
computers

Article

Mixed Cryptography Constrained Optimization
for Heterogeneous, Multicore, and Distributed
Embedded Systems

Hyunsuk Nam and Roman Lysecky * ID

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA;
hnam@email.arizona.edu
* Correspondence: rlysecky@ece.arizona.edu; Tel.: +1-520-621-6192

Received: 28 February 2018; Accepted: 22 April 2018; Published: 24 April 2018
����������
�������

Abstract: Embedded systems continue to execute computational- and memory-intensive applications
with vast data sets, dynamic workloads, and dynamic execution characteristics. Adaptive distributed
and heterogeneous embedded systems are increasingly critical in supporting dynamic execution
requirements. With pervasive network access within these systems, security is a critical design
concern that must be considered and optimized within such dynamically adaptive systems.
This paper presents a modeling and optimization framework for distributed, heterogeneous
embedded systems. A dataflow-based modeling framework for adaptive streaming applications
integrates models for computational latency, mixed cryptographic implementations for inter-task
and intra-task communication, security levels, communication latency, and power consumption.
For the security model, we present a level-based modeling of cryptographic algorithms using mixed
cryptographic implementations. This level-based security model enables the development of an
efficient, multi-objective genetic optimization algorithm to optimize security and energy consumption
subject to current application requirements and security policy constraints. The presented
methodology is evaluated using a video-based object detection and tracking application and several
synthetic benchmarks representing various application types and dynamic execution characteristics.
Experimental results demonstrate the benefits of a mixed cryptographic algorithm security model
compared to using a single, fixed cryptographic algorithm. Results also highlight how security
policy constraints can yield increased security strength and cryptographic diversity for the same
energy constraint.

Keywords: security-driven optimization; heterogeneous multicore systems; mixed cryptographic security
model; adaptive system; runtime security optimization; system-level codesign; distributed systems

1. Introduction

Distributed, heterogeneous embedded systems are spreading widely in numerous applications,
including video-based object detection and tracking [1], automotive systems, automated
greenhouses [2], and Internet of Things, among others. Distributed embedded systems are composed of
numerous embedded devices incorporating various sensors, actuators, and heterogeneous computing
resources. Those heterogeneous computing resources include processors, which may vary by the type
and number of cores, application-specific hardware accelerators, reconfigurable computing resources
such as field-programmable gate arrays (FPGAs), GPUs, etc. Distributed embedded systems may
also communicate with servers to offload computationally-intensive operations or store and retrieve
data. Depending on the application domain, such communication may use wired or wireless networks.
Computing resources, both local and distributed, have performance and energy constraints that

Computers 2018, 7, 29; doi:10.3390/computers7020029 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-5000-0848
http://www.mdpi.com/journal/computers
http://www.mdpi.com/2073-431X/7/2/29?type=check_update&version=2
http://dx.doi.org/10.3390/computers7020029

Computers 2018, 7, 29 2 of 22

must be considered in mapping and optimizing an application onto these distributed heterogeneous
architectures. Many applications are dynamic with runtime changes in data inputs, operational modes,
and system constraints. As data and system constraints change, the underlying algorithms and system
performance requirements may change, which in turn requires re-optimizing the system to achieve the
best performance for current needs.

Two of the most critical design concerns for distributed embedded systems are energy and
security. Data confidentiality plays an important role in communication between tasks both between
devices as well as within devices. To increase security, cryptographic algorithms can be used when
communicating data within or between embedded devices, but such security comes with a tradeoff of
increased energy consumption and latency. As mobile or battery-powered embedded devices have
limited energy availability, design methods and tools for adaptive, distributed, and heterogeneous
systems should consider security, latency, and energy tradeoffs in an integrated approach when
mapping and optimizing an application onto these platforms.

Security-driven optimization of embedded systems can be categorized as security-integrated,
security-constrained, and security-optimized. Security-integrated approaches incorporate security
within the system design, such as using a specific cryptographic algorithm for all inter-device
communication [3], but does not use security as a constraint or optimization metric. Security-constrained
approaches define system constraints that are directly related to security, such as requiring a minimum
number of rounds with the Rijndael encryption algorithm [4], but do not attempt to optimize security.
In contrast, a security-optimized approach uses security metrics within the system fitness evaluation
with a goal of optimizing security, either as the primary objective or as part of a multi-objective
optimization. For example, Zhang et al. [5] presented a security-optimized approach that optimized
the cryptographic algorithm used to communicate between tasks within a real-time application
implemented using a multicore system. However, this approach only considers software tasks
executing on homogeneous multicore systems, but does not consider heterogeneous resources or
distributed embedded systems.

In this paper, we present a security-constrained and security-optimized approach for optimizing
distributed, heterogeneous embedded systems using mixed cryptographic implementations.
We consider distributed embedded systems incorporating heterogeneous embedded devices, each of
which may include different processors and/or FPGAs. The presented methodology supports
wireless communication using cryptography for both inter-device and intra-device communication
(i.e., all task-to-task communication can be encrypted to maintain confidentiality). The mixed
cryptographic implementations include multiple symmetric and asymmetric algorithms, with different
configurations of each algorithm to support varying security levels. Using a dataflow-based
application modeling framework, which incorporates models for computational latency, cryptographic
security levels, communication latency, and energy consumption, the proposed framework supports
optimization of latency, energy, and/or security metrics across all computing and communication
levels [6]. Enabled by the use of a mixed cryptography model, we consider the integration of constraints
for implementing specific security policies, which are implemented as hard constraints within the
optimization algorithm. We evaluate the presented methodology using a video-based object detection
and tracking application, and three additional synthetic applications, representative of applications
with differing computational and communication ratios. We further evaluate the energy and security
tradeoffs from using a reduced, yet diverse, set of cryptographic implementations and from using
several runtime security policy constraints.

2. Related Work

Numerous approaches have addressed the schedulability and optimization of real-time systems
using distributed and heterogeneous embedded systems. For automotive systems, consisting of
interconnected devices using wired communication, several approaches have focused on scheduling
and mapping of tasks to devices (e.g., ECUs) [7,8]. However, these approaches do not consider

Computers 2018, 7, 29 3 of 22

hardware accelerators, cryptography for inter-device communication, or the use of both wired and
wireless communication networks. Instead of optimizing the mapping and scheduling of tasks for
a fixed distributed architecture, Pomante et al. [9,10] presented a design space exploration approach
that simultaneously explores the heterogeneous components (e.g., general-purpose processors and
domain specific processors) integrated within the distributed embedded devices. For systems in which
the targeted distributed architecture has not been fixed, exploring the definition of the embedded
devices can enable better optimization. However, this approach does not consider cryptography for
communication or heterogeneous communication.

