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Abstract: There is a growing need to be able to accurately and efficiently recognize similar models
from existing model sets, in particular, for 3D models. This paper proposes a method of similarity
measurement of 3D models, in which the similarity between 3D models is easily, accurately and
automatically calculated by means of skeleton trees constructed by a simple rule. The skeleton
operates well as a key descriptor of a 3D model. Specifically, a skeleton tree represents node features
(including connection and orientation) that can reflect the topology and branch features (including
region and bending degree) of 3D models geometrically. Node feature distance is first computed by
the dot product between node connection distance, which is defined by 2-norm, and node orientation
distance, which is defined by tangent space distance. Then branch feature distances are computed by
the weighted sum of the average regional distances, as defined by generalized Hausdorff distance,
and the average bending degree distance as defined by curvature. Overall similarity is expressed
as the weighted sum of topology and geometry similarity. The similarity calculation is efficient and
accurate because it is not necessary to perform other operations such as rotation or translation and it
considers more topological and geometric information. The experiment demonstrates the feasibility
and accuracy of the proposed method.

Keywords: skeleton tree; similarity measurement; model recognition; topology feature;
geometry feature

1. Introduction

With rapid developments in computer hardware and computer technology, the construction
of 3D models has become much easier. This has contributed to an increasing accumulation of
3D models. In the last 20 years, model recognition has become one of the most popular fields of
computer science. It has wide application in the fields of Computer Aided Design (CAD)/Computer
Aided Manufacturing (CAM) [1,2], integrated circuit design [3], digital city planning [4], biomedical
engineering [5], military applications [6], mesh decomposition [7], virtual reality [8], education [9]
and animation [10]. Making full use of the existing resources of 3D model data can greatly reduce the
workload of designing new models and promote the flow of 3D data and its application in various
fields [11,12].

The core content of model recognition is similarity measurement between models. At present,
there are a lot of similarity measurement methods:
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(1) Statistic characteristic-based methods. A classical algorithm is the shape distribution histogram
formed by using the sampling function as the shape descriptor. The geometric similarity between
shapes can be measured by the histogram [13]. To calculate the distance histogram between
any two points on a shape, the enhanced shape function is used to obtain better experimental
results [14]. The statistic characteristic-based method has a good outcome for global matching of
models, but it does not have good performance for local matching.

(2) Geometry-based methods. This method is based on various frequency domain features of a
model. By using a weighted point set to describe a 3D polyhedral model, the similarity between
two shapes can be computed by employing the Earth Mover’s Distance to compare their weighted
point sets [15]. The global properties of a 3D shape can be represented by the reflective value
where all planes pass through the shape’s center of mass [16].

(3) Projection-based methods. This method mainly does the projection transform processing of a 3D
model in different directions, which can obtain a series of 2D projection images of 3D models for
model retrieval. A comparison method has been proposed by Min et al., based on 2D contouring
of 3D models [17]. However, this method can only describe the brightness distribution of models
and cannot effectively reflect their topological features.

(4) Topology-based methods. Most prior work has focused on skeleton graph or skeleton tree-based
methods. The basic idea is as follows: first transform the skeleton or shape axis into an
attribute (or relation) graph or a tree structure, called the skeleton tree. Then a graph or tree
matching algorithm is used to measure the similarity between models. A detailed review of the
skeleton-based method is summarized in the next section.

In this paper, we propose a method for measuring the similarity of 3D models. A skeleton tree
constructed by a simple rule is used as a descriptor of a 3D model, which can completely retain its
topological features. Based on the skeleton tree, we add topological and geometric information deriving
from the model to node and branch features, and their respective feature distances are reasonably
defined. The final overall similarity is defined by the weighted sum of topologic and geometric
similarity, reflected by similarities in the node and branch features. Compared with related existing
methods, our method considers the information on topology and geometry more comprehensively
because of taking the node connection and orientation features and geometric feature of the skeleton’s
points and branches into account, which contributes to high accuracy and good results. Our research
work is a significant development in 2/3D model matching, recognition and retrieval.

The remainder of the paper is organized as follows. The next section contains a summary of
related work. Section 3 gives an overview of our proposed method. Section 4 develops the skeleton
tree construction. Section 5 describes the details in node feature similarity. Section 6 presents the
details in branch feature similarity. Section 7 offers overall similarity measurement. Section 8 involves
experiment and discussion. Finally, Section 9 concludes and describes future research directions.

2. Related Work

The vast majority of methods in model recognition have concentrated on skeleton-based methods,
which are usually based on graph or tree representations of skeletons. These have been well studied
by many researchers. Below, we focus on research areas related to the efforts in this paper. For a broad
introduction to model recognition method, please refer to any of References [18–22].

In early work, a large number of skeleton graph-based recognition methods were proposed and
have achieved good performance on object recognition. Blum [23] transformed the skeleton or medial
axis into attribute relation graphs (ARG). The similarity between two objects can be measured by
matching their ARGs. Zhu and Yuille [24] used a branch bounding that is confined to animate objects
to match the skeleton graphs of objects. Siddiqi et al. [25–29] proposed a kind of ARG, the shock graph,
based on shock grammar. The similarity between two 2D objects can be measured by matching their
shock graphs. Sundar et al. [30] first transformed skeletons into skeleton graphs by using a minimum
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spanning tree (MST) algorithm, then matching it to a skeleton graph. Sebastian et al. [31,32] performed
the recognition of shapes by editing shock graphs, defining the cost of the least action path deforming
one shape to another as the distance between two shapes. Ruberto [33] took medial axis characteristic
points as an attributed skeletal graph (ASG) to model a shape. The matching process for ASGs is based
on a revised graduated assignment algorithm. This method can deal with the occlusion problem, but
it cannot obtain an optimal matching result due to the heuristic rule. Torsello and Hancock [34,35]
measured the similarity of 2D shapes with the help of a shock tree by using the rate of change of
boundary length with distance along the skeleton to define this measure. Shokoufandeh et al. [36]
described a topological index successfully developed from a shock graph in a large database. The
eigenvalues of the adjacency matrices of their subgraphs are used to calculate the similarity between
them. Aslan and Tari [37] developed an unconventional matching scheme for shape recognition
using skeletons with disconnected branches in the course level. The presented matching algorithms
can find the correct results of correspondences and generate a similarity value. Bai and Latecki [38]
presented skeleton graph matching based on the similarity of the shortest paths between each pair of
endpoints of the pruned skeletons. Xu et al. [39] matched skeleton graphs by comparing the geodesic
paths between critical points (junction points and end points). Most of these skeleton graph-based
recognition methods are time consuming because of the complexity of the shock grammar, graph
matching algorithms, and calculation of eigenvalues. Moreover, these methods do not perform well
for for 3D object recognition.

