
computers

Article

6DoF Object Tracking based on 3D Scans for
Augmented Reality Remote Live Support

Jason Rambach 1,†,*, Alain Pagani 1,†, Michael Schneider 2, Oleksandr Artemenko 3

and Didier Stricker 1,†

1 German Research Center for Artificial Intelligence (DFKI), Augmented Vision Department,
67663 Kaiserslautern, Germany; alain.pagani@dfki.de (A.P.); didier.stricker@dfki.de (D.S.)

2 Bosch Rexroth AG, Research and Development, 97816 Lohr am Main, Germany;
michael.schneider1985@hotmail.de

3 Robert Bosch GmbH, Corporate Research Department, 71272 Renningen, Germany;
Oleksandr.Artemenko@de.bosch.com

* Correspondence: Jason.Rambach@dfki.de; Tel.: +49-(0)631-20575-3740
† Current address: Trippstadterstr. 122 D-67663 Kaiserslautern, Germany.

Received: 30 November 2017; Accepted: 29 December 2017; Published: 2 January 2018

Abstract: Tracking the 6DoF pose of arbitrary 3D objects is a fundamental topic in Augmented
Reality (AR) research, having received a large amount of interest in the last decades. The necessity
of accurate and computationally efficient object tracking is evident for a broad base of today’s AR
applications. In this work we present a fully comprehensive pipeline for 6DoF Object Tracking
based on 3D scans of objects, covering object registration, initialization and frame to frame tracking,
implemented to optimize the user experience and to perform well in all typical challenging conditions
such as fast motion, occlusions and illumination changes. Furthermore, we present the deployment
of our tracking system in a Remote Live Support AR application with 3D object-aware registration
of annotations and remote execution for delay and performance optimization. Experimental results
demonstrate the tracking quality, real-time capability and the advantages of remote execution for
computationally less powerful mobile devices.

Keywords: augmented reality; object tracking; 6DoF pose; remote live support; edge computing

1. Introduction

As Augmented Reality (AR) reaches its technological maturity, its potential is unveiled by
applications in a variety of fields such as industrial construction and maintenance, education,
entertainment and medicine [1–5]. New challenges have emerged such as photorealistic rendering,
collaborative augmented reality, content authoring and sharing, reduction of motion-to-photon delay
for head-mounted displays [6–9].

Still, accurate 6 Degree of Freedom (6DoF) camera localization corresponding to its position and
orientation in the application coordinate system remains the main enabling technology for Augmented
Reality as it allows for realistic placement of virtual objects in the real world, integration into it
and interaction with it [10]. Traditionally, tracking approaches relied on localization of handcrafted
targets such as fiducials or natural features of 2D images rich in texture [11,12]. These approaches
were however considered obtrusive for the scene while limiting an application to the visibility range
of the tracking target and being very sensitive to occlusions of that target. Two different directions
exist, attempting to alleviate the need for markers, namely model-based tracking and simultaneous
localization and mapping (SLAM) approaches.

SLAM approaches attempt to tackle the challenging problem of estimating the camera pose
from features in its environment while simultaneously learning the 3D structure of this unknown

Computers 2018, 7, 6; doi:10.3390/computers7010006 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://dx.doi.org/10.3390/computers7010006
http://www.mdpi.com/journal/computers


Computers 2018, 7, 6 2 of 22

environment. The seminal work in monocular visual SLAM was the Extended Kalman Filter (EKF)
based MonoSLAM [13], which was followed by a large amount of significant publications in the
field [14]. PTAM [15] reduced the computational cost of SLAM by splitting the tracking and the
mapping parts to two different threads. Thus the computationally more costly mapping thread can
run at a lower frequency without affecting the tracking which has to be real-time. Additionally,
PTAM introduced Bundle Adjustment(BA) methods in visual SLAM for mapping optimization.
ORB-SLAM [16] followed the same principles but extended the application area coverage capabilities
by effective map management and loop closure techniques. SLAM systems have shown impressive
results in uncovering the structure of their environment and are suitable for placing 3D virtual objects
in a specific location of the scene, especially if they reconstruct a dense map of the environment.
An example of a system that efficiently employs a SLAM algorithm for localization in AR is the
Microsoft HoloLens.

The main advantage of SLAM tracking for AR being that it is not dependant on any predefined
targets, can also be seen as a disadvantage is some cases. In particular, it is difficult to extract real-world
scale information in SLAM and most importantly it is not directly possible to display object specific
AR content, which is often an important trait of an AR application. In this case, model-based tracking
of specific objects can be more suitable.

Model based tracking refers to using a predefined CAD line model or a 3D reconstructed textured
model of the tracking target (e.g., object, room) and matching that to the live view of the object during
tracking in order to uncover the 6DoF pose. This allows to alleviate the use of disruptive markers as
the object itself is used as the target, while retaining full 3D information of the tracked object thus
automatically providing the correct coordinate frame for AR augmentations. 3D CAD line models were
used in [17] to perform tracking by minimizing the error between the lines of the observed object and
its model in an iterative optimization approach. In [18], multiple hypotheses for the object pose were
added in order to deal with ambiguities arising from object symmetries. Fusion of line tracking with
texture features was proposed in [19] to increase the overall robustness. Textured 3D rendering is used
in [20] to extract edge features from depth and texture discontinuities. Color information was used as
a complementary tracking cue to the geometrical features in [21]. The aforementioned approaches can
be regarded are computationally quite intensive as these systems operate in relatively low frame-rates.
Especially the iterative optimization of CAD line model tracking can be cumbersome. Furthermore,
these systems have a quickly deteriorating performance in cluttered environments. Initialization of
the tracking is also often problematic in CAD-based systems as the user is asked to align an initial
pose of the line model to the actual objects. This is time-consuming and requires a certain level of user
expertise. Direct methods that have emerged more recently use the entire image instead of specific
features and attempt to maximize the photometric consistency between frames. Examples of such
approaches are [22,23]. Direct methods are in general more sensitive to sudden illumination changes
making them less suitable for many types of applications.

Concerning available commercial systems for object tracking, Vuforia [24] offers tracking of
objects based on CAD models, which performs well but suffers from the previously mentioned manual
initialization problem. For objects for which no CAD models are available, a scanning procedure is
available by placing objects next to markers and performing a structure-from-motion approach to
uncover the 3D structure of the object. This again requires some level of user expertise and does not
make the object model available for authoring of AR content with knowledge of the 3D structure.

In this article, we present a detailed version of the object tracking framework contained in [8].
The tracking is based on high quality textured 3D scans of objects and is designed to successfully
address many of the challenges faced in 6DoF object tracking of arbitrary objects, namely fast and
reliable initialization, robustness to motion blur and illumination changes and tracking during
occlusions and in cluttered environments. The second part of the article presents a Remote Live
Support application for industrial environments using the proposed 3D object tracker in an architecture



Computers 2018, 7, 6 3 of 22

consisting of the end user, a server and a remote expert utilizing edge computing for the tracking to
ensure real-time performance independent of the end user hardware.

Being long time undiscovered for industrial use cases, Augmented Reality found its way onto
the factory floor in recent couple of years. There exist plenty of solutions for different industrial use
cases in which augmented or virtual reality is used [2]. Some examples are the training use case [25],
marketing [26], assembly [27], remote live support [28–30] and many others.

The rapid evolution of industrial AR applications proves the success of the recent technological
growth in the virtual and augmented reality world. Nevertheless, several crucial burdens remain
unsolved. First, the existing AR hardware still lacks computational performance for delivering
convincing AR experiences to the user. While running the demanding AR algorithms, devices such as
glasses, smartphones or tablets suffer from overheating, unacceptably short battery life and further
restrictions, for example regarding the quantity of renderable polygons [2]. Second, the process of
designing, developing, deploying and maintenance of AR applications locally on different mobile
devices is very expensive.