Shang et al. [11] presented a hardware/software optimization method that optimizes both
system cost and power consumption for low-power, real-time systems. This proposed method uses
time multiplexed scheduling to reconfigure distributed FPGAs at runtime to execute sequential
tasks, while minimizing the latency of the reconfiguration schedule and reducing the energy of
reconfiguration. In contrast, this paper presents an optimization method that employs a dataflow-based
application model in which hardware implemented in reconfigurable resources is not reconfigured
dynamically, but rather is used in order to meet application requirements.

Previous efforts have resulted in security-aware optimization methods for embedded systems.
Lin et al. [12,13] presented a security-aware methodology that incorporates authentication methods
within time division multiple access (TDMA)-based real-time distributed embedded systems
(e.g., FlexRay). Given security and latency constraints, this approach determines the task allocation,
priority assignment, network scheduling, and key-release intervals. In addition, a security-constrained
and security-optimized optimization method utilizes a path-based security constraint to minimize
risk, where security risk is defined as the risk that two tasks use the same encryption key. However,
this approach only considers homogeneous multicore systems, but does not consider heterogeneous
resources, distributed systems, or mixed cryptographic implementations.

Gu et al. [4] considered a task mapping on FlexRay based distributed hardware platform to meet
security and latency constraints for minimizing the number of hardware coprocessors needed in the
system. This approach is a security-constrained approach because they focused on minimizing the
total number of HW units needed for a given hardware platform of multiple ECUs connected by a
FlexRay bus subject to security and latency constraints. While such approaches seek to optimize the
cryptography and authentication methods used in distributed automotive electronics, inter-device
cryptography, wireless communication, and energy constraints are not considered.

Jiang et al. [14] presented a security-constrained hardware/software optimization method
for automotive systems composed of a fixed number of ECUs and a configurable number
of FPGAs, communicating over a CAN or FlexRay bus. Given a designer-specified security
requirement (i.e., minimum number of rounds in Rijndael encryption algorithm) and real-time latency
constraints, the hardware/software optimization minimizes the number of FPGAs required to meet
those requirements.

Several research efforts have also analyzed the latency, energy, and memory tradeoffs of different
cryptographic algorithms and implementations [15]. Pous and Joancomarti [3] analyzed various
symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curve cryptography,
etc., and compared them with the costs of basic operating system functions, thereby quantifying the
overhead that a secure protocol introduces. Mansour and Chalhoub [16] evaluated different symmetric
and asymmetric security algorithms within wireless sensor networks to evaluate the time, energy,
and memory usage, concluding that asymmetric cryptography has a significant effect on energy
consumption of sensor nodes. Notably, such efforts provide the foundation upon which to build
estimation models that are needed within system-level design methods and optimization algorithms.

Peter et al. [17] considered the system-level design and optimization of a system-on-a-chip
(SOC) incorporating hardware accelerators for AES and ECC cryptographic algorithms, while also
considering the trade-off between software and hardware. This approach and architecture effectively
determines a single optimized cryptographic implementation and a single hardware accelerator

Computers 2018, 7, 29 4 of 22

for all communication, whereas the approach presented herein supports different cryptographic
implementations for each pair of communicating tasks. Additionally, tasks implemented in hardware
will incorporate dedicated components for the cryptographic algorithms used by that task to ensure
high system throughput.

Other research has focused on exploring cryptosystems with mixed cryptographic
implementations [18,19]. Kuppuswamy and Al-Khalidi [18] proposed a hybrid cryptosystem that
combines the convenience of a public-key cryptosystem with the efficiency of symmetric key
cryptography, demonstrating that their proposed cryptography algorithm provides increased security
and authentication compared to other hybrid algorithms. This approach seeks to develop a hybrid
cryptographic implementation that could be used for specific communication channels, whereas the
mixed cryptographic approach presented in this paper uses different cryptographic algorithms for
different communication channels. Even further, some research has addressed the design of secure
processor architectures, including the use of secure coprocessors for cryptographic operations [6,20,21],
and developing secure computing architectures that separate processing into secure and insecure
components [22]. We note that these efforts are complementary to the approach presented herein.

3. Threat Model

The considered threat model assumes malware can affect both software and hardware components
across embedded devices within the distributed embedded system. Since FPGAs can be dynamically
reconfigured at runtime by software, malicious software can also reconfigure parts of an FPGA
to implement malicious hardware circuitry, which enables an easier path to inserting hardware
Trojans compared to ASIC-based implementations [23]. Hardware-based malware configured in
an FPGA will have access to the system bus, which thereby enables the malware to potentially
eavesdrop on all intra-device communication between tasks, including tasks implemented in both
software and hardware. Additionally, with access to the system bus, malicious hardware can not only
monitor communication between software and hardware tasks within the device, but also enables a
covert communication channel between malicious system components [24]. Thus, malware threatens
the confidentiality of all inter-device and intra-device communication, regardless of the resources
type in which a task is implemented. To address this threat, we consider a security policy that
utilizes cryptography to achieve confidentiality for all intra-device and inter-device communication
between tasks.

4. Security-Driven Optimization Methodology

Figure 1 presents an overview of the proposed security-driven optimization for distributed
heterogeneous embedded systems. To enable efficient optimization considering latency, energy,
and security constraints, integrated models are needed for applications, embedded systems
architectures, and security methods. Our approach utilizes three integrated models, namely a dataflow
model for the application incorporating estimation methods for latency and power consumption of
application tasks on heterogeneous software and hardware resources, an embedded system architecture
model that specifies the processor and reconfigurable resources and the composition of those devices
into the distributed architecture, and a security model for capturing the mixed symmetric and
asymmetric cryptographic algorithms used to transmit data between all tasks. Within the security
model, a simplified metric is defined to quantify the relative security levels of the mixed cryptographic
algorithms. We refer the interested reader to [25] for further details of the estimation framework
used to estimate the latency and power consumption of software, hardware, and communication.
However, we note here that the estimation methods used within our approach are based on physical
measurements of prototypical implementations.