More recent work has developed a method for shape recognition that is relatively simple and
efficient compared to the skeleton tree-based method. This method transforms the skeleton into a
tree structure, called a skeleton tree, according to the construction rule. Hilaga et al. [40] constructed
a multi-resolution Reeb graph (MRG) representing the skeletal and topological structure of a 3D
model based on geodesic distance. The overall similarity calculation between different 3D models is
processed using a graph matching algorithm. This method can cope well with loop structures and
generates intuitive results. Nevertheless, this method merely depends on topological features when
recognizing different shapes, which may fail in distinguishing different shapes with similar topologies.
Pelillo et al. [41] developed a different framework for matching unrooted trees by constructing an
association graph with maximal cliques. Liu et al. [42] constructed a free tree structure and used a
tree matching scheme to calculate the similarity between two 2D shapes; their method can deal with
articulations, stretching, and occlusions. This method does not require any editing of the skeleton
graph, but merge, cut, and merge-and-cut operations are essential before matching the free trees.
Liu et al. [43] proposed a similarity measurement framework by using the skeleton tree represented
by tree descriptor. The similarity between two branches is defined as the weighted sum of the
average curvature difference (ACD) and the average area difference (AAD). This approach has the
time complexity of O(n3). As this approach only uses a branch to represent geometric features, it
may not include all the geometry information of an object, though this limitation can be improved by
taking inherent geometry properties into account. Demirci et al. [44] proposed an accurate matching
algorithm by constructing a metric tree representation of the two weighted graphs, which can establish
many-to-many correspondences between the nodes of two noisy objects. However, the transformation
from graphs to trees has to go through the heuristic rule. In addition, how to choose an optimal root
node needs to be considered as this has a great influence on matching results. Xiao [45] recognized
microscopic images of diatom cells by using skeleton tree matching, defining topological and geometric
differences to establish a similarity mode for microscopic images of Chaetoceros, but this method is only
suitable for diatom cells recognition. Jiang et al. [46] presented a skeleton graph matching algorithm,
namely an order-preserving assignment algorithm, based on a novel tree shape which considers
both the positive curvature maxima and the negative curvature minima of the boundary. It has low
computational complexity and good performance, but the shape tree does not consider topological
structures. Garro and Giachetti [47] introduced a novel framework for non-rigid and textured 3D
shape retrieval and classification with the help of TreeSha-based shape representation, which can



Computers 2017, 6, 17 4 of 24

offer better similarity recognition and better retrieval results than existing methods on textured and
non-textured shape retrieval benchmarks and give effective shape descriptors and graph kernels.

There are other new methods in shape recognition. Chen and Ming [48] proposed a 3D
model retrieval system based on the Reeb graph, linked with preprocessing that can accelerate the
graph-matching step. Biasotti et al. [49] presented an efficient method for partial shape-matching
based on Reeb graphs. Goh [50] described some useful strategies for 2D shape retrieval. These
strategies include dynamic part decomposition, local and global measurement, and weighting skeletal
segments. The incorporation of these strategies significantly improves shape database retrieval
accuracy. Biasotti et al. [51] devised an original framework for 3D model retrieval and classification.
Similarity between shapes is measured by attractive features of size functions computed from skeletal
signatures. Experimental results demonstrate that this method is efficient and effective. Tierny et al. [52]
used a Reeb graph to represent shapes and developed a fast and efficient framework for partial shape
retrieval, where partial similarity between two shapes is evaluated by computing their maximum
common sub-graph. Zhang et al. [53] achieved 3D non-rigid object retrieval by utilizing integral
geodesic distance. Their proposed coarse-to-fine process can reduce the large computational cost of
matching. Barra and Biasotti [54] developed a new unsupervised method for 3D shape retrieval based
on the extended Reeb graphs. Using kernels as descriptions to measure the similarity between pairs of
extended Reeb graphs, their method has been tested on three databases to verify its good performance.
Usai et al. [55] presented a novel method for extracting the quad layout of a triangle mesh guided by
its accurate curve skeleton; t this quad layout is able to reflect the intrinsic characteristics of the shape.
Also, this method has applications to semiregular quad meshing and UV mapping, which may provide
good shape representation for 2/3D shape matching. Guler et al. [56] presented a SIFT-based image
matching framework for 2D planar shape retrieval. Their shape similarity measurement is based on
the number of matching internal regions. Yang et al. [57] proposed a novel 2D object matching method
based on a hierarchical skeleton capturing the object’s topology and geometry, where determining
similarity considers both single skeletons and skeleton pairs. Yasseen et al. [58] developed a 2D shape
matching method, which can perform a part-to-part matching analysis between two objects’ visual
protruding parts to measure the distance between them. Yang et al. [59] mentioned a new shape
matching method based on the interesting point detector and high-order graph matching. It can
consider geometrical relations and reduce computational costs for point matching. Shakeri et al. [60]
devised a groupwise shape analysis framework for subcortical surfaces based on spectral marching
theory. This spectral matching process can build reliable correspondences between different surface
meshes and is likely to help to investigate groupwise structural differences between two study groups.
Yang et al. [61] proposed a novel invariant multi-scale descriptor that can capture both local and global
information simultaneously for shape representation, matching, and retrieval by adopting the dynamic
programming algorithm to conduct shape matching. Since most of these new methods are applied to
2D object recognition, they do not have good applicability and performance on 3D object recognition.