To combat these two issues, we propose a solution based on a real-time offloading of AR
computations to a high performance server using Edge Computing. Edge or fog computing is a
technology which brings computational resources and services closer to the end-device to reduce the
added latency to a minimum, so that real-time applications are facilitated [31]. The so called edge
server can take over the most heavy processing tasks that require CPU and/or GPU computations and
provide a remote service to mobile devices in close proximity. This loosens up the limitations of mobile
devices mentioned above and enables new types of services (e.g., augmented reality as a service).

On the other hand, this new architecture challenges the data transmission path between the client
device and the edge server. Here, high data rates and short added latency are expected. The publically
funded project “proWiLAN” faces these challenges by introducing a next generation radio technology
for industry. A use case, considered in the project, applies Augmented Reality for industrial purposes
implementing the Remote Live Support, where a field technician confronted with a machine error gets
assistance by a remote expert through a video transmission and AR. This should increase the machine
availability time as well as decrease the travel cost of qualified experts as it was shown that telephone
support is frequently not enough to get the machine running again and a service engineer will most
likely have to attend to it, which implies high expense through longer down time and travel cost [32].

In our use case, a field technician aka operator carries a head-mounted or handheld AR device,
which is able to record a video stream of the user’s view—possibly along with other information,
such as an audio stream, sensor data, etc.—and send it to a remote expert. The expert may be located
anywhere and therefore may only be reached via a wide-area network (WAN), such as the Internet.
The latency for the video and audio streams shall not exceed 250 ms and 150 ms respectively [33].
Observing the received video stream, the expert gives precise advices adding extra information aka
annotations to the live stream. These annotations are shown in the operator’s glasses at proper
positions, so he can easily follow the instructions. An accurate positioning is required along with
some complex AR computations. The AR computations are offloaded (e.g., by using mobile edge
computing concepts) to a server [34]. The end-to-end latency, which includes the recording of a new
image, its transfer to the server, the necessary AR computations (e.g., tracking and rendering) and
the transfer back to the client device, should not exceed 20 ms in the best and 70 ms in the worst
case. In order to support future AR devices with 4 K resolution and stereo cameras, data rates up to
500 Mbps (in case of H.264 encoding) and up to 6.6 Gbps (in case of uncompressed video stream) shall
be supported. The jitter of the video transmission shall not exceed 20 ms [35].

As mentioned above, a couple of such AR Remote Live Support applications have already
been implemented [28–30], but most of them do not make use of a proper tracking method, so the
annotations made by the remote expert are not registered correctly in 3D according to Azuma’s
initial definition of AR [36]. These solutions are either solely showing augmentations in a 2D static
manner [37] or they use outdated methods like marker tracking [30,38]. Recently, in [39] a Remote



Computers 2018, 7, 6 4 of 22

Live Support system was presented based on a client-server architecture that uses the Vuforia tracking
framework but requires user collaboration in setting up the tracker by taking pictures from different
views around the object. Additionally, it seems that the annotations of the expert are not registered
in 3D but in 2D since the geometry of the objects is not fully known. Finally, [40] focuses more on
the different mechanisms for capturing knowledge of the expert and transferring it to a person being
trained on a task.

We identify the main drawbacks of previously existing methods in the tracking and 3D registration
of annotations part. One reason for that are the above-mentioned insufficient computational resources
of mobile AR devices. In this work, we combat this limitation by offloading the computation to a close
edge server as shown in the next sections. In our use case, the most challenging processing task is
represented by the object tracking mechanism that delivers the basis for the proper 3D augmentation.

The main contributions of this work are:

• A robust 3D object tracking framework based on textured 3D scans of the objects
• A fast and robust multi-threaded initialization and reinitialization scheme using ORB features
• Frame to frame tracking with combination of tracking between real images and tracking between

rendered and real images for additional robustness
• The use of the pencil filter for the enhancement of illumination invariance of the tracking
• A Remote Live Support architecture with 3D registration of the remote expert annotations

The rest of this article is organized as follows: In Section 2 we describe in detail the proposed
object tracking pipeline. Subsequently, in Section 3 we provide the architecture of our Remote Live
Support AR application using Edge Computing. Finally, in Section 4 we provide qualitative and
quantitative experimental results on the tracking accuracy and runtime performance together with
an evaluation of on the network-induced delays from offloading the tracking computations to an
edge server.

2. 3D Object Tracking

In this section we present our proposed 3D object tracking pipeline. After defining the
mathematical notation that will be used throughout this work in Section 2.1, we describe the
preparatory steps for an object to be used for tracking in Section 2.2. Subsequently, we describe
the tracking algorithm itself in Section 2.3. The overall algorithm flow chart is given, and the modules
for initialization and re-initialization as well as the frame-to-frame tracking are presented in detail.
Finally, the use of the pencil filter to increase the resilience of the tracking to illumination changes
is advocated.

2.1. Problem Formulation

The addressed problem of 6DoF camera pose tracking consists of estimating a rotation matrix
Rcw ∈ R3×3 representing the rotation from the world coordinate system W to the camera coordinate
system C, and a translation vector Wc ∈ R3 containing the position of the world coordinate system
origin in the camera coordinate system. In the case of object tracking the coordinate system of the object
model can be considered as the world coordinate system W. Using a homogeneous representation
of 3D points P ∈ R4 in the object coordinate system and a homogeneous representation of 2D points
p ∈ R3 in the camera image coordinate system, the camera pose estimation problem requires an
estimation of the camera pose [Rcw|Wc] such that the mapping

p = K[Rcw|Wc]P, (1)

best fits a set of known 3D to 2D correspondences M = {Pi ↔ pi}, K ∈ R3×3 representing the camera
instrinsics matrix.



Computers 2018, 7, 6 5 of 22

2.2. Object Registration Procedure

In this section the procedure that is followed for preparing an object so that it can be tracked by
our algorithm, from the 3D Reconstruction of the object in Section 2.2.1 to the learning of the most
suitable feature points for tracking in Section 2.2.2 is described.

2.2.1. 3D Scanning

Our tracking algorithm partially uses a 3D representation of the object. Therefore, it is important
to be able to scan the object and generate a 3D model with a realistic texture. Our 3D reconstruction
method is based on the structured light principle used in [41]. In this method, correspondences
between the acquisition devices are generated by projecting patterns on the object. In our case, a phase
shifted structured light is used, where two phase functions are transmitted from one projector to two
cameras by encoding them into sinusoidal fringe patterns that are shifted a number of times. The phase
functions are recovered in the camera images using a least square approach [42]. Thanks to the phase
shifting, the number of reconstructed 3D points does not depend on the natural texture of the object
and even objects with very poor texture can be reconstructed. Using one projector and two cameras,
only one face of the object can be reconstructed. In order to reconstruct the entire object, the structured
light method is repeated several times, creating a number of partial scans of the objects. These partial
scans are merged together using the Iterative Closest Point method (ICP) [43]. In addition, images
under natural illumination are taken for reconstructing the texture of the object. The reconstructed
object can be stored efficiently in a small-size 3D model by using the method of [44]. Using this method,
the mesh geometry is simplified into a shape proxy and the fine geometry variations are stored in a
normal map. This way, the 3D model can be very precise and lightweight.