Computers 2018, 7, 29 5 of 22
Computers 2018, 7, x 5 of 21

Figure 1. Overview of the methodology of the security-driven optimization.

4.1. Application Modeling

4.1.1. Dataflow Model

The application model uses a parameterized synchronous dataflow (PSDF) model [26] to specify
system tasks and tokens transmitted between tasks. Each task Ti defines a specific
computation/algorithm that fires when all required input tokens are available. TSij defines the size of
tokens transmitted from task Ti to task Tj, which is dependent on system parameters.

Figure 2 presents the dataflow model for a video-based vehicle detection and tracking
application, which we utilize to illustrate the application model. Given a video input, the first high-
level operations extract the vertical and horizontal projections, which include the tasks’ horizontal
difference (HD), horizontal projection histogram (HP), vertical difference (VD), and vertical
projection histogram (VP). The segmentation (SG) task determines the regions in the video for
individual objects. The inverse wavelet transform (IWT) and support vector machine (SVM) are
utilized to perform image classification to determine the identified object type. Finally, the
autoregressive-moving average (AR) task processes the location of objects between frames to track
object movement. The labels for each edge in Figure 2 present the token size in words for
communication between tasks.

To support high throughput and performance, dataflow models often employ stream-based
execution methods in which data is directly transmitted between tasks and stored locally to avoid
memory contention that results from storing all data in global memory. Our approach employs such
a stream-based processing approach, supported by the communication middleware, and further
requires that only encrypted data is stored in global memory. This restriction is imposed to ensure
that that malware cannot directly access unencrypted data in global memory.

Figure 1. Overview of the methodology of the security-driven optimization.

4.1. Application Modeling

4.1.1. Dataflow Model

The application model uses a parameterized synchronous dataflow (PSDF) model [26] to
specify system tasks and tokens transmitted between tasks. Each task Ti defines a specific
computation/algorithm that fires when all required input tokens are available. TSij defines the
size of tokens transmitted from task Ti to task Tj, which is dependent on system parameters.

Figure 2 presents the dataflow model for a video-based vehicle detection and tracking application,
which we utilize to illustrate the application model. Given a video input, the first high-level operations
extract the vertical and horizontal projections, which include the tasks’ horizontal difference (HD),
horizontal projection histogram (HP), vertical difference (VD), and vertical projection histogram (VP).
The segmentation (SG) task determines the regions in the video for individual objects. The inverse
wavelet transform (IWT) and support vector machine (SVM) are utilized to perform image classification
to determine the identified object type. Finally, the autoregressive-moving average (AR) task processes
the location of objects between frames to track object movement. The labels for each edge in Figure 2
present the token size in words for communication between tasks.

To support high throughput and performance, dataflow models often employ stream-based
execution methods in which data is directly transmitted between tasks and stored locally to avoid
memory contention that results from storing all data in global memory. Our approach employs such a
stream-based processing approach, supported by the communication middleware, and further requires
that only encrypted data is stored in global memory. This restriction is imposed to ensure that that
malware cannot directly access unencrypted data in global memory.

Computers 2018, 7, 29 6 of 22

Computers 2018, 7, x 6 of 21

Figure 2. Overview of the application model for a video-based vehicle detection and tracking
application. Labels to the right of each node indicate the latency for the task’s software and hardware
alternatives for a base device. Labels for edges indicate the size of tokens transmitted between tasks.

4.1.2. Execution Latency Model

The application model incorporates latency estimates for at least one software implementation
and one hardware implementation, each defined for a base operating frequency. The labels for each
task within Figure 2 present the base software and hardware latency for the video-based vehicle
detection and tracking. For example, the label 128/87 for R2G indicates a latency of 128 ms for a
software-based alternative and 87 ms for the hardware implementation. The latency estimate defined
within the application model is defined for a specific embedded device (ED). The estimates in Figure
2 are defined for an embedded device with a 700 MHz ARM CortexA-15 processor and a
reconfigurable FPGA with a maximum operating frequency of 100 MHz. Whereas the maximum
frequency for software execution is dependent only on the processor’s maximum frequency, the
maximum operating frequency of hardware is dependent on both the target FPGA device and the
hardware design itself, and must be determined by synthesizing the hardware task implementation
for the target FPGA.

As different EDs may have different processors and operating frequencies, the execution time of
a task executing on a different ED than the base latency specification must be estimated. Without loss
of generality, we currently consider frequency scaling of software tasks across EDs, assuming the
same processor architecture. For example, the HP task’s software execution latency of 121 ms at 700
MHz becomes 70 ms for an ED with a frequency of 1.2 GHz.

4.1.3. Communication Latency

We utilize an efficient communication middleware that supports the parameterized dataflow
model [26] and enables direct communication between all software and hardware task
implementations. Inter-device communication is assumed to use wireless communication (i.e., IEEE
802.11 g). Since communication latency is tightly coupled to each embedded architecture, we utilized
physical measurements from prototypical implementations to determine accurate estimates of
communication latency for all possible communication modes and various token sizes. Given the
communication latency measurements for the selected token sizes, linear or quadratic regression was

Figure 2. Overview of the application model for a video-based vehicle detection and tracking
application. Labels to the right of each node indicate the latency for the task’s software and hardware
alternatives for a base device. Labels for edges indicate the size of tokens transmitted between tasks.

4.1.2. Execution Latency Model

The application model incorporates latency estimates for at least one software implementation
and one hardware implementation, each defined for a base operating frequency. The labels for each
task within Figure 2 present the base software and hardware latency for the video-based vehicle
detection and tracking. For example, the label 128/87 for R2G indicates a latency of 128 ms for a
software-based alternative and 87 ms for the hardware implementation. The latency estimate defined
within the application model is defined for a specific embedded device (ED). The estimates in Figure 2
are defined for an embedded device with a 700 MHz ARM CortexA-15 processor and a reconfigurable
FPGA with a maximum operating frequency of 100 MHz. Whereas the maximum frequency for
software execution is dependent only on the processor’s maximum frequency, the maximum operating
frequency of hardware is dependent on both the target FPGA device and the hardware design itself,
and must be determined by synthesizing the hardware task implementation for the target FPGA.

As different EDs may have different processors and operating frequencies, the execution time of a
task executing on a different ED than the base latency specification must be estimated. Without loss of
generality, we currently consider frequency scaling of software tasks across EDs, assuming the same
processor architecture. For example, the HP task’s software execution latency of 121 ms at 700 MHz
becomes 70 ms for an ED with a frequency of 1.2 GHz.