To summarize: many previous methods either have operational complexity or cannot be well
used for 3D models because they develop complicated rules for graphing (or tree definition) or pay
more attention to 2D modeling. The motivation behind our work is to present a simple method of
similarity measurement with high accuracy for 3D model matching, recognition, and retrieval.

3. Overview of Method

Our method easily and efficiently measures the similarity of 3D models. Compared with the
skeleton graph or tree-based methods, we can construct an open and linear skeleton tree by a simpler
rule. With the help of topologic and geometric information included in a skeleton tree, and by
considering extra information on these two aspects, similarity measurements of 3D models can be
successfully achieved for 2/3D model matching, recognition, and retrieval.

Initially, a simple rule of skeleton tree construction is proposed with the help of a skeleton,
which completely retains the topologic information of the model. Next, the node feature is described
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from two sides, the node connection feature and the node orientation feature. The former directly
reflects how to connect with the sub-parts in the model. The latter has an ability to distinguish a
model with similar topology but a different shape, which is usually overlooked by existing methods.
Node connection distance and orientation distance are defined by 2-norm distance and tangent space
distance, respectively. The final node feature distance is expressed by the dot product between them.
Then the branch feature is used to depict the geometric features of the model, which mainly takes an
average regional feature that can reflect the contours of the model and an average bending degree
feature that can take bending into account. In calculating average regional distance, we first define
three geometric properties for skeleton points, including relative support angle, relative density, and
relative anchor point distance. Then the generalized Hausdorff is used to compute the distance
between two skeleton point sets. We take this distance as the average regional distance. Average
bending degree distance is defined by the curvature of a skeleton branch. Final branch feature distance
is expressed by the weighted sum of these two distances. Finally, the overall similarity of skeleton trees
is defined as the weighted sum of topologic and geometric similarity, reflected by node and branch
feature similarity. The weight of topology and geometry can be adjusted according to different models.
If the difference in topology between two models is larger, we give topology a larger weight. If the
difference in geometry is larger, we give geometry a larger weight. If topology and geometry have an
equal effect on the model, we give them same weight (0.5). A flow chart of our method is shown in
Figure 1.
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4. Skeleton Tree Construction

The skeleton is an important foundation for skeleton tree construction. An extracted skeleton
should retain the key topological information of model. Here, we use the mesh contraction method
proposed by Au et al. [47] to effectively extract a smooth curve-skeleton with correct connectivity
and topology. This method is simple to perform and insensitive to noise. The extraction of 3D model
skeletons in both experiments uses this method. Next, we map the skeleton to a tree structure named
the skeleton tree.

Definition 1. If a skeleton point is only adjacent to one point on the skeleton, it is considered as an endpoint
(EP); if a skeleton exists two or more adjacent points on the skeleton, it is considered as a junction point (JP).

Definition 2. Linking any two connected skeleton points to form the sequence constitutes a skeleton branch.

A simple and intuitive method of constructing the skeleton tree follows:
The endpoint and the junction point are selected as the nodes of the skeleton tree. The skeleton

branch is a branch of the skeleton tree. We select a skeleton point located as close as possible to the
center of model as the top node of skeleton tree, because there is usually important location and shape
information in the center of a model. For example, in Figure 2, according to Definition 1, skeleton
points (JP1, JP2) are both junction points, and skeleton points (EP11, EP12, EP21 and EP22) are all
endpoints. Selecting JP1 as the top node of skeleton tree and according to the skeleton’s topology, the
corresponding skeleton tree can be constructed.
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Before constructing the skeleton tree, we mark the endpoint and junction point by sign and
number. The junction point is marked first, by a solid circle and is numbered JPi (i = 1, 2, . . . , n, n is
the total number of junction points). Then, the endpoint is marked by the star shape and is numbered
by EPij (i = 1, 2, . . . , n; j = 1, 2, . . . , k, k is the total number of endpoints connected with i-th junction
point). In the skeleton tree, the number of nodes are the same as for the skeleton. The large solid circle
represents the junction node and the small circle represents an end node.

Definition 3. In a skeleton tree, the endpoint is considered an end node and the junction point is considered the
junction node.

Definition 4. In a skeleton tree, the junction node is considered a root node and an end node is considered a leaf
node. From the top node, the level of the top node is 1, its next level is 2, and so on. The nodes belonging to the
same layer have the same level number. The upper node is considered the root node of the lower node.
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In Figure 2b, JP1 is the 1st level root node, JP2 is the 2nd level root node, EP11 and EP22 are both
2nd level leaf nodes, and EP21 and EP22 are both 3rd level leaf nodes.

Definition 5. A skeleton tree is described by ST = (N, B), where N is the node set of the tree and B is the branch
set of the tree.

Ideally, skeleton trees are linear and open. However, according to the method described in
Definition 2, a skeleton tree is likely to be closed. For a ring skeleton tree, at least one node exists for
every two or more root nodes. Such a node needs special treatment: assuming that node P has n (n > 1)
root nodes, copy P to be n duplicates (P1, P2, . . . . . . , Pn), then connecting Pi with the i-th root node
of P. Simultaneously, P1 inherits all the leaf nodes of P and it and Pi are both set as leaf nodes. After
treating all such nodes by this approach, one open and linear skeleton tree can be obtained.

5. Node Features

In this section, we perform similarity measurements of the node features of the model. Here, the
node features include the node topology feature and node orientation feature.