2.2.2. Learning Features for Tracking

Once a 3D model of the object is available, we can use it directly as input to a module that extracts
automatically the most salient points on the object’s surface. To this aim, we use an offscreen renderer
that can render the object with a given pose on an image of a predefined size. We generate a high
number of random poses of the renderer camera around the object (usually in the order of magnitude
of 10.000 poses), with a distance automatically adjusted so that the object keeps a given size in the
image. Figure 1 shows several examples of the generated images. In addition, the renderer provides a
depth image which provides for each pixel the distance of the object to the camera. With the offscreen
renderer as a tool, we collect the points that have statistically the highest probability to be found by a
point detector by using an accumulator. For each new random pose [Rcw|Wc], we run a point detector
on the rendered image. In our implementation, we opted for the Good Features To Track detector of [45],
but any salient point detector can work. For each found point, we can recover its 3D coordinates by
using the depth image generated by the renderer. In detail, if p = [x, y, 1] is the 2D homogeneous
representation of the point (pixel coordinates of the feature center) and z the depth obtained from the
z-buffer of the renderer then the 3D position P of the object is defined as:

P = RT
cw

(
(K−1 p)z−Wc

)
. (2)

These 3D coordinates are put in a discrete 3D accumulator with a bin size proportional to the
size of the object. Typically, we have a bin size of a few millimeters. This procedure is repeated a
fixed number of times, or until enough points have been collected. We then run a Non-Maximum
Suppression on the accumulator to avoid having too many points around a specific location, and sort
the list of points according to the number of hits in the accumulator. We then keep the best points as a
list of salient 3D points for the object, which we call anchor points. The green points in Figure 1 show
some of the detected anchor points for one specific object.



Computers 2018, 7, 6 6 of 22

Apart from the registered 3D points, a number of Norb rendered images of the object are created,
and ORB features are extracted and stored together with their corresponding 3D positions to be used
as reference images for the ORB Initializer module (see Section 2.3.3).

Figure 1. Rendering of an object 3D model from different poses with marked detected anchor points.

2.3. Object Tracking Algorithm

In this Section, the core part of the our proposed object tracking algorithm is described. We first
present the outline of the algorithm along with a flow chart to focus on the interplay of the different
modules in Section 2.3.1. Subsequently, we describe in detail the frame-to-frame tracking (Section 2.3.2)
and the initialization modules (Section 2.3.3). Finally, we describe the pencil filter and its importance
for illumination resilient tracking.

2.3.1. Algorithm Outline

A flow chart of the tracking algorithm is given in Figure 2. The left side of the graph depicts
the normal frame-to-frame tracking mode (Section 2.3.2) and the right side represents the procedure
followed when initialization (Section 2.3.3) is required, i.e., when the frame-to-frame tracking fails or
when the tracker application is started. In the frame-to-frame tracking mode, an off-screen rendering
step is first performed, meaning that the 3D model of the tracked object is rendered using the pose
[Rcw|Wc]k−1 from the previous frame k− 1. Subsequently, the rendered frame from k− 1 together
with the real frame k− 1 are both used for matching to the current frame k. Matching is performed by
optical flow between image patches around the registered anchor points of the object, assisted by the
use of the pencil filter (Section 2.3.4). Using the acquired 3D-2D correspondences from the matching,
the new pose for frame k, [Rcw|Wc]k is estimated by solving the perspective PnP problem within a
RANSAC framework for outlier rejection [46].

The initialization part of the algorithm is activated whenever a correct pose for the previous
frame k − 1 is not available. It consists of two main modules, namely the ORB Initializer and the
ORB Reinitializer. The ORB Reinitializer is a quick reinitialization scheme that is meant to quickly
intervene whenever a failure of the frame-to-frame tracking occurs in order to recover a correct pose.
It functions by matching ORB features of the current frame to a keyframe of known pose that is
constantly being renewed by a background thread while frame-to-frame tracking is functioning. If this
quick reinitialization step fails or if no keyframe is available yet, the ORB Initializer module is used.
This module performs matching of ORB features to a number of rendered frames created and stored
during the registration of the object. The procedure is accelerated by parallelization. The matching of
the current to the registered frame that provides the most correspondences is used for pose estimation.
In case of failure initialization is attempted again on the next frame.



Computers 2018, 7, 6 7 of 22

Get Next Frame (k)

Pose 
valid?
(k - 1)

START

k = k + 1

Off screen rendering 
(k – 1)

Matching (k – 1 to k)
(F2F, R2F)

RANSAC Pose 
Estimation (k)

ORB Reinitializer ORB Initializer

Keyframe 
available?

New pose 
valid?

(k)

Reinit 
SUCCESS?

Init 
SUCCESS?

k = k + 1

YES NO

YES NO

YES

NO

YES

NO

YES

NO

Figure 2. Flow chart of the tracking algorithm components.

2.3.2. Frame to Frame Tracking

The aim of the frame-to-frame tracking module is to follow individually the 2D position of the
anchor points from one frame to the next one, and to compute a novel pose using the new 2D positions.
It is assumed that the pose of the object in the last frame [Rcw|Wc]k−1 is known (by initialization or
because the frame-to-frame tracking delivered a valid pose for the last frame). The general idea is to
follow the point using a Kanade-Lucas-Tomasi (KLT) tracker [47], which is an iterative registration
technique based on the texture of the neighborhood of a point. However, using a KLT tracker for many
frames will inevitably lead to drift. In order to avoid the drift, we correct the position of the point
by using a two-step approach: first, we follow a 2D point from the last video frame to the new video
frame by using a standard KLT tracker. This is named Frame to Frame (F2F) tracking. In a second
step, we use as reference a rendered version of the last frame. This rendered version is produced by an
offscreen renderer, using the last valid pose. This way, we have a ground truth appearance for the point
being tracked. The second step starts the iterative tracking from the position where the first step ended,
but using the rendered image as reference for the template. We name this Rendered-to-Frame (R2F)
tracking. This method allows for tracking points over a long period of time without drift. In practice,
we repeat this tracking for all the points, but have to render the object with the previous pose only
once per frame. The KLT trackers can run in parallel for many points.

Once the tracking in 2D converged, we end up with a new 2D position for all the visible
anchor points. Because we know the 3D position of all the anchor points, we can use the 2D-3D
correspondences to compute a new pose [Rcw|Wc]k for the new frame k. In order to avoid corruption
by possible outliers, a RANSAC framework is used and only the inliers are kept.

If the KLT tracking fails for one of the anchor points, or if one of the anchor points is detected as
outlier in the pose computation, its 2D position cannot be considered as valid anymore. A common
cause can be a temporary occlusion of this point by another object, the user, or through self-occlusion.
In these cases, the outlier points are marked as such, and in the next frames, their 2D position will be
recomputed using the pose of the object and the 3D position of the point. With this technique, we can
recover from temporary occlusion as soon as the occlusion stops.



Computers 2018, 7, 6 8 of 22

2.3.3. ORB Initializer and Reinitializer

The frame-to-frame tracking will inevitably fail in some situations when not enough matches are
found between consecutive frames due to e.g., motion blur. Additionally, an accurate initial pose of
the object without previous pose knowledge is required when the tracker is started at first. In these
cases it is very important for the user experience that the tracking system has the ability to initialize
and reinitialize in a quick, seamless and robust manner that does not require any effort from the user
side. To ensure that, we developed a two stage reinitilization and initialization procedure that is
immediately activated upon a failure of the frame-to-frame tracking.

The ORB Initializer matches ORB [48] keypoints between the current frame and a number of Norb
rendered frames with known poses that are created and stored during the registration procedure of
the object (Section 2.2). The matching procedure for all frames is split among all available threads
and done in parallel. This allows to match to a large number of registered frames (up to 64) in a
considerably short time. To discard potential outliers the matches from the descriptor sets of each
reference rendered image are first subjected to a ratio test between the first two possible matches
as suggested in [49]. Subsequently, the reference image that produced the highest number of good
matches (i.e., matches that withstood the ratio test) among all reference images is used for pose
estimation utilizing correspondences of registered 3D points from the reference image to 2D image
points from the current frame and solving the perspective PnP problem in a RANSAC framework.