4.1.3. Communication Latency

We utilize an efficient communication middleware that supports the parameterized dataflow
model [26] and enables direct communication between all software and hardware task implementations.
Inter-device communication is assumed to use wireless communication (i.e., IEEE 802.11 g).
Since communication latency is tightly coupled to each embedded architecture, we utilized physical
measurements from prototypical implementations to determine accurate estimates of communication
latency for all possible communication modes and various token sizes. Given the communication
latency measurements for the selected token sizes, linear or quadratic regression was used to determine
the functions for estimating the communication latency as a function of the words transferred.

Computers 2018, 7, 29 7 of 22

4.2. Mixed Cryptography Security Model

The security model integrates modeling of security levels for encryption/decryption of tokens
transmitted between tasks and the latency of encryption/decryption based on the implementation
(i.e., hardware vs. software). To provide diversity and robustness for securing inter- and intra-device
communication, we utilize a mixed cryptographic implementation combining symmetric and
asymmetric cryptography. Symmetric cryptography algorithms include Rijndael encryption [27,28] and
TDEA [27,28], and asymmetric algorithms include RSA [29] and ECC [27]. For each implementation,
we consider multiple key sizes, using the NIST recommendations [30]. In addition to key size,
the Rijndael encryption algorithm also supports configuring the number of rounds, for which we
consider a minimum of 10 rounds and a maximum of 14. In this paper, we consider ECC over binary
fields due to the efficient hardware implementation thereof [31,32], but note that our approach can
support other ECC implementations (e.g., ECC over prime fields [33]).

We employ an approach that models the strength of different encryption/decryption algorithms
by ranking the algorithm alternatives, similar to criticality levels in real-time systems [6]. The security
level defines a relative ranking of strength of the selected cryptography method. A higher security
level provides stronger encryption/decryption compared to a lower security level. An alternative
approach is to define the strength such a metric based on key size, such as using the equivalent
Rijndael encryption key size. However, because cryptographic implementations may have different
configurable options, providing an equivalent key size may not be possible for all configurations.
Considering the Rijndael encryption algorithm itself, increasing the number of rounds can increase the
strength, but does not affect the key size, and defining an increase in the equivalent key size for each
additional round is impractical. The security level can capture the effects of various configurations
and can be directly translated to a quantitative metric, thereby yielding a monotonically increasing
function of cryptographic strength. Additionally, the security level enables the efficient encoding of
cryptographic options with a genetic optimization algorithm (discussed in Section 4.5).

Table 1 presents the mixed cryptographic (MC) implementations considered in this paper,
specifying the different key sizes (and rounds for Rijndael encryption) used for each algorithm,
the security level for each implementation and, for reference, the equivalent Rijndael encryption key
size [30]. We additionally consider a restricted mixed cryptography (MCR) model that only utilizes the
maximum number of rounds for each key size within the MC model for Rijndael encryption, presented
in Table 2.

Table 1. Security levels for the mixed cryptography (MC) security model.

Security Level Cryptographic Algorithms Key Size/Rounds Equivalent Rijndael Key Size

21 ECC 571 285.5
20 Rijndael 256/14 256
19 Rijndael 256/13 256
18 Rijndael 256/12 256
17 Rijndael 256/11 256
16 Rijndael 256/10 256
15 ECC 409 204.5
14 Rijndael 192/13 192
13 Rijndael 192/12 192
12 Rijndael 192/11 192
11 Rijndael 192/10 192
10 ECC 283 142
9 Rijndael 128/12 128
8 Rijndael 128/11 128
7 Rijndael 128/10 128
6 ECC 233 116.5
5 RSA 2048 80
4 3 TDEA 112 80
3 ECC 163 81.5
2 RSA 1024 80
1 2 TDEA 80 80
0 None 0 0

Computers 2018, 7, 29 8 of 22

Table 2. Security levels for the mixed cryptography restricted (MCR) security model.

Security Level Cryptographic Algorithm Key Size Equivalent Rijndael Key Size

12 ECC 571 285.5
11 Rijndael 256 256
10 ECC 409 204.5
9 Rijndael 192 192
8 ECC 283 142
7 Rijndael 128 128
6 ECC 233 116.5
5 RSA 2048 112
4 3 TDEA 112 112
3 ECC 163 81.5
2 RSA 1024 80
1 2 TDEA 80 80
0 None 0 0

For each cryptographic algorithm, a software- and hardware-based implementation is available,
the selection of which depends on a task’s implementation and communication with other tasks.
For software-based cryptography, a single software implementation of each algorithm is used by all
software. For tasks implemented in hardware, we assume a dedicated encryption and decryption
component is used for each communication channel.

In our current model, we focus specifically on the cryptographic implementation itself, and not
on the evaluation/optimization of communication protocols (e.g., TLS, SSL) or key management,
both of which are left as future work. Instead, this paper seeks to define a foundational framework
for evaluating the use of cryptographic methods of differing strength for both intra-device and
inter-device communication.

4.3. Embedded System Architecture Model

4.3.1. Embedded Device

Adaptive, distributed embedded systems can be defined as being composed of heterogeneous
embedded devices EDs connected by wireless and/or wired connections, along with cloud computing
resources for storing data or offloading computations. The heterogeneous EDs may have different
computing resources, including processor types, number of processor cores, custom hardware
accelerators, or reconfigurable FPGAs. Figure 3 presents an overview of the four distributed embedded
devices considered in this paper to evaluate security-driven optimization.

The distributed heterogeneous architecture A1 consists of two EDs. ED1 incorporates an ARM
processor operating at 700 MHz and an FPGA with a maximum frequency of 100 MHz and a system
bus frequency of 100 MHz. The FPGA is divided into a maximum of four equal reconfigurable regions,
and each hardware task implementation is constrained to the size of one reconfigurable region. In this
architecture, ED1 serves as a source node, which is used for the targeted video-based vehicle detection
and tracking application. ED2 incorporates a single processor operating at 1.2 GHz with a system bus
frequency of 600 MHz, and serves as the sink node for the target application.

Architecture A2 consists of three EDs, including a sink ED3 incorporating a single ARM processor
operating at 1.8 GHz with a system bus frequency of 1333 MHz and two source ED4s incorporating a
single ARM processor operating at 1 GHz with a system bus frequency of 533 MHz.

