEEE Trans. Cloud Comput. 2014, 2, 236–250. [CrossRef]

34. Pandey, S.; Wu, L.; Guru, S.; Buyya, R. A particle swarm optimization-based heuristic for scheduling
workflow applications in cloud computing environments. In Proceedings of the 24th IEEE International
Conference on Advanced Information Networking and Applications (AINA), Perth, Australia, 20–23 April
2010; pp. 400–407.

35. Navimipour, N.; Milani, F. Task scheduling in the cloud computing based on the cuckoo search algorithm.
Int. J. Model. Opt. 2015, 5, 44. [CrossRef]

36. Raghavan, S.; Sarwesh, P.; Marimuthu, C.; Chandrasekaran, K. Bat algorithm for scheduling workflow
applications in cloud. In Proceedings of the 2015 International Conference Electronic Design, Computer
Networks & Automated Verification (EDCAV), Shillong, India, 29–30 January 2015; pp. 139–144.

37. Liu, S.; Quan, G.; Ren, S. On-line scheduling of real-time services with profit and penalty. In Proceedings of
the 2011 ACM Symposium on Applied Computing, Taichung, Taiwan, 21–24 March 2011; pp. 1476–1481.

38. Kim, K.H.; Beloglazov, A.; Buyya, R. Power-aware provisioning of virtual machines for real-time cloud
services. Concurr. Comput. 2011, 23, 1491–1505. [CrossRef]

39. Deniziak, S.; Ciopinski, L.; Pawinski, G.; Wieczorek, K.; Bak, S. Cost optimization of real-time cloud
applications using developmental genetic programming. In Proceedings of the IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC), London, UK, 8–11 December 2014; pp. 774–779.

40. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI,
USA, 1975.

41. Oh, J.; Wu, C. Genetic-algorithm-based real-time task scheduling with multiple goals. J. Syst. Softw. 2014, 71,
245–258. [CrossRef]

http://dx.doi.org/10.1016/j.simpat.2010.08.010
http://dx.doi.org/10.1016/j.jpdc.2016.04.008
http://dx.doi.org/10.1016/j.ejor.2007.12.024
http://dx.doi.org/10.5626/JCSE.2013.7.1.44
http://dx.doi.org/10.1016/j.jss.2015.11.023
http://dx.doi.org/10.1002/cpe.3204
http://dx.doi.org/10.18488/journal.76/2016.3.1/76.1.25.34
http://dx.doi.org/10.1016/j.jpdc.2012.02.002
http://dx.doi.org/10.1016/j.cor.2013.06.012
http://dx.doi.org/10.1109/TCC.2014.2315797
http://dx.doi.org/10.7763/IJMO.2015.V5.434
http://dx.doi.org/10.1002/cpe.1712
http://dx.doi.org/10.1016/S0164-1212(02)00147-4

Computers 2017, 6, 15 21 of 21

42. Dick, R.P.; Rhodes, D.L.; Wolf, W. TGFF: Task graphs for free. In Proceedings of the 6th International
Workshop on Hardware/software Codesign, Seattle, WA, USA, 15–18 March 1998; pp. 97–101.

43. Balbastre, P.; Ripoll, I.; Crespo, A. Minimum deadline calculation for periodic real-time tasks in dynamic
priority systems. IEEE Trans. Comput. 2008, 57, 96–109. [CrossRef]

44. Khan, S.A.; Engelbrecht, A.P. A fuzzy particle swarm optimization algorithm for computer communication
network topology design. Appl. Intell. 2012, 36, 161–177. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.2007.70787
http://dx.doi.org/10.1007/s10489-010-0251-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	System Model and Problem Formulation
	Task Model
	Cloud Model
	Cost Function

	Proposed Algorithms
	Greedy Algorithm
	Proposed Adaptive Genetic Algorithm
	Solution Encoding and Generation of Initial Population
	Crossover Operator
	Mutation Operator
	Replacement
	Adaptive Selection of Crossover and Mutation

	Simulation Results and Discussion
	Experimental Setup
	Results for Genetic Algorithm
	Comparison of GA, Adaptive GA, and Greedy Algorithms

	Conclusions