The ORB Reinitializer is implemented to directly intervene whenever the frame-to-frame tracking
fails to rapidly regain the correct pose. It is based on an alternative deployment of the concept of
keyframes borrowed by SLAM tracking systems. During the normal function of the frame-to-frame
tracker a background thread running at a lower frequency compared to the tracker is responsible for
collecting and renewing a single keyframe. The keyframe contains an image frame, the pose resulting
from the tracker for that frame and ORB feature descriptors extracted from that image along with their
2D image coordinates and their 3D position calculated from the pose. For a frame to be selected as a
keyframe several criteria have to be fulfilled, to ensure that the tracking was functioning properly on
that frame. The criteria used are that the ratio of outliers to inliers from the RANSAC procedure as well
as the reprojection error of the tracked features should not exceed certain thresholds. Whenever the
frame-to-frame tracking fails, the ORB Reinitializer matches the current frame to the stored keyframe in
order to estimate the pose, similarly to the ORB Initializer. The Reinitializer module is highly effective
because it usually matches between very similar frames, especially when the keyframe gets renewed
at a high rate. In case of failure of the reinitialization, the ORB Initializer is used.

2.3.4. Pencil Filter

In order to make the frame-to-frame tracking more robust, especially to illumination changes we
propose to preprocess the images by applying the pencil filter. The pencil filter is commonly used to
add an artistic effect on images, however we found that its edge enhancing and image normalization
properties are very beneficial for tracking image patches with our frame-to-frame tracker. The filtering
procedure consists of a dilation of the grayscale image with an ellipse and then thresholding for local
normalization of the pixel values. The result of the application of the pencil filter in an image can be
seen in Figure 3. On the top two images the rendered model of the object and an image of the real
object in a challenging illumination setting are presented. On the bottom two images the pencil image
versions of the rendered and live object image are shown. It is clearly visible that the application of the
pencil filter greatly increases the similarity between rendered and real image in this situation, making
the frame-to-frame tracking more robust.



Computers 2018, 7, 6 9 of 22

Figure 3. Result of pencil filter applied on rendered image (left) and live image in challenging
illumination condition with shadows and reflections (right).

3. Remote Live Support Realized with Mobile Edge Computing

In the following chapter the Edge Computing architecture of our Remote Support Application
will be described. Therefore a short introduction to Mobile Edge Computing is first given in Section 3.1,
followed by the justification why this technology is so important for mobile AR. Afterwards a detailed
insight into the application architecture is provided, describing the roles of all three main actors namely
the end user (client), edge server and remote expert (Section 3.3). Finally, the proposed approach for
3D registration of annotations in the object coordinate space is presented.

3.1. Mobile Edge Computing

Multi-access Edge Computing (MEC) is a new official name for Mobile Edge Computing.
With MEC, cloud-computing capabilities and an extensive IT service environment are offered at
the edge of the network. The use of MEC in factory automation should enable processing of vast
amount of data, complex orchestration of cyber-physical systems, and coordination of computation as
well as communication resources in real-time [50]. For our work, MEC represents a promising approach
to achieve the low latencies required for many industrial applications. MEC employs resource rich
edge servers that are placed close to end devices and assist them in executing computation intensive
tasks (e.g., complex data processing). The core element of MEC is the cognitive management entity that,
among variety of tasks, ensures the advanced resource planning. To fulfil high industry requirements
mentioned above, MEC enables further important techniques besides effective resource allocation and
offloading [51]. These include caching, mobility support, service migration, data prioritization, etc.
Many aspects of MEC are still in a very early development phase and are expected to continue
evolving over the next years. In this paper, we focus on the offloading feature of MEC described in the
next sections.



Computers 2018, 7, 6 10 of 22

3.2. Relevance of MEC for AR

As described previously, Mobile Edge Computing can bring computing resources and services
closer to the user and thereby offers huge advantages over cloud computing in terms of latency.
Since most available mobile devices until today are not able to run the demanding AR algorithms
such as those described in Section 3.1, MEC has the potential to be one fundamental building block for
providing next generation AR applications.

Our proposed AR Edge Computing architecture consists of two main actors: The client (in the
remote live support use case: the machine operator), who wants to get some augmented reality
information superimposed on his perception of the physical world, and the edge server, which has the
task to bring the AR experience to the user and therefore to run the computationally challenging AR
algorithms. While the client device can be any mobile device having an integrated camera, the edge
server should be a high-performance PC with an appropriate graphics card.

3.3. Remote Live Support System Architecture

3.3.1. Overview

In the remote live support use case a third instance comes into play, namely the remote expert.
His task is to draw annotations into the video stream coming from the operator in order to support
him. In such remote support scenarios the most common devices for the remote expert to use are a
laptop or a tablet pc. The involved actors are shown in Figure 4.

Figure 4. Remote Live Support Architecture Overview.

Both the operator and the remote expert have to connect to the edge server before the periodic
process illustrated in Figure 5 can start.

First, the operator’s mobile AR device camera grabs frames at a configured frame rate and sends
them to the edge server. In our implementation we rely on a web application on the client side so the
frames can either be sent via websocket or WebRTC. On the edge server the process is divided into two
asynchronous sub-processes. On the one hand the server accomplishes the tracking algorithm (if the
algorithm has already initialized), which was introduced in detail in Section 2.3. The estimated camera
pose of each frame is saved on the edge server. On the other hand the server forwards the video stream
to the remote expert. This second part of the process is not performed in real-time because available
WAN infrastructure is used as the expert can sit thousands of kilometres away.



Computers 2018, 7, 6 11 of 22

Figure 5. Remote Live Support Activity Diagram.

When the remote expert receives the incoming video stream he can pause it at any time to
draw some helpful hints onto it, such as circles, arrows, text messages or freehand sketches. Those
annotations are sent back to the edge server together with the corresponding picture ID, so the edge
server is able to match the annotated picture with the saved camera pose. This way the annotations
can be registered properly in 3D (see Section 3.3.5). As soon as new annotations are registered they are
rendered into the video stream, which is sent back to the client permanently, regardless of whether
annotations are available or not.

Attention should be paid to the fact that the cycle time between the grabbing of a camera frame to
its augmented visualization (red background in Figure 5) has to be kept as small as possible. Experts
estimate the maximum end-to-end latency a user wearing an HMD can perceive at 10 ms [52], where
in some non-HMD applications considerably higher latencies are tolerable [53].

3.3.2. User Side—Mobile Device

The client device, which can be any mobile device having available an integrated camera and
an up-to-date web browser, has to grab live data from the camera and send it to the edge server
via web technology like web sockets or WebRTC. We found that with current WiFi technologies a
client-side compression of the video stream (or single pictures) before transferring it to the edge
server is faster than sending raw data. Depending on the chosen protocol, compression is done either
manually (i.e., JPEG for web sockets or WebRTC DataChannel) or by the protocol (V8 with WebRTC
MediaChannel). The incoming annotated video data are also to be displayed in the web browser.

3.3.3. Server Side—Edge Cloud

The edge server is the central component in our architecture. It is responsible for executing
all algorithms and tasks which are computationally too demanding for the client device. In our



Computers 2018, 7, 6 12 of 22

implementation this corresponds to the object tracking and the rendering of augmentations. A constant
stream of captured video is received from the user. To perform the explained object tracking an
initialization step is required in the beginning or when tracking is lost as described in Section 2.3.3.
Following a successful initialization the frame-to-frame tracking approach is used. The tracking on
the edge server is integrated into a Unity3D application, which is also responsible for rendering the
augmentations into the camera feed and sending it back to the client.