Architecture A3 consists of three EDs, including ED5. ED5 incorporates the most capable multicore
processor: a quad-core processor operating at 1.8 GHz with a system bus frequency of 1333 MHz.
ED5 supports per-core shutdown that enables individual cores to be shut down if not utilized.

Lastly, architecture A4 includes ED6, which incorporates a MicroBlaze processor operating at
200 MHz, an FPGA with a maximum frequency of 150 MHz, and a system bus frequency of 150 MHz.
Notably the FPGA within ED6 is more than 10X larger than the FPGA within ED1.

Computers 2018, 7, 29 9 of 22

Computers 2018, 7, x 9 of 21

Figure 3. Overview of four distributed embedded architectures (a) A1 architecture; (b) A2 architecture;
(c) A3 architecture; and (d) A4 architecture (A1–A4) comprised of several heterogeneous embedded
devices (ED1–ED6).

The distributed heterogeneous architecture A1 consists of two EDs. ED1 incorporates an ARM
processor operating at 700 MHz and an FPGA with a maximum frequency of 100 MHz and a system
bus frequency of 100 MHz. The FPGA is divided into a maximum of four equal reconfigurable
regions, and each hardware task implementation is constrained to the size of one reconfigurable
region. In this architecture, ED1 serves as a source node, which is used for the targeted video-based
vehicle detection and tracking application. ED2 incorporates a single processor operating at 1.2 GHz
with a system bus frequency of 600 MHz, and serves as the sink node for the target application.

Architecture A2 consists of three EDs, including a sink ED3 incorporating a single ARM
processor operating at 1.8 GHz with a system bus frequency of 1333 MHz and two source ED4s
incorporating a single ARM processor operating at 1 GHz with a system bus frequency of 533 MHz.

Architecture A3 consists of three EDs, including ED5. ED5 incorporates the most capable
multicore processor: a quad-core processor operating at 1.8 GHz with a system bus frequency of 1333
MHz. ED5 supports per-core shutdown that enables individual cores to be shut down if not utilized.

Lastly, architecture A4 includes ED6, which incorporates a MicroBlaze processor operating at
200 MHz, an FPGA with a maximum frequency of 150 MHz, and a system bus frequency of 150 MHz.
Notably the FPGA within ED6 is more than 10X larger than the FPGA within ED1.

4.3.2. Power Consumption

Power consumption is estimated as the total power consumed across all EDs in the distributed
embedded system. The power consumption of each ED, PED, is modeled as four separate components,
software power, PSW, hardware power, PHW, communication power PC, and power consumption of
cryptography for security, PS.

The software power consumption is based upon the active and idle power consumption of the
processor within the ED. The percentage of time the processor is idle or active is determined using
the execution, communication, and security latency models for each task mapped to each processor
core. Communication power is the total time spent communicating between tasks for all modes of

(a)

ED2

µP

(b)

ED4

µP

ED4

µP

µP

ED3

FPGA

ED1

µP

ED4

µP

ED4

µP

ED3

µP

ED4

µP

(c)
(d)

ED5

µP

µP

FPGA
ED6

µP

µP

µP

Figure 3. Overview of four distributed embedded architectures (a) A1 architecture; (b) A2 architecture;
(c) A3 architecture; and (d) A4 architecture (A1–A4) comprised of several heterogeneous embedded
devices (ED1–ED6).

4.3.2. Power Consumption

Power consumption is estimated as the total power consumed across all EDs in the distributed
embedded system. The power consumption of each ED, PED, is modeled as four separate components,
software power, PSW, hardware power, PHW, communication power PC, and power consumption of
cryptography for security, PS.

The software power consumption is based upon the active and idle power consumption of the
processor within the ED. The percentage of time the processor is idle or active is determined using
the execution, communication, and security latency models for each task mapped to each processor
core. Communication power is the total time spent communicating between tasks for all modes of
communication. Given the communication latency for all software tasks, the software power estimates
are utilized to calculate the communication power.

Since power consumption of hardware is specific to the hardware task implementation and
FPGA, the active and idle power consumed for each hardware task implementation must be separately
specified. Those power consumption estimates can come from numerous sources, including high-level
synthesis, post-implementation simulation, physical measurement for the target FPGA prototype, etc.

Power consumption of software-based cryptographic implementations is determined by
calculating the total latency combined with the software power consumption estimates. The power
consumption of software-based encryption is a function of the security level utilized, the amount of
data being encrypted, and the frequency of the processor. For hardware, the power consumption
of each encryption and decryption component is separately calculated from a prototype hardware
implementation of each cryptographic implementation.

Computers 2018, 7, 29 10 of 22

4.4. Energy Optimization Methods

The security-driven optimization seeks to map application tasks to hardware or software on
the distributed heterogeneous EDs and optimize the average security level across all tasks subject to
constraints on latency, energy, and a minimum required security level. Within this optimization, we
consider two energy optimizations methods, namely dynamic voltage and frequency scaling (DVFS)
and per-core shutdown.

First, DVFS is utilized for the processor cores within all EDs considered. The processor cores’
frequency ranges from a minimum of 100 MHz to a maximum of 1.8 GHz (depending on the ED).
For each processor core, we have defined a finite set of operating points based on 100 MHz increments
in the processor frequency. Additionally, while voltage scaling is supported within the FPGA in ED1
and ED6, frequency scaling is utilized with frequencies ranging from 10 MHz to 100 MHz, scalable
in 10 MHz increments. Second, we consider per-core shutdown to reduce energy consumption on
processor cores within ED5 when individual cores are not needed. We note that per-core shutdown
is performed statically and not dynamically, meaning the decision to use cores is based on the static
mapping of tasks to cores.

4.5. Genetic Optimization Algorithm

A multi-constraint, multi-objective genetic optimization algorithm was developed for the
security-driven optimization. System constraints can include end-to-end latency, minimum security
level, energy consumption, and resource constraints on the number tasks implemented in hardware
within the FPGA. While the optimization methodology presented herein can support different
constraints and optimization goals, we currently focus on simultaneously minimizing end-to-end
latency and maximizing average task security level, given constraints on energy consumption and a
minimum required security level.

To support the security-driven optimization, the genetic algorithm utilized three chromosomes,
M, C, and F to encode the mapping of tasks to cores, the assignment of cryptographic implementations
to communication channels, and the operating frequency and voltage for each task, respectively.