5.1. Node Topology Feature

The Node topology feature directly reflects the connection between sub-parts in the model. From
the skeleton shown in Figure 2a, the skeleton points diverge from the inside to the outside of model.
The skeleton points like JP (JP1 and JP2) nearing the center of the model have a great influence on
the topological divergence of the whole model, and skeleton points like EP (EP11, EP12, EP21 and
EP22), nearing the edge of model, are relatively small. According to this characteristic, we set different
weights to the skeleton points located at different positions. The nodes located in the skeleton tree
from top to bottom are set adaptive weights from large to small. The adaptive weights can reflect the
difference in influence of the whole topology or the divergence of different nodes from the model. The
adaptive weight ωi of each junction node JPi is set as follows:

αi = L− i + 1
ωi = αi ∗ deg(Pi)

(1)

where L is the number of levels of the skeleton tree, αi is the weight of i-th level, and deg(Pi) is the
number of in-degrees and out-degrees of JPi. Here, the in-degree is the number of root nodes in the
upper level of JPi and the out-degree is the number of leaf nodes in the next level of JPi. For example,
in Figure 2, deg(Pi) of JP2 is 3 (in-degree is 1 and out-degree is 2).

The adaptive weight ωij of each end node EPij is set as follows:

ωij =
ωi
k

(2)

where k is the number of end nodes connecting with a junction node JPi.
Using the above descriptions, the adaptive weight of each node in skeleton tree can be determined.

At this time, the skeleton tree can be expressed by ST = (N, B, Tf(ω)). Tf represents the node topology
feature. Given two skeleton tree ST1 = (N1, B1, Tf1(ω)) and ST2 = (N2, B2, Tf2(ω)), the topology feature
distance (TFD) between two nodes (q and p, q ∈ ST1, P ∈ ST2) is defined as follows:

∏
(

Tf 1(q(ω)), Tf 2(p(ω))
)
=
(

1 +
∣∣∣γ(Tf 1(q(ω))

)
− γ

(
Tf 2(p(ω))

)∣∣∣) ‖ς(Tf 1(q(ω)))−ς(Tf 2(p(ω)))‖2
‖ς(Tf 1(q(ω)))‖2

+‖ς(Tf 2(p(ω)))‖2
(3)

where γ
(

Tf (u)
)
(u ∈ ST) is the maximum node degree of skeleton tree,

ς
(

Tf (u)
)(

ς
(

Tf (u)
)
∈ Rγ(Tf (u)) − 1

)
is the topology characteristic vector (TCV) [27] of any



Computers 2017, 6, 17 8 of 24

node, and u(u ∈ ST). ‖ς
(

Tf 1(q)
)
− ς
(

Tf 2(p)
)
‖

2
is a 2-norm. In defining TCV, it should be pointed

out that the adjacent matrix of the skeleton tree is the n × n symmetric matrix, about {0, 1}. If
(i, j) ∈ B, the (i, j) th value of the adjacent matrix is 1; otherwise it is 0, as shown in Figure 2c. The
smaller the value of TFD is, the larger the topology similarity between two nodes (q and p, q ∈ ST1,
P ∈ ST2) becomes.

5.2. Node Orientation Feature

Even if two skeleton trees have similar topologic features, their corresponding models are likely
to be different. As shown in Figure 3, Models 1 and 2 have different structures but have the same
skeleton trees. To distinguish them, we add orientation feature to node in the skeleton tree. This can be
easily achieved by calculating the included angle between two vectors. One vector is formed by JP
and an EP connecting with it, and another is formed by JP and another EP connecting with it. The
direction of the vector is from JP to EP. In each calculation, setting JP as origin O and establishing the
coordinate system O− XYZ. Supposing EP11 (x1, y1, z1), EP12 (x2, y2, z2) and JP1 (0,0,0), the included

angle θ between
→

JP1EP11 and
→

JP1EP12 can be calculated by the following formula.

θ = arccos <
→

JP1EP11,
→

JP1EP12 >= arccos
−→

JP1EP11×
−→

JP1EP12∣∣∣∣ −→
JP1EP11

∣∣∣∣×∣∣∣∣ −→
JP1EP12

∣∣∣∣ = arccos x1x2+y1y2+z1z2√
x2

1+y2
1+z2

1×
√

x2
2+y2

2+z2
2

(4)
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The orientation feature will only appear in each level of skeleton tree. Therefore, we cannot use
TFD formula between two nodes to calculate the distance between two levels. We adopt the tangent
space method to figure out the distance between included angles. The basic idea is as follows:

Supposing that a level of a skeleton tree has included angles (θ1, θ2, θ3). Starting from θ1 and
defining ϕ1 as rotation angle between θ1 and θ2, then θ2 = θ1 + ϕ1; similarly, θi = θi−1 + ϕi−1. We
define the tangent space description of the included angle as ϑ(l). The horizontal axis represents

the normalized skeleton length, and lk =
k
∑

i=1
Li/L, Li is the sum of two skeleton branch lengths

forming one included angle θ. The vertical axis represents the acceleration of the rotation angles
θk = 2θk−1 + ϕk−1(k = 2, · · · , n), as shown in Figure 4a,b. Through the normalized skeleton length,
the domain of the tangent space of included angles is adjusted to 1, which means ϑ(l) is a function
with a domain of [0,1] in R space. ϑ(l) is a monotonic function. The starting point is a value ν and the
end point is a value ν+ 2π.
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After the included angles are described by the tangent space, we can use shape distance to
calculate the distance between included angles. Let A(θ) and B(θ) be two matching levels. They
can respectively be represented by ϑA(l) and ϑB(l) after the tangent space description, as shown in
Figure 4c. The tangent space distance (TSD) between ϑA(l) and ϑB(l) is defined as follows:

D(ϑA(l), ϑB(l)) =
w 1

0

(
1−

∣∣∣∣ ϑA(l)− ϑB(l)
max(ϑA(l), ϑB(l))

∣∣∣∣)dl (5)

From the definition of tangent space, we can see that tangent space ϑ(l) will be different if the
starting point v is different. It is more meaningful for the tangent space to consider the included angle
θ with minimal change. The smaller the value of D(ϑA(l), ϑB(l)) is, the greater the shape similarity of
the models respectively represented by A(θ) and B(θ) becomes.