3.3.4. Remote Expert

The application on the remote expert side receives the video stream from the operator (sent via
edge server). The remote expert then can pause the video stream to draw various annotations onto it,
such as circles, arrows, text or freehand-sketches. Those can also be removed from the stream, when
they are not needed any more. The annotations are finally sent back to the edge server. Since a Unity3D
application was deployed on the edge server, we also use Unity3D for the remote expert application in
order not to run into compatibility conflicts of the exchanged data.

3.3.5. 3D Registration of Annotations

One crucial task of the edge server is to render the annotations made by the remote expert correctly
into the camera feed sent back to the machine operator. It must be emphasized, that the remote expert
draws his annotations into a 2D picture, where the edge server has to register them in 3D, so the
operator is able to walk around the machine experiencing the augmentations with proper translation,
rotation and scale. In comparison to a 2D-based approach that assumes planarity of the scene, with 3D
registration of augmentations we have direct connection of the AR content to the object through the
knowledge of its 3D structure and can cover any motion of the user without incorrect augmentations or
loss of tracking. An example of this is the correct placement of the red arrow pointing to the button on
the machine of Figure 6 from different angles. Additionally, since the remote expert application freezes
the image and draws on it asynchronously, it is expected that there could be a significant change in the
end user camera pose in the meantime. Therefore, 3D registration of annotations with respect to the
tracked object is an important issue to ensure the expected functionality of the application. The process
is made up as follows: The remote expert receives the live video stream from operator’s AR device
and pauses it at any time. Then he draws one or more 2D annotations into the frozen frame (e.g., a red
circle like in Figure 7).

The prerequisite for the edge server to be able to position the annotation correctly is that it
is drawn onto the known object (3D model of a machine used for tracking) and not in free space
(grey space in Figure 7). Now the vector from image center to annotation’s fix point (e.g., the center of
the red circle annotation) is calculated and normalized over the side lengths of the render view-port
camera in the Unity3D application of the remote expert. This vector together with the frame ID of the
freeze frame is sent to the edge server, which draws the same vector into the corresponding image
(still 2D) on server-side. Since the video textures in the Unity 3D applications of the remote expert an
the edge server can be of different size, the normalized vector first has to be multiplied by a scaling
factor related to the side lengths of the render view-port camera of the edge server application. As we
can see in Figure 7 a virtual camera is targeted at this 2D texture. Because the coordinates of this virtual
camera in Unity are known, the vector between the camera and the annotation can be calculated.

Subsequently the camera pose computed by the tracking system described in Section 2.3 is then
transferred to a second virtual camera targeting the 3D model of the object the machine operator wants
to maintain (usually a machine). The vector calculated in the previous step is now transformed into
the camera system of this second camera. As outlined in Figure 7 now a ray can be cast from the
second camera in the direction of the anchor point of the annotation. The point, where this ray hits the
collider of the 3D model can be assumed as the spot in 3D space the remote expert wanted to attach
his annotation to.



Computers 2018, 7, 6 13 of 22

Figure 6. Qualitative performance evaluation of the tracking system under challenging conditions.
Scale change in first row, occlusions in second row, motion blur in third row, lighting variation in fourth.
The red arrow augmentation is correctly placed in 3D in all cases.

2D texture of the video stream in 
the app of the remote expert rendered 3D 

model

annotation added by remote expert

2D texture of the video 
stream in the edge server 

application

virtual camera 1

estimated vector

3D model virtual camera 2

ray (raycast)

point of intersection 
(ray and 3D-modell)

3D model

Figure 7. Process of 3D registration of remote expert’s 2D annotation.

4. Evaluation

In this section, we present experimental results of the proposed 3D object tracking algorithm
as an entity but also within the remote live support application context. A qualitative evaluation
demonstrating the robustness of the tracking at different scales, during fast motion, occlusions and
illumination variation is followed by a quantitative analysis of the user-side translational and angular
error of the 3D annotations placed by the remote expert in Section 4.1. Apart from the tracking
accuracy, an equally important aspect of a tracking system is represented by the processing resources.
For this reason, we compare the required time for tracking on a powerful desktop PC to the time
required in a mobile device, and argue for the use of remote execution of the tracking and rendering of
augmentations in Section 4.2. This claim is also supported by measurements of the network-induced
delay for offloading the execution to a server.



Computers 2018, 7, 6 14 of 22

4.1. Tracking Quality

Figure 6 presents the behaviour of the tracking system under various challenging conditions.
The tracking accuracy is qualitatively evaluated by observing the red arrow augmentation placement
in 3D in the selected challenging image frames. In the first row of images, the range of scale at which
an object can be tracked is presented. In the second row, the ability of the tracker to function properly
under occlusions of the target object because of interaction with the object and with a partial view of
the object is demonstrated. In the third row, we present robust tracking under severe image motion
blur. Finally in the fourth row, we demonstrate the tracker resilience to illumination changes. Another
requirement for the tracking system is that it is not affected by changes in the geometry of the objects.
Indeed, in the presented results there are already discrepancies between the real objects and their 3D
models. For example buttons that are in different states or cables that have been removed or connected
differently. The use of keypoints of the model instead of a holistic optimization approach allows the
tracking to be robust to these kind of changes the same way it is robust to occlusions.

Figure 8 demonstrates the improvement in tracking achieved through the use of the pencil filter.
In the first row, images from tracking using histogram equalized grayscale images are shown, while in
the second row tracking images using the pencil filter are presented. The inlier features from the
RANSAC pose estimation step (Section 2.3.2) are marked green and the outliers are marked red.
The optical flow matching vectors of features are marked with yellow color. It is clear that using
the pencil filter leads to having much less wrong matches resulting in outliers, which in turn greatly
enhances the stability of the tracker. Furthermore, since it makes the tracking much less dependent on
the pixel intensities it also increases the robustness to changes of object appearance due to dirt and
dust that may appear on it in a realistic industrial setting.

Figure 8. Qualitative evaluation of the number of RANSAC outliers during tracking on grayscale
images (row 1) vs. pencil images (row 2). Inliers are marked green, outliers red, yellow is the optical
flow matching vector.

For the quantitative analysis of our object tracking solution, we present measurement results of
the user-side translational and angular root mean square error (RMSE). For this, an augmentation of a
3D model placed on top of a real object has been assessed in a static scenario. We built a testbed using
standard off-the-shelf hardware components: a desk lamp, Logitech C922 Pro webcam and control
hardware IndraControl XM21 from Bosch Rexroth AG (Figure 9). Two different lighting conditions
have been tested – good and weak lighting – using the desk lamp. The software was running on a
standard HP ZBook 15 G2 (Code H9S03EC, i7-4810MQ 2.8 GHz, NVIDIA Quadro K2100M, 802.11ac,
32 GB RAM, 256 GB disk). We evaluated the tracking precision using estimation of the standard
deviation from the pre-calculated ground truth tracking result. This ground truth represents the
reference values for the accurate translation and rotation of the XM21 model manually placed on top



Computers 2018, 7, 6 15 of 22

of the real XM21 observed through a camera. In other words, we measure the jitter of the tracking
system on different poses, since an external tracker with an accuracy that is clearly superior to the one
of our tracker was not available.

Figure 9. Camera view with an augmented XM21 model on top of real XM21 observed through camera.
Left—setup with a desk lamp switched on, right—switched off.