For task mapping, the chromosome represents the possible mapping of tasks to hardware or
software alternatives within a specific ED. For the M chromosome encoding, tasks are ordered by
depth first traversal of the application model. For the video-based vehicle detection and tracking
application, the task ordering is: R2G, DE, HD, HP, VD, VP, SG, IWT, SVM, and AR. To encode
the mapping of tasks to specific implementations, a unique numerical ID is used for each unique
implementation option. For example, for architecture A1, 0 corresponds to software implementation on
ED1, 1 correspond to hardware implementation on ED1, and 2 corresponds to software implementation
on ED2. For example, the chromosome (0,0,0,0,0,0,2,1,1,2) encodes the mapping of the video-based
vehicle detection and tracking application in which the R2G, DE, HD, HP, VD, and VP tasks are
mapped to software on ED1, the tasks SG and AR tasks are mapped to hardware on ED1, and the IWT
and SVM tasks are mapped to software on ED2.

For the cryptographic implementation, as the security level is unique to each cryptographic
option, the C chromosome uses the security level to encode the cryptographic implementation used
for each pair of communicating tasks. Again, a depth-first traversal of the application model is used
to order the communication channels within the chromosome. Considering the aforementioned task
mapping chromosome and using the MC security model, the chromosome (12,12,12,12,12,12,15,12,15)
encodes a cryptographic configuration in which all intra-device communication uses 128-bit/10-round
Rijndael encryption (security level 12) level and all inter-device communication uses 409-bit ECC
(security level 15).

For DVFS, the F chromosome specifies the frequency (in MHz) at which each task executes.
The voltage itself is not defined within the chromosome, as it can be inferred from the task assignment
and frequency. The task ordering for the F chromosome is the same as the M chromosome. Consider the
F chromosome of (300,300,700,700,300,300,100,1200,1200,100) and M chromosome of (0,0,0,0,0,0,2,1,1,2).

Computers 2018, 7, 29 11 of 22

The F chromosome indicates the R2G task has a frequency of 300 MHz, and the M chromosome
indicates the R2G task is mapped to software execution on ED1. The required voltage setting for
executing R2G at 300 MHz on ED1’s processor can then be determined.

The initial population generation randomly assigns task mappings, cryptographic
implementations, and frequency settings for each task within the dataflow model for each
member of the initial population. However, the initial population generation ensures all configurations
meet the specified constraints. For example, if a task is mapped to hardware on ED6, the randomly-
generated frequency for that task will be between 10 MHz and 150 MHz.

During selection and crossover, parents are selected proportional to their fitness, and a crossover
probability of 0.6 is used (i.e., there is a 60% chance the parent’s chromosomes are crossed over to
produce the two children and a 40% chance the parent’s chromosomes are copied to the children).
The crossover point is randomly selected using a uniform distribution. Each mutation randomly
changes one task mapping, cryptographic assignment, or frequency assignment with a 5% probability.

Genetic optimization algorithms typically begin by randomly generating an initial population in
which some population members may violate system constraints [34]. To ensure that the final optimized
implementation yields primarily population members that do not violate constraints, the system fitness
evaluation function must incorporate penalties such as those for constraint violations. Alternatively,
a genetic optimization algorithm could ensure all population members meet all the system constraints,
but such an approach would require significant effort to initially explore a large portion of the design
space to find enough such configurations [25], which is counterproductive to efficient optimization.
Additionally, if penalty functions are not considered, individuals that violate one of the constraints
are immediately rejected, and no information can be ascertained from those infeasible individuals,
which can limit the design space that is evaluated. An alternative approach is to incorporate penalty
functions [35,36] that penalize the system fitness for configurations that do not meet the constraints.

We utilize a hybrid approach, in which some constraints are mandated for all population
members, and other utilize penalty functions in evaluating the overall system fitness. Specifically,
constraints on hardware resources and end-to-end latency are strictly enforced, but constraints on
energy consumption and minimum security level are not. Thus, we define two penalty functions:
an energy penalty (EP) function and a minimum security level penalty (MSLP) function.

Algorithm 1 presents the pseudocode for our system fitness evaluation function with penalty
constraints, where P is the population, MSLC is the minimum security level constraint, EC is the energy
constraint, and SLMAX is the maximum possible security level. SLMAX is 11 for the MC security model,
and 21 for the MCR security model. Since our aim is to find a feasible optimum solution, we can
choose to penalize infeasible individuals. In other words, we extend the domain of the base system
fitness function ƒBASE(x) to determine an adjusted total fitness function ƒ(x). For the base fitness, we
calculate the average security level AvgSL(x) for each member of the population (line 3). However, the
base fitness function only considers the optimization criteria, and not the system constraints. Hence,
we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy consumption
is greater than the energy constraint, a weighting function fE(x) calculates the ratio of the energy
consumption to the difference of the maximum energy consumption of all population member and the
energy constraint (line 5). For the minimum security level constraint, the weighting function fMSL(x)
calculates how far the population’s member minimum security level MinSL(x) is to the minimum
security level constraint MSLC. Quadratic functions are used to calculate the energy penalty

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

E(x)
(line 6) and the minimum security level penalty

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

MSL(x) (line 12) for the overall system fitness (line 6).
Finally, the total fitness function ƒ(x) is the sum of the base system fitness and penalties (line 16).

Computers 2018, 7, 29 12 of 22

Algorithm 1: Fitness function with penalty

Input: P, MSLC, EC.
Output: f (x).

1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX

4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC

6:

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

E(x) = sqrt (6 × fE(x))/6
7: else
8:

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC −MinSL(x)/MSLC

12:

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14:

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

E(x) +

Computers 2018, 7, x 12 of 21

the base fitness function only considers the optimization criteria, and not the system constraints.
Hence, we calculate the total fitness ƒ(x) with the penalty functions (line 16).

To calculate the penalty for the energy constraint, the algorithm determines if each population
member’s energy consumption E(x) is greater than the energy constraint EC. If the energy
consumption is greater than the energy constraint, a weighting function fE(x) calculates the ratio of
the energy consumption to the difference of the maximum energy consumption of all population
member and the energy constraint (line 5). For the minimum security level constraint, the weighting
function fMSL(x) calculates how far the population’s member minimum security level MinSL(x) is to
the minimum security level constraint MSLC. Quadratic functions are used to calculate the energy
penalty 퓅E(x) (line 6) and the minimum security level penalty 퓅 MSL(x) (line 12) for the overall
system fitness (line 6). Finally, the total fitness function ƒ(x) is the sum of the base system fitness and
penalties (line 16).