5.3. Node Feature Distance

In determining the TFD of the node, we should choose two nodes with minimum TFD, and
setting this minimum TFD as TFD of the node. The basic idea is as follows: According to the root node
priority principle described in the next subsection, we search for two nodes q and p(q ∈ ST1, p ∈ ST2)
with minimum TFD and calculate ∏

min

(
Tf 1(q), Tf 2(p)

)
. The TFD of each level in the skeleton tree is the

accumulation of the TFD of all nodes in this level.

∏
(

Tf 1i(q), Tf 2i(p)
)
=

k
∑

j=1

(
∏

min

(
Tf 1i(qj), Tf 2i(pj)

)
+ ∏(∅)

)
(i = 1, 2, · · · , L)(q ∈ ST1, p ∈ ST2) (6)

where k is the number of nodes in i-th level. If there are some nodes marked ∅ in the i-th level,
∏(∅) 6= 0; otherwise, ∏(∅) = 0.

The node feature distance of each level in the skeleton tree is defined as the dot product between
the TFD and TSD of each level. The specific formula is as follows:

Tdist
(

Tf 1i, Tf 2i

)
= ∏

(
Tf 1i(q), Tf 2i(p)

)
× D(ϑTf 1i (l), ϑTf 2i (l)) (7)

The node feature distance of the skeleton tree should be the accumulation of that of each level.
Given two skeleton trees ST1 and ST2, the steps of calculating Tdist(Tf1, Tf2) are as follows:

1. Initialize Tdist
(

Tf 1, Tf 2

)
= 0;
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2. Calculate the value of TFD ∏
(

Tf 1(q), Tf 2(p)
)

between the 1st level of root node q in ST1 and

that p in ST2, Tdist
(

Tf 1, Tf 2

)
= Tdist

(
Tf 1, Tf 2

)
+∏

(
Tf 1(q), Tf 2(p)

)
;

3. From top to bottom along the skeleton tree, calculate Tdist
(

Tf 1, Tf 2

)
= Tdist

(
Tf 1, Tf 2

)
+Tdist

(
Tf 1i, Tf 2i

)
. Determine whether there are some nodes marked ∅ in current level; if

yes, ∏(∅) 6= 0; if no, ∏(∅) = 0.
4. Repeat the above steps until all levels in ST1 and ST2 are accessed.

5.4. Root Node Priority Principle

In the calculation of TFD, it is more meaningful for us to search for two nodes (q and p) with
minimum TFD. The root node is actually a junction node. We give priority to junction nodes, and then
end nodes connecting with them, which can reduce the overall search and calculation time. Before
searching for two junction nodes with minimum TFD, all junction nodes are listed in descending order
by weight except the first level of junction node. Through descending order, the junction nodes with
important topologic features are put into the front, which is beneficial to search for two junction nodes
with minimum TFD.

As shown in Figure 5, given two skeleton trees ST1 and ST2, the adaptive weight of each node is
calculated. All junction nodes are listed in descending order by weight except the first level of junction
node, as shown in Figure 5c1. Then we calculate the TFD between every junction node in ST1 and
all junction nodes in ST2, and determine the two junction nodes with minimum TFD, as shown in
Figure 5c2. We call such nodes matching nodes and call the branch formed by linking with them the
matching branch. In addition, we call the level including these matching nodes the matching level.
The rest of the junction nodes are marked by ∅, which means these junction nodes have no matching
node. Next, we calculate TFD between end nodes that connect with the junction nodes with minimum
TFD, as shown in Figure 5c3. The rest of the end nodes are marked by ∅ as well. We call the branch
formed by linking one node with the node marked by ∅ an empty branch. If there are one-to-more
or more-to-one or more-to-more situations, like (EP51, EP52 and EP53 in ST1 correspondent to EP51 in
ST2), we first calculate TFD between any two nodes, then calculate the average and regard it as the
TFD of this situation.

Determining the Value of ∏(∅)

If there are some nodes marked by ∅ in the i-th level of skeleton tree, it means ∏(∅) 6= 0, which
will increase the TFD of the i-th level. In this subsection, we determine the value of ∏(∅). The node
distance density Nρ is defined as follows:

Nρ =
∏
(
utop, ubottom

)
N

(8)

where ∏
(
utop, ubottom

)
(u ∈ ST) represents the TFD between the top root node and the bottom in the

skeleton tree. N is the number of nodes in the skeleton tree.
The value of ∏(∅) is defined as follows:

∏(∅) =



Nρ × ωi
ωtotal

× n

Nρ ×
ωij

ωtotal
× n

Nρ ×
ωaverage

ωtotal
× n

(9)

where n is the number of nodes marked by ∅ in the i-th level, ωi and ωij respectively are the weight of
the junction node and end node marked by ∅ in the i-th level, and ωtotal is the total weight of all nodes
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in the skeleton tree. If there are only some junction nodes marked by ∅, choose the first formula; if
there are only some end nodes marked by ∅, choose the second formula. If there are both junction
nodes and end nodes marked by ∅, choose the third formula. The average weight of junction nodes
and end nodes is expressed as ωaverage:

ωaverage =
ωi × k + ωij ×m

k + m
(10)

where k is the number of junction nodes marked by ∅ in the i-th level and m is the number of end
nodes marked by ∅ in the i-th level.
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Figure 5. Root node Priority principle: (a) ST1; (b) ST2; (c) searching for two nodes with minimum
TFD. (c1) descending order for junction nodes in ST1 and ST2, (c2) searching for two junction nodes
with minimum TFD, (c3) calculating TFD between two end nodes corresponding to two junction nodes
in (c2).
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6. Branch Feature

Given a 2/3D model, we can extract its skeleton by using a relevant algorithm. Certainly,
we can also figure out a model from the topological and geometrical information included in the
skeleton, which means that the model and skeleton are inverses of each other. In other words, there
is a one-to-one relationship between a skeleton branch and a sub-part in the model. The length
and bending of a skeleton branch can express the geometry of a sub-part in the model. Therefore,
similarity measurements of geometric features between models can be computed by comparing
skeleton branches.