In Figures 10 and 11, the evaluation of the tracking performance is presented as translation
and rotation errors correspondingly, for both lighting conditions and after the initialization phase
of the object tracking was done. The error represents an absolute deviation from reference values.
The translation is presented for all three dimensions separately. The results prove a very high accuracy
of our tracking approach in good lighting conditions with errors below 0.1 mm for translation and
0.01 rad for rotation having just few outliers. In the weak lighting conditions, the tracking error
increases approximately by a factor of 10. The performance, however, is still very high with errors
below 1 mm for translation and 0.1 rad for rotation. This proves the robustness of the tracking
approach in weak lighting conditions. Next, we evaluate the timing aspects of our tracking approach
in a standalone setup as well as in combination with edge computing.

x y z
0.0

0.05

0.1

0.15

0.2

0.25

0.3

tr
a
ck

in
g
 e

rr
o
r 

[m
m

]

x y z
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

tr
a
ck

in
g
 e

rr
o
r 

[m
m

]

Figure 10. Evaluation of translation. Left—in setup with good lighting, right—with weak lighting.

good lighting weak lighting
10-4

10-3

10-2

10-1

100

tr
a
ck

in
g
 e

rr
o
r 

[r
a
d
]

Figure 11. Evaluation of rotation in setup with good and weak lighting conditions.



Computers 2018, 7, 6 16 of 22

4.2. Runtime Measurements

In this section, we present an experimental evaluation of the application runtime. Results on
the network-induced delay for the transmission of images to the edge server and back to the client
are given in Section 4.2.1 whereas the comparison of running our tracking approach on different
platforms is given in Section 4.2.2. The latter compares the server delay to the delay of a mobile PC in
order to provide a justification for the use of server offloading in the remote live support application
described above.

4.2.1. Offloading Delay

As mentioned previously, the offloading of 3D object tracking requires high data rates and
short added latency in the communication channel between the server and the client. A typical
architectural distance between a client and edge server should not exceed 2–3 hops to avoid additional
store-and-forward delays. For the evaluation of the network delay, we built a testbed consisting of
the following elements: a client (Microsoft Surface Pro 4 with an Intel Core i5 processor at 2.4 GHz
and 8 GB RAM), a server represented by HP ZBook 15 G2 (see the detailed parameters above) and
a WiFi router (TP-LINK Archer C7 AC1750, WLAN 802.11n mode, Gigabit Ethernet). We collected
measurements in three different network setups: (i) client and server applications run on the server
exchanging data over the localhost connection; (ii) client runs on the MS Surface, server—on the
ZBook, both participants are connected over Ethernet cable to the router; (iii) same as in the second
setup but the client is connected over WiFi to the router. The measurements results are presented in
Figures 12–14 correspondingly. For the transmission of video data, the following parameters have
been applied: 640× 480 image resolution, frame coding using JPEG at 75% and WebRTC protocol
for peer-to-peer connection combined with UDP/IP stack. In the previous work of [2] it was found
that JPEG compression of 75% gives a good trade-off between image quality and transmission time
(image file size). We did not experience a deteriorated tracking performance on the compressed images
in comparison to the uncompressed ones.

More than one thousand measurements have been conducted in each setup. To get a deeper
view on different latency subcomponents, we split each measurement, using co-measured timestamps,
into eight parts representing eight main system aspects that have the major impact on the overall latency.
These aspects are: client compression, client encoding, client-server transmission, server tracking,
server rendering, server encoding, server-client transmission and client picture update. We observed
that the majority of delay components are very deterministic and have very little standard deviation.
The most unstable values are achieved for the client compression, client-server and server-client
transmissions. The time for the video compression on the client highly depends on currently available
resources and the operation system status that show high variation over time. The transmission latency,
being the most unstable in case of wireless connection, represents the biggest standard deviation.

0

10

20

30

40

50

60

70

1 101 201 301 401 501

tim
e 

[m
s]

measurement #

8. client picture update

7. server-client transmission

6. server encoding

5. server rendering

4. server tracking

3. client-server transmission

2. client encoding

1. client compression

Figure 12. Evaluation of video transmission over localhost network.



Computers 2018, 7, 6 17 of 22

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501

tim
e 

[m
s]

measurement #

8. client picture update

7. server-client transmission

6. server encoding

5. server rendering

4. server tracking

3. client-server transmission

2. client encoding

1. client compression

Figure 13. Evaluation of video transmission over Ethernet network.

0

20

40

60

80

100

120

140

160

1 101 201 301 401 501

tim
e 

[m
s]

measurement #

WebRTC DC UDP

8. client picture update

7. server-client transmission

6. server encoding

5. server rendering

4. server tracking

3. client-server transmission

2. client encoding

1. client compression

Figure 14. Evaluation of video transmission over wireless LAN network (WiFi).

Despite the challenging video transmission, the average round-trip latency remained below 70 ms
even in the setup with the wireless connection. However, the identified aspects like the client-side
frame compression and communication channel between client and server remain to be weak aspects
of the offloading approach.

4.2.2. Server vs. Mobile Device Processing Time

The runtime performance of the proposed tracking algorithm has been evaluated on two different
devices and is given in Figure 15. Firstly, a Desktop PC with an Intel Xeon processor at 3.7 GHz with
32 GB RAM and a GeForce GTX 1080 Graphics Card which is a good example of the kind of device an
edge server in remote live support architecture could be. Additionally, in order to compare the server
processing time to that of a typical end-user mobile device, we also evaluate the runtime performance
on a Microsoft Surface Pro 4 (see the detailed parameters in the previous section). The comparison
in Figure 15 was conducted for a 640× 480 standard image resolution. The average time per frame
for frame-to-frame tracking was computed excluding the time required for tracking initialization.
The number of tracked features was set to 500.



Computers 2018, 7, 6 18 of 22

1.34

5.24

11.18

19.12

3.58

13.35

25.14

44.75

0 5 10 15 20 25 30 35 40 45 50

RANSAC

KLT-Matching

Off-screen

Rendering

Total

Tracking Runtime [ms]

Mobile PC Desktop PC (server)

Figure 15. Tracking algorithm runtime measurements in ms. On server Desktop PC and Mobile PC
(MS Surface). Total time for tracking per frame as well as time required for the main tracking algorithm
steps are provided.

As presented in Figure 15, the average runtime of the tracking algorithm on the server is 19.12 ms
per frame, which corresponds to ≈52 fps. The latter easily covers the needs of most applications
(i.e., most cameras on commercial devices and webcams offer up to 30 fps). In contrast to that,
the runtime on the mobile SurfacePro is more than twice as much resulting at 44.75 ms. The achieved
frame rate of ≈22 fps can still be considered adequate for an AR application, however two additional
factors have to be taken into account. First, the used mobile device is a relatively powerful one,
especially compared to e.g., a smartphone or a regular tablet. Second, one should consider the fact that
the given values are for the tracking only and that additional computing resources will be needed for
the rendering of AR content using the pose from the tracking. Therefore, it can be expected that the
additional overhead will eventually lead to a visible slowdown of the application.

As can be seen in Figure 15, one of the main contributors to the overall delay is the off-screen
rendering step which is highly dependent on the device graphic card. This step consumes more
than half of the tracking time for both tested devices. Subsequently, the optical flow KLT matching
is achieved quite fast since only a local search has to be done for each feature. The delay of this
step depends of course on the total number of tracked features for the object and also the number of
currently tracked features at each frame. It is possible to further reduce the matching time by reducing
the number of tracked features, however, the amount of features chosen in this experiment is one that
guarantees stable tracking from all poses of the used object. Finally, the required time for the RANSAC
pose estimation can vary a lot depending on the number of RANSAC iterations that were applied. It is,
however, kept very low most of the time because of the high ratio of inliers received from the KLT
matching step.