Algorithm 1: Fitness function with penalty
Input: P, MSLC, EC.
Output: f(x).
1: EMAX = argmax of E(x)
2: for x ∈ P do
3: ƒBASE(x) = AvgSL(x)/SLMAX
4: if (E(x) > EC) then
5: fE(x) = E(x)/EMAX − EC
6: 퓅E(x) = sqrt (6 × fE(x))/6
7: else
8: 퓅E(x) = 0
9: end if
10: if (MinSL(x) < MSLC) then
11: fMSL(x) = MSLC − MinSL(x)/MSLC
12: 퓅MSL(x) = sqrt (6 × fMSL(x))/6
13: else
14: 퓅MSL(x) = 0
15: end if
16: ƒ(x) = ƒBASE(x) − (퓅E(x) + 퓅MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for
implementing specific security policies [37]. For example, a design may define a security policy in
which all inter-device communication must use asymmetric cryptography algorithms. Such security
policy constraints are supported within the security-driven optimization process as hard constraints
within the genetic optimization. To evaluate the integration of security policy constraints within the
optimization process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA, while intra-
device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security policy is
useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW, SW-
SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying key sizes.
For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select

MSL(x))
17: end for

4.6. Security Policy Constraints

The use of a mixed cryptography model enables the specification of constraints for implementing
specific security policies [37]. For example, a design may define a security policy in which all
inter-device communication must use asymmetric cryptography algorithms. Such security policy
constraints are supported within the security-driven optimization process as hard constraints within the
genetic optimization. To evaluate the integration of security policy constraints within the optimization
process, we consider three different specific constraints.

Security policy constraint 1 (C1) requires asymmetric cryptography for all inter-device
communication and requires symmetric cryptography for all intra-device communication. Using the
MC and MCR security models, inter-device communication must use either ECC or RSA,
while intra-device communication must use Rijndael encryption, 2 TDEA or 3 TDEA. Such a security
policy is useful to ensure that all inter-device communication, which is less secure then intra-device
communication, uses asymmetric cryptography.

Security policy constraint C2 requires that each unique communication type (i.e., HW-SW,
SW-SW, SW-HW, and HW-HW) uses a consistent cryptographic algorithm, but may use varying
key sizes. For example, using the MC security model, HW-SW communication may select ECC at the
cryptographic algorithm. In doing so, each unique channel using HW-SW communication can select
security levels 3, 6, 10, or 15, which are different key size restrictions for ECC. This security policy is
useful for reducing the complexity of key management.

Finally, security policy constraint C3 requires that each unique communication type uses a
consistent cryptographic algorithm and key size.

5. Experimental Results

5.1. Experimental Setup

To evaluate the proposed security-driven optimization methodology, in addition to the
video-based object detection and tracking application, we consider three additional applications with
differing computational and communication requirements, which are also representative of dynamic

Computers 2018, 7, 29 13 of 22

workloads. The video-based vehicle detection and tracking application, shown in Figure 2, represents
an application with high computation and high communication (HCHC). Additionally, using TGFF [38],
we generated synthetic applications representing a high-computation, low-communication (HCLC)
application, a low-computation, high-communication (LCHC) application, and a low-computation,
low-communication (LCLC) application. Figure 4 shows the resulting application models for the three
generated applications. Table 3 summarizes the characteristics of the four applications, specifying
the number of tasks, connectivity, average latency, average communication requirements, speedup
for hardware-based implementation of software tasks, and power consumption for the hardware
implementations. We further defined an energy constraint for each application, reported in Table 3.

Computers 2018, 7, x 13 of 21

security levels 3, 6, 10, or 15, which are different key size restrictions for ECC. This security policy is
useful for reducing the complexity of key management.

Finally, security policy constraint C3 requires that each unique communication type uses a
consistent cryptographic algorithm and key size.

5. Experimental Results

5.1. Experimental Setup

To evaluate the proposed security-driven optimization methodology, in addition to the video-
based object detection and tracking application, we consider three additional applications with
differing computational and communication requirements, which are also representative of dynamic
workloads. The video-based vehicle detection and tracking application, shown in Figure 2, represents
an application with high computation and high communication (HCHC). Additionally, using TGFF
[38], we generated synthetic applications representing a high-computation, low-communication
(HCLC) application, a low-computation, high-communication (LCHC) application, and a low-
computation, low-communication (LCLC) application. Figure 4 shows the resulting application
models for the three generated applications. Table 3 summarizes the characteristics of the four
applications, specifying the number of tasks, connectivity, average latency, average communication
requirements, speedup for hardware-based implementation of software tasks, and power
consumption for the hardware implementations. We further defined an energy constraint for each
application, reported in Table 3.

Figure 4. Task graphs for three synthetic applications (HCLC, LCHC, and LCLC).

Table 3. Characteristics of VBODT and synthetic applications.

 VBODT (HCHC) HCLC LCHC LCLC
Tasks 10 10 12 11

Connectivity (edges/node) 0.9 1.1 1.16 1.27

Avg. Latency (ms)
357 360 60.2 58

(0.04, 2.8 K) (66, 609) (18, 99) (31, 95)

Avg. Comm. (words)
177 K 645 55 K 509

(10, 307 K) (237, 928) (4.5 K, 98 K) (45, 977)

HW Speedup
13 X 10 X 6 X 6 X

(0.6–12 X) (2–60 X) (1–15 X) (1–15 X)
HW Static 78.1 78.1 78.1 78.1

Power (mW) (14.8, 123) (14.8, 123) (14.8, 123) (14.8, 123)

Figure 4. Task graphs for three synthetic applications (HCLC, LCHC, and LCLC).

Table 3. Characteristics of VBODT and synthetic applications.