6.1. Geometry Featurse of Skeleton Points and Branches

6.1.1. Geometry Features of Skeleton Points

Take a maximum inscribed sphere MSx with any skeleton point x as the center of the ball and
the boundary surface having at least two tangent points. These tangent points are regarded as anchor
points of skeleton point x. As shown in Figure 6, Ax and A∗x are the anchor points of skeleton point x.

• The support angle θx of skeleton point x is the minimum angle that takes x as the center and
rotates from one anchor point of skeleton point x to the other. We define the relative support
angle θ′x of skeleton point x as θ′x = θx/π(0 ≤ θ′x ≤ 1). The larger the relative support angle is,
the higher the symmetry of x becomes.

• We define the relative density r′x of skeleton point x as r′x = rx/rmax(0 ≤ r′x ≤ 1), where rx is
the radius of MSx and rmax is the radius of the maximum inscribed sphere in model.

• We define the relative anchor point distance of x as d′x = dx/L(0 ≤ d′x ≤ 1), where dx is the
geodesic distance between two anchor points and L is the minimum circumference of a box
bounding the model. The larger the relative density and relative anchor point distances are, the
higher the support range of skeleton point becomes.
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Relative support angle, relative density, and relative anchor point distance constitute the elements
that describe the geometric features of a skeleton point. They have characteristic independence with
respect to the directions and scales of skeleton.

Given two skeleton branches Γ1 and Γ2, the geometry feature difference ε(Γ1(q), Γ2(p)) between
two skeleton points q(q ∈ ST1) and p(p ∈ ST2) can be calculated by Hausdorff [62]. The Hausdorff
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distance is able to efficiently measure distance between two point sets O and E. We define
E = {e1, e2, · · · , em} as the set of skeleton points. The Hausdorff distance between O and E
is represented by H(O, E). To avoid the influence of a disturbance point, we use a generalized
Hausdorff distance.

H(O, E) = max{h(O, E), h(E, O)} (11)

where
h(O, E) = kth

o∈O
min
e∈E
‖o− e‖ (12)

h(E, O) = lth
e∈E

min
o∈O

‖e− o‖ (13)

The geometry feature distance D(Γ1(q), Γ2(p)) between two skeleton points q(q ∈ ST1) and
p(p ∈ ST2) can be calculated by the following formula:

D(Γ1(q), Γ2(p)) = exp (∏
(

Tf 1(q), Tf 2(p)
)

ε(Γ1(q), Γ2(p))) (14)

6.1.2. Geometric Features of a Skeleton Branch

The geometric features of a skeleton branch consist of an average regional feature and an average
bending degree feature. Their feature distances are defined as the average regional distance and
average bending degree distance, respectively. The former can depict the difference in contour
between models. The latter can depict the difference in curvature between sub-parts represented by
skeleton branches.

Defining the average regional distance of a skeleton branch as the sum of the distance between
skeleton points in that branch. As we only know two endpoints of a skeleton branch, we cannot directly
calculate the sum. A good method is to distinguish skeleton branches through the equal-distance
method. The average regional distance of skeleton branch B_D(Γ1(q), Γ2(p)) can be calculated by the
following formula:

B_D(Γ1(q), Γ2(p)) =
1
L

m

∑
j=0

D
(
Γ1
(
qj
)
, Γ2
(

pj
))

(15)

where D
(
Γ1
(
qj
)
, Γ2
(

pj
))

represents the geometric feature distance between two discrete skeleton points
qj
(
qj ∈ ST1

)
and pj

(
pj ∈ ST2

)
in a certain skeleton branch and L(L = (L1 + L2)/2) is the average

length of two skeleton branches Γ1 and Γ2.
The average bending degree distance can be calculated by the following formula:

B_curvature(Γ1, Γ2) =
1
L

(w L1

0
|κ1(l)|dl −

w L2

0
|κ2(l)|dl

)
(16)

where κ1(l) and κ2(l) are curvatures of skeleton branch Γ1 and Γ2, respectively, and l is the arc-length
parameterization of the skeleton branch.

6.2. Branch Feature Distance

We define the branch feature distance as the weighted sum of the average regional distance and
the average bending degree distance. In fact, the branch feature distance is equal to the geometry
feature distance (GFD).

B_Gdist(Γ1, Γ2) = τ1B_D(Γ1(q), Γ2(p)) + τ2B_curvature(Γ1, Γ2)

τ1 + τ2 = 1(τ1, τ2 ∈ [0, 1])
(17)

where τ1 and τ2 indicate the importance of the average regional feature and the average bending
degree feature.
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The GFD of each level in a skeleton tree is the accumulation of that of all skeleton branches in
this level.

B_Gdist(Γ1i, Γ2i) =
k

∑
j=1

(
B_Gdist

(
Γ1ij, Γ2ij

)
+ B_Gdist(∅)

)
(18)

where B_Gdist(∅) represents the GFD between empty branches. The GFD of a skeleton tree should be
the accumulation of that of each level. Given two skeleton trees ST1 and ST2, the steps of calculating
B_Gdist(Γ1, Γ2) are as follows:

• Initialize B_Gdist(Γ1, Γ2) = 0;
• The GFD of the first level equals zero, B_Gdist(Γ1, Γ2) = 0;
• From the second level to the bottom along the skeleton tree, calculate B_Gdist(Γ1, Γ2) =

B_Gdist(Γ1, Γ2) +B_Gdist(Γ1i, Γ2i). Determine whether there are some empty branches in the i-th
level: if yes, B_Gdist(∅) 6= 0; if no, B_Gdist(∅) = 0.

• Repeat the above steps until all levels in ST1 and ST2 are accessed.