Additionally to the frame-to-frame tracking runtime measurements, we also measured the
time required for initialization and reinitialization using the approaches described in Section 2.3.3.
Initialization of tracking using N = 64 rendered poses of the object as reference requires 80–120 ms on
the Desktop PC and 110–160 ms on the mobile PC. Reinitialization is very fast requiring only 10.08 ms
on average on the Desktop PC and 21.67 ms on the mobile PC. Fast reinitialization is one of the key
features of the tracking system allowing it to recover immediately when a loss of the frame-to-frame
tracking occurs.



Computers 2018, 7, 6 19 of 22

5. Discussion

In this article, we presented a novel 3D object tracking approach based on textured scans.
The use of textured 3D reconstructions of the tracked object geometry is motivated by the extra
information that textured scans provide for tracking and especially for initialization compared to CAD
models. Additionally to that there are objects that for which CAD models are not available by their
manufacturers. In these cases, the object reconstruction pipeline based on structured light projection
that is used in our work is a viable alternative to making an object directly trackable. Still, it should
be mentioned that there are objects (e.g., highly reflective, completely textureless) that are not easily
scanned with existing technologies nor do they offer enough features for tracking.

The focus of our work was on tackling the issues encountered in tracking under uncontrolled
conditions to achieve the best possible experience of users with the system. We achieve illumination
invariance of the frame-to-frame tracking through the use of the pencil filter, and robustness to
motion blur through a seamless direct reinitialization procedure based on storing a tracking keyframe.
The tracker is able to estimate a correct pose even under heavy occlusion of the target object because it
relies on keypoints instead of employing a full model optimization procedure. The tracking quality is
demonstrated in both qualitative and quantitative experimental results.

We present the integration of the object tracking algorithm in an industrial AR application of
Remote Live Support. Through this, we address another issue of tracking systems, namely that of
computing resources. We experimentally show that while the tracker operations are quite fast on a
Desktop PC, a Mobile device of the kind that is expected to be used on an AR application such as
ours is pushed to the limit of its performance leaving little room for other applications and consuming
too much battery. Because of this, we suggested the remote execution of the tracking within an edge
computing architecture instead of the mobile end device and show how that can positively influence
the application by reducing the total delay of the tracking taking into account the network delay for
the transmission of images to the server and back.

Acknowledgments: This work has been partially funded by the Federal Ministry of Education and Research
of the Federal Republic of Germany as part of the research projects proWiLAN (Grant numbers 16KIS0243K,
KIS3DKI018 and 16KIS0249) and BeGreifen (Grant number 16SV7525K).

Author Contributions: The 3D Object tracking system described in Section 2 was conceptualized and implemented at
the Augmented Vision department of the German Research Center for Artificial Intelligence (DFKI) by Jason Rambach,
Alain Pagani and Didier Stricker. The Remote Live Support application (Section 3) was developed within the research
project proWiLAN by Michael Schneider of Bosch Rexroth AG and Oleksandr Artemenko of Robert Bosch GmbH
Corporate Research in collaboration with Jason Rambach of DFKI.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Barfield, W. Fundamentals of Wearable Computers and Augmented Reality; CRC Press: Boca Raton, FL, USA, 2015.
2. Schneider, M.; Rambach, J.; Stricker, D. Augmented reality based on edge computing using the example of

remote live support. In Proceedings of the 2017 IEEE International Conference on Industrial Technology
(ICIT), Toronto, ON, Canada, 22–25 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1277–1282.

3. Dunleavy, M.; Dede, C. Augmented reality teaching and learning. In Handbook of Research on Educational
Communications and Technology; Springer: New York, NY, USA, 2014; pp. 735–745.

4. Chen, L.; Day, T.; Tang, W.; John, N.W. Recent Developments and Future Challenges in Medical Mixed
Reality. arXiv 2017, arXiv:1708.01225.

5. Von Itzstein, G.S.; Billinghurst, M.; Smith, R.T.; Thomas, B.H. Augmented Reality Entertainment: Taking
Gaming Out of the Box. In Encyclopedia of Computer Graphics and Games; Springer: New York, NY, USA, 2017;
pp. 1–9.

6. Billinghurst, M.; Clark, A.; Lee, G. A survey of augmented reality. Found. Trends Hum. Comput. Interact. 2015,
8, 73–272.



Computers 2018, 7, 6 20 of 22

7. Weigel, J.; Viller, S.; Schulz, M. Designing support for collaboration around physical artefacts: Using
augmented reality in learning environments. In Proceedings of the 2014 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), Munich, Germany, 10–12 September 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 405–408.

8. Rambach, J.; Pagani, A.; Stricker, D. [POSTER] Augmented Things: Enhancing AR Applications leveraging
the Internet of Things and Universal 3D Object Tracking. In Proceedings of the 2017 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), Nantes, France, 9–13 October 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 103–108.

9. Rambach, J.; Pagani, A.; Lampe, S.; Reiser, R.; Pancholi, M.; Stricker, D. [POSTER] Fusion of
Unsynchronized Optical Tracker and Inertial Sensor in EKF Framework for In-car Augmented Reality
Delay Reduction. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR-Adjunct), Nantes, France, 9–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 109–114.

10. Marchand, E.; Uchiyama, H.; Spindler, F. Pose estimation for augmented reality: A hands-on survey.
IEEE Trans. Vis. Comput. Graph. 2015, 22, 2633–2651.

11. Pagani, A.; Koehler, J.; Stricker, D. Circular markers for camera pose estimation. In Proceedings of the
WIAMIS 2011: 12th International Workshop on Image Analysis for Multimedia Interactive Services, Delft,
The Netherlands, 13–15 April 2011.

12. Pagani, A. Reality Models for Efficient Registration in Augmented Reality; Verlag Dr. Hut: München, Germany, 2014.
13. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans.

Pattern Anal. Mach. Intell. 2007, 29, 1052–1067.
14. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans.

Comput. Vis. Appl. 2017, 9, 16.
15. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 6th

IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, ISMAR 2007, Nara, Japan,
13–16 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 225–234.

16. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163.

17. Drummond, T.; Cipolla, R. Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Mach. Intell.
2002, 24, 932–946.

18. Wuest, H.; Vial, F.; Stricker, D. Adaptive line tracking with multiple hypotheses for augmented reality.
In Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality,
Vienna, Austria, 5–8 October 2005; IEEE Computer Society: Los Alamitos, CA, USA, 2005; pp. 62–69.

19. Vacchetti, L.; Lepetit, V.; Fua, P. Combining edge and texture information for real-time accurate 3D camera
tracking. In Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality,
Arlington, VA, USA, 2–5 November 2004; IEEE Computer Society: Los Alamitos, CA, USA, 2004; pp. 48–57.

20. Petit, A.; Marchand, E.; Kanani, K. Tracking complex targets for space rendezvous and debris removal
applications. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 4483–4488.

21. Petit, A.; Marchand, E.; Kanani, K. Augmenting markerless complex 3D objects by combining geometrical
and color edge information. In Proceedings of the 2013 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), Adelaide, Australia, 1–4 October 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 287–288.

22. Seo, B.K.; Park, H.; Park, J.I.; Hinterstoisser, S.; Ilic, S. Optimal local searching for fast and robust textureless
3D object tracking in highly cluttered backgrounds. IEEE Trans. Vis. Comput. Graph. 2014, 20, 99–110.

23. Seo, B.K.; Wuest, H. A Direct Method for Robust Model-Based 3D Object Tracking from a Monocular RGB
Image. In Computer Vision–ECCV 2016 Workshops; Springer: Amsterdam, The Netherlands, 2016; pp. 551–562.