VBODT (HCHC) HCLC LCHC LCLC

Tasks 10 10 12 11

Connectivity (edges/node) 0.9 1.1 1.16 1.27

Avg. Latency (ms) 357 360 60.2 58
(0.04, 2.8 K) (66, 609) (18, 99) (31, 95)

Avg. Comm. (words) 177 K 645 55 K 509
(10, 307 K) (237, 928) (4.5 K, 98 K) (45, 977)

HW Speedup 13 X 10 X 6 X 6 X
(0.6–12 X) (2–60 X) (1–15 X) (1–15 X)

HW Static 78.1 78.1 78.1 78.1
Power (mW) (14.8, 123) (14.8, 123) (14.8, 123) (14.8, 123)

HW Dynamic Power (mW) 125.8 125.8 62.9 62.9
(14.9, 785) (14.9, 785) (7.5, 392.5) (7.5, 392.5)

Energy Constraint 10 J 0.5 J 1 J 0.5 J

The size of the design space is a combinatorial function of the number of tasks in the application,
communication channels, unique hardware and software implementation supported by the target
distributed embedded architecture, unique cryptographic implementations supported in the security
model, and the available DVFS settings for the software and hardware implementations. For N
tasks, M communication channels, C cryptographic implementations, A hardware and software
implementation options, and F DVFS settings, the total design space is. AN· CM· FN. For example,

Computers 2018, 7, 29 14 of 22

for the video-based object detection and tracking application, architecture A1, and MC security model,
the total design space size is 310 · 219 · 1210 = 2.9 × 1027.

5.2. Genetic Algorithm Performance

Figure 5 presents the performance of the genetic optimization algorithm for increasing number
of generations for the HCHC application targeting the A1 architecture using an energy constraint
of 50 J and a minimum-security level constraint of 0. The vertical axis shows the best average
security level across generations of the genetic optimization, starting from the initial population
generation to 100 generations. The greatest increases in the average security level are achieved
within the first 30 generations, in which the average security level increases by 12.6%. Across the
next 50 generations, the average security level increases another 3.0%. For this application and
target architecture, the security level does not increase beyond 80 generations, although the genetic
optimization algorithm uses 100 generations.

Computers 2018, 7, x 14 of 21

HW Dynamic Power (mW)
125.8 125.8 62.9 62.9

(14.9, 785) (14.9, 785) (7.5, 392.5) (7.5, 392.5)
Energy Constraint 10 J 0.5 J 1 J 0.5 J

The size of the design space is a combinatorial function of the number of tasks in the application,
communication channels, unique hardware and software implementation supported by the target
distributed embedded architecture, unique cryptographic implementations supported in the security
model, and the available DVFS settings for the software and hardware implementations. For N tasks,
M communication channels, C cryptographic implementations, A hardware and software
implementation options, and F DVFS settings, the total design space is. AN · CM · FN. For example, for
the video-based object detection and tracking application, architecture A1, and MC security model,
the total design space size is 310 · 219 · 1210 = 2.9 × 1027.

5.2. Genetic Algorithm Performance

Figure 5 presents the performance of the genetic optimization algorithm for increasing number
of generations for the HCHC application targeting the A1 architecture using an energy constraint of
50 J and a minimum-security level constraint of 0. The vertical axis shows the best average security
level across generations of the genetic optimization, starting from the initial population generation
to 100 generations. The greatest increases in the average security level are achieved within the first
30 generations, in which the average security level increases by 12.6%. Across the next 50 generations,
the average security level increases another 3.0%. For this application and target architecture, the
security level does not increase beyond 80 generations, although the genetic optimization algorithm
uses 100 generations.

Figure 5. Performance of the genetic algorithm for the HCHC application, A1 architecture with DVFS,
an energy constraint of 50 J, and a minimum security level constraint of 0.

5.3. MC/MCR Security Model

In evaluating the four applications and four distributed embedded architectures, we compared
the proposed mixed cryptography model to that of using a single cryptographic (SC) implementation,
specifically comparing to a model using only Rijndael encryption with different key sizes and rounds.
Furthermore, we conducted experiments both with and without DVFS, to demonstrate the increased
security afforded by using DVFS when subject to an energy constraint. Figure 6 presents the (a)
average security strength (in equivalent Rijndael encryption key size) and (b) end-to-end latency (in
seconds) for the HCHC application, using the SC and MC models, and targeting all four distributed
embedded architectures, but without using DVFS. Energy constraints range from 30 to 130 J. For
some architectures and energy constraints, no feasible implementation exists. For example, the
average security strength for SC (A3) is infeasible until the energy constraint is 70 J. Across all
architectures, the mixed cryptography approach achieves higher security strength. For architecture

Figure 5. Performance of the genetic algorithm for the HCHC application, A1 architecture with DVFS,
an energy constraint of 50 J, and a minimum security level constraint of 0.

5.3. MC/MCR Security Model

In evaluating the four applications and four distributed embedded architectures, we compared
the proposed mixed cryptography model to that of using a single cryptographic (SC) implementation,
specifically comparing to a model using only Rijndael encryption with different key sizes and rounds.
Furthermore, we conducted experiments both with and without DVFS, to demonstrate the increased
security afforded by using DVFS when subject to an energy constraint. Figure 6 presents the (a)
average security strength (in equivalent Rijndael encryption key size) and (b) end-to-end latency (in
seconds) for the HCHC application, using the SC and MC models, and targeting all four distributed
embedded architectures, but without using DVFS. Energy constraints range from 30 to 130 J. For some
architectures and energy constraints, no feasible implementation exists. For example, the average
security strength for SC (A3) is infeasible until the energy constraint is 70 J. Across all architectures,
the mixed cryptography approach achieves higher security strength. For architecture A1, MC increases
the security strength by 49.9 bits, on average. Overall, the MC model using architecture A1 achieves
the highest average security strength of 278.2 bits. Notably, there are several inflection points at
which different architectures achieve a higher average security strength or lower latency, which
demonstrate the tradeoffs between different architectural configurations. For some architectures and
energy constraints, no feasible configurations exist. For example, for architecture A2, no feasible
configuration is possible when the energy constraint is less than 50 J. However, for architecture A1 and
A3, using MC yields feasible configurations with lower energy constraints than when using SC.

Computers 2018, 7, 29 15 of 22

Computers 2018, 7, x 15 of 21

A1, MC increases the security strength by 49.9 bits, on average. Overall, the MC model using
architecture A1 achieves the highest average security strength of 278.2 bits. Notably, there are several
inflection points at which different architectures achieve a higher average security strength or lower
latency, which demonstrate the tradeoffs between different architectural configurations. For some
architectures and energy constraints, no feasible configurations exist. For example, for architecture
A2, no feasible configuration is possible when the energy constraint is less than 50 J. However, for
architecture A1 and A3, using MC yields feasible configurations with lower energy constraints