Determining the Value of B_Gdist(∅)

If there are some empty branches in the i-th level of skeleton tree, it means B_Gdist(∅) 6= 0, which
will increase the GFD of the i-th level. In this subsection, we determine the value of B_Gdist(∅). The
branch distance density Bρ is defined as follows:

Bρ =
∏
(
utop, ubottom

)
M

(19)

where ∏
(
utop, ubottom

)
(u ∈ ST) represents the TFD between the top root node and the bottom in the

skeleton tree and M is the number of branches in the skeleton tree.
The value of B_Gdist(∅) is defined as follows:

B_Gdist(∅) =



Bρ × ωi
ωtotal

×m

Bρ ×
ωij

ωtotal
×m

Bρ ×
ωaverage

ωtotal
×m

(20)

where m is the number of empty branches in the i-th level. Other parameters are the same, with
descriptions in Section 5.4.

7. Overall Similarity Measurement

We define the overall similarity of skeleton trees as the weighted sum of topologic and geometric
similarity reflected by node and branch feature similarity.

The topologic similarity of skeleton trees can be calculated by the following formula:

Tsim(ST1, ST2) =
1

Tdist
(

Tf 1, Tf 2

) (21)

The geometric similarity of skeleton trees can be calculated by the following formula:

Gsim(ST1, ST2) =
1

B_Gdist(Γ1, Γ2)
(22)
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The overall similarity of skeleton trees can be calculated by the following formula:

Osim(ST1, ST2) = κTTdist
(

Tf 1, Tf 2

)
+ κGGsim(ST1, ST2)

κT + κG = 1(κT , κG ∈ [0, 1])
(23)

where κT and κG are the adaptive weights of the topologic and geometric features. They can be adjusted
according to different models. The larger the value of Osim(ST1, ST2) is, the higher the similarity of
the models becomes.

8. Experiments and Discussion

8.1. Experiment One

Table 1 shows 10 typical 3D models and their skeletons. Table 2 shows their similarity results.
The results were obtained by using an Intel Pentium-M 3.0 GHz processor notebook PC with a 2.0 G
memory and VC++6.0 and OpenGL software. The skeletons of the models were extracted by mesh
contraction [63]. The data in Table 2 were treated by normalizing the similarity results of the two
models named in the rows and columns. Normalization processing means the data in a row divides
the maximum data in this row, which can make data in [0,1]. The larger the data is, the more similar a
model becomes. Completely dissimilar is expressed as 0 and 1 means totally similar. The numbers in
bold represent the similarity of a model very similar to a model in this row except itself. From Table 2,
we can see that the models with similar topology and different geometry, like 1 Dog and 5 Man I,
7 Man II and 9 Horse, can be distinguished well by our proposed method.

Table 1. The models and their skeletons for experiment.

Number and
Name 1 Dog 2 Dolphin 3 Table 4 Statue 5 Man I

Model and
skeleton
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2 Dolphin 0.308 1.000 0.062 0.249 0.314 0.103 0.288 0.886 0.316 0.076 
3 Table 0.323 0.058 1.000 0.064 0.236 0.103 0.220 0.102 0.226 0.925
4 Statue 0.102 0.305 0.058 1.000 0.084 0.858 0.109 0.263 0.051 0.401 
5 Man I 0.472 0.306 0.261 0.062 1.000 0.063 0.953 0.256 0.454 0.243 
6 Pillar 0.072 0.082 0.072 0.831 0.060 1.000 0.072 0.064 0.063 0.102 

7 Man II 0.466 0.294 0.208 0.085 0.968 0.054 1.000 0.252 0.434 0.214 
8 Pipeline 0.283 0.837 0.107 0.227 0.238 0.078 0.248 1.000 0.241 0.092 
9 Horse 0.894 0.323 0.234 0.038 0.483 0.074 0.413 0.207 1.000 0.186 
10 Chair 0.307 0.057 0.906 0.486 0.227 0.087 0.187 0.103 0.204 1.000 
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In this experiment, τ1 = 0.6 and τ2 = 0.4. The differences in contour are obvious, which increases
the weight of the average regional features. The skeleton curve of the models is relatively straight,
which makes the average weights of the bending degree small. In addition, we consider the topologic
features and geometric features as having an equally important influence on the models, which means
κT = κG = 0.5. We can flexibly adjust τ1, τ2, κT and κG according to different models.
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Number and
Name
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5
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Furthermore, we offer the experiment of similarity measurements of the same model with different
postures, namely deformation, which is a key component of skinning animation [64]. It is important to
note that we do not need to compute TSD because we are using the same model. This means the item
TSD should be removed from Equation (7) and Equation (7) becomes as follows:

Tdist
(

Tf 1i, Tf 2i

)
= ∏

(
Tf 1i(q), Tf 2i(p)

)
(24)

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches,
which can be done by giving the average bending degree feature a smaller weight (τ1 = 0.8 and
τ2 = 0.2). From Table 4, we can find that the similarity value is almost more than 0.945, which satisfies
our expectation.

Table 3. Five different postures of man and their skeletons.

Name Man I Man II Man III Man IV Man V Man VI

Model and
skeleton
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8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Computers 2017, 6, 17  16 of 24 

In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Computers 2017, 6, 17  16 of 24 

In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Computers 2017, 6, 17  16 of 24 

In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Computers 2017, 6, 17  16 of 24 

In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Computers 2017, 6, 17  16 of 24 

In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
  

Table 4. The similarity results between different postures of man (τ1 = 0.8, τ2 = 0.2 and κT = κG = 0.5).

Name Man I Man II Man III Man IV Man V Man VI

Man I 1.000 0.953 0.947 0.950 0.962 0.956
Man II 0.968 1.000 0.971 0.963 0.957 0.959
Man III 0.955 0.964 1.000 0.945 0.974 0.968
Man IV 0.944 0.946 0.967 1.000 0.982 0.951
Man V 0.961 0.952 0.975 0.950 1.000 0.948
Man VI 0.954 0.967 0.948 0.966 0.975 1.000

8.2. Experiment Two

To further demonstrate the retrieval performance of the proposed method, a test dataset was
constructed and used to carry out the matching and classification of the models. This dataset had the
same number of elements of each class and consisted of regular 3D models with six classes of five



Computers 2017, 6, 17 17 of 24

elements, as shown in Table 5. Most of the models represented articulated objects, and five elements in
same class showed different complex poses, to make the matching work sufficiently complex. The
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. Each
model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, to
make results independent of scale operations.