24. Vuforia. Augmented Reality. Available online: https://www.vuforia.com/ (accessed on 1 January 2018).
25. Besbes, B.; Collette, S.N.; Tamaazousti, M.; Bourgeois, S.; Gay-Bellile, V. An Interactive Augmented Reality

System: A Prototype for Industrial Maintenance Training Applications. In Proceedings of the 2012 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, 5–8 November
2012; IEEE: Piscataway, NJ, USA, 2012; pp. 269–270.

https://www.vuforia.com/


Computers 2018, 7, 6 21 of 22

26. Javornik, A. Classifications of augmented reality uses in marketing. In Proceedings of the IEEE International
Symposium on Mixed and Augmented Realities 2014, Munich, Germany, 10–12 September 2014;
IEEE: Piscataway, NJ, USA, 2014.

27. Horejsi, P. Augmented Reality System for Virtual Training of Parts Assembly. In Proceedings of the
25th DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Austria,
26–29 November 2014; Elsevier: Amsterdam, The Netherlands, 2015; Volume 100, pp. 699–706.

28. Remote Live Support from Scope AR. Available online: www.scopear.com/products/remote-ar/ (accessed on
1 January 2018).

29. Augmented Repair App: To Repair a Coffee Machine without a User Manual in Minutes. Now Available
with ARKit and ARCore. Available online: www.re-flekt.com/reflekt-remote/ (accessed on 1 January 2018).

30. Oculavis—The Remote Process Platform. Available online: www.oculavis.de/ (accessed on 1 January 2018).
31. Want, R.; Schilit, B.N.; Jenson, S. Enabling the Internet of Things. IEEE Comput. 2015, 48, 28–35.
32. Aleksy, M.; Vartiainen, E.; Domova, V.; Naedele, M. Augmented Reality for Improved Service Delivery.

In Proceedings of the 2014 IEEE 28th International Conference on Advanced Information Networking and
Applications (AINA), Victoria, BC, Canada, 13–16 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 382–389.

33. Ngatman, M.; Ngadi, M.; Sharif, J. Comprehensive study of transmission techniques for reducing packet
loss and delay in multimedia over ip. Int. J. Comput. Sci. Netw. Secur. 2008, 8, 292–299.

34. Hasper, P.; Petersen, N.; Stricker, D. Remote execution vs. simplification for mobile real-time computer
vision. In Proceedings of the 2014 International Conference on Computer Vision Theory and Applications
(VISAPP), Lisbon, Portugal, 5–8 January 2014; IEEE: Piscataway, NJ, USA, 2014; Volume 3, pp. 156–161.

35. Melnyk, S.; Tesfay, A.; Schotten, H.; Rambach, J.; Stricker, D.; Petri, M.; Ehrig, M.; Augustin, T.; Franchi, N.;
Fettweis, G.; et al. (Eds.) Next Generation Industrial Radio LAN for Tactile and Safety Applications. VDE/ITG
Fachtagung Mobilkommunikation, 22. May 9–10, Osnabrueck, Niedersachsen, Germany; VDE/ITG: Osnabrueck,
Germany, 2017.

36. Azuma, R. A Survey of Augmented Reality. In Presence: Teleoperators and Virtual Environments; MIT Press:
Cambridge, MA, USA, 1997; Volume 6, pp. 355–385.

37. Weckbrodt, H. Druckerei-Techniker Bekommen Augengesteuerte Datenbrillen. 2015. Available online: http:
//oiger.de/2015/10/01/druckerei-techniker-bekommen-augengesteuerte-datenbrillen/155815 (accessed on
1 January 2018).

38. Wang, J.; Feng, Y.; Zeng, C.; Li, S. An augmented reality based system for remote collaborative maintenance
instruction of complex products. In Proceedings of the 2014 IEEE International Conference on Automation
Science and Engineering (CASE), Taipei, Taiwan, 18–22 August 2014; pp. 309–314.

39. Masoni, R.; Ferrise, F.; Bordegoni, M.; Gattullo, M.; Uva, A.E.; Fiorentino, M.; Carrabba, E.; Di Donato, M.
Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manuf. 2017,
11, 1296–1302.

40. Limbu, B.; Fominykh, M.; Klemke, R.; Specht, M.; Wild, F. Supporting training of expertise with wearable
technologies: The WEKIT reference framework. In Mobile and Ubiquitous Learning; Springer: Berlin, Germany,
2018; pp. 157–175.

41. Koehler, J.; Noell, T.; Reis, G.; Stricker, D. A full-spherical device for simultaneous geometry and reflectance
acquisition. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa,
FL, USA, 15–17 January 2013; pp. 355–362.

42. Guo, H.; Zhao, Z.; Chen, M. Efficient iterative algorithm for phase-shifting interferometry. Opt. Lasers Eng.
2007, 45, 281–292.

43. Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 1994,
13, 119–152.

44. Noell, T.; Koehler, J.; Reis, G.; Stricker, D. High Quality and Memory Efficient Representation for Image
Based 3D Reconstructions. In Proceedings of the 2012 International Conference on Digital Image Computing
Techniques and Applications (DICTA), Fremantle, Australia, 3–5 December 2012; pp. 1–8.

45. Shi, J.; Tomasi, C. Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600.

46. Nöll, T.; Pagani, A.; Stricker, D. Markerless Camera Pose Estimation—An Overview. Available online:
http://drops.dagstuhl.de/opus/volltexte/2011/3096/pdf/7.pdf (accessed on 1 January 2018).

www.scopear.com/products/remote-ar/
www.re-flekt.com/reflekt-remote/
www.oculavis.de/
http://oiger.de/2015/10/01/druckerei-techniker-bekommen-augengesteuerte-datenbrillen/155815
http://oiger.de/2015/10/01/druckerei-techniker-bekommen-augengesteuerte-datenbrillen/155815
http://drops.dagstuhl.de/opus/volltexte/2011/3096/pdf/7.pdf


Computers 2018, 7, 6 22 of 22

47. Lucas, B.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada,
24–28 August 1981; pp. 674–679.

48. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings
of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November
2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2564–2571.

49. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; IEEE: Piscataway,
NJ, USA, 1999; Volume 2, pp. 1150–1157.

50. Lee, J.; Ardakani, H.D.; Yang, S.; Bagheri, B. Industrial big data analytics and cyber-physical systems for
future maintenance & service innovation. Procedia CIRP 2015, 38, 3–7.

51. Fernando, N.; Loke, S.W.; Rahayu, W. Mobile cloud computing: A survey. Future Gener. Comput. Syst. 2013,
29, 84–106.

52. Pasman, W.; Jansen, F.W. Distributed Low-latency Rendering for Mobile AR. In Proceedings of the IEEE and
ACM International Symposium on Augmented Reality (ISAR 2001), New York, NY, USA, 29–30 October
2001; pp. 107–113.

53. Brooks, F.P. What’s Real About Virtual Reality? IEEE Comput. Graph. Appl. 1999, 19, 16–27.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	3D Object Tracking
	Problem Formulation
	Object Registration Procedure
	3D Scanning
	Learning Features for Tracking

	Object Tracking Algorithm
	Algorithm Outline
	Frame to Frame Tracking
	ORB Initializer and Reinitializer
	Pencil Filter


	Remote Live Support Realized with Mobile Edge Computing
	Mobile Edge Computing
	Relevance of MEC for AR
	Remote Live Support System Architecture
	Overview
	User Side—Mobile Device
	Server Side—Edge Cloud
	Remote Expert
	3D Registration of Annotations


	Evaluation
	Tracking Quality
	Runtime Measurements
	Offloading Delay
	Server vs. Mobile Device Processing Time


	Discussion
	References