Table 5. Our testing dataset.

Name Snake I Snake II Snake III Snake IV Snake V

3D Model
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The precision-recall plot is one of the most popular evaluation criteria used to measure the
performance of retrieval systems [67]. Its ordinate is accuracy or precision and abscissa is recall.
Precision is the ratio between the number of correct models returned from a system and that of all
models returned from that system, and recall is the ratio between the number of correct models
returned from a system and that of the relevant models returned from that system. In general, both
precision and recall are related to the number of models returned from system. Recall and the number
of models returned from a system are in direct ratio, and precision and that are in inverse ratio. Assume
that A is a collection of all relevant models and B is a collection of all models returned from system.
Precision and recall can be expressed by the following formulas:

precision =
A ∩ B

B
(25)

recall =
A ∩ B

A
(26)

Precision and recall become higher and better. From overall consideration of these two criterions,
the area surrounded by the plot and the axis is larger, which means that the retrieval performance
is better.

For 3D model matching and classification, we ran the proposed method and the methods with
the best performance in the SHREC’14 on our testing dataset and compared the results obtained by the
former and the results obtained by the latter in terms of NN, FT and ST. The performance of the latter
has been shown in Reference [47]. The comparative performance results between methods are shown
in Table 6.

Table 6. The comparative performance results between methods.

Methods
Evaluation Measures

NN FT ST

GG2 0.958 0.383 0.504
Gi2 0.909 0.430 0.559
Gi3 0.963 0.436 0.562
Ve1 0.918 0.398 0.499

The proposed method 0.908 0.448 0.572

The numbers in bold represent the method has the best retrieval performance in one certain evaluation measure
compared to other methods.

Our method provides the best results in the scores of FT and ST and is greater than 0.9 in the score
of NN, which shows a good ability to match and classify models.

Precision-recall plots for six selected classes in our testing dataset and averages over all models for
SHREC’14 are shown in Figure 7. The classes snake, hand, and jellyfish have the best results, though
the classes puppet, Mickey, and animal obtain good results as well, which verifies the good matching
performance of the proposed method.

Next, we use our dataset to compare the retrieval performance of the proposed method with
respect to the MRG-based method [40]. Table 7 summarizes the capability comparison. The precision
and recall of the proposed method are both higher than those of the MRG-based method. So the
retrieval accuracy of the former is higher under the same conditions.
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Table 7. Capability comparison.

Retrieval Method Average Recall (%) Average Precision (%)

The MRG-based method 63.5 66.5
The proposed method 65.2 69.8

Figure 8a compares the average rank [68] for our testing dataset using the proposed method with
the values obtained by the MRG-based method. The average rank was obtained by following two
steps: first, every model in the testing dataset was performed as a query. Then the retrieval ranks of all
elements in the class of the query were computed. The proposed method has the lowest value; note
that the lower the average rank value is, the better the performance.
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Another measure, the average last place ranking [69], was also adopted to evaluate performance.
It is defined as

Ln = 1 − Rankl − n
N − n

(27)

where Rankl represents the rank at which the last relevant model is found, n is the number of relevant
models, and N is the size of the overall dataset. Figure 8b shows the average last place ranking of
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values obtained by two methods, respectively. This value represents the expectation that the user has
retrieved all relevant models from the dataset. The higher this measure value in the range [0,1], the
more the number of relevant models to find, indicating better results.

Finally, Figure 9 shows the precision-recall plots for four selected classes—snake, hand, animal
and puppet—computed by the proposed method and the MRG-based method, respectively. It is worth
remembering that curves moved upwards and to the right represent better retrieval performance.
The curves obtained by the proposed method are higher than the curves obtained by the MRG-based
method, which means the proposed method has a better retrieval performance and higher retrieval
accuracy under the same conditions.Computers 2017, 6, 17  20 of 24 
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9. Conclusions and Further Work

The main contribution of this paper is that it proposes a simple method of similarity measurement
of 3D models by using skeleton trees as descriptors of 3D models. The improvements of the proposed
method are as follows:

• Using skeleton trees is simpler and more efficient than other methods of model expression such
as attributed-relation graph, shock graphs, and so on. Compared to them, the skeleton tree
construction rule is relatively simple, and it carries complete topological information of a model.

• The node feature contains both connection features, reflecting topology, and orientation features,
distinguishing different modes with similar topology by their included angles. It uses 2-norm and
tangent space to reasonably define TFD and TSD, respectively. The final node feature distance is
expressed by the dot product between them.

• The branch feature can depict the geometric features of a model. It consists of the average regional
feature and average bending degree feature. Their feature distances can reflect differences in
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contour and bending, and are computed by generalized Hausdorff distance and curvature of
branches, respectively. Final branch feature distance is expressed by their weighted sum. These
two weights are adaptive.

• Overall similarity is defined by the weight sum of topologic and geometric similarity. These two
weights can be adjusted according to different models. This method is able to produce good results
for different models and for the same model with different postures, as proven by experiment.

• Several enhancements can be added to our algorithm:
• The skeleton tree-based descriptor of a 3D model can be optimized by using skeleton pruning

algorithms and constructing multi-level skeleton trees.
• Geometric features can be more fully described by taking more geometric properties into account,

such as minimum bounding box, circularity, eccentricity and so on.
• The efficiency of similarity measurements of whole skeleton trees can be improved by the maximal

isomorphic subtree formation algorithm or level clustering algorithm.

We believe that this method will greatly expand the application of 2/3D model matching,
recognition, and retrieval.
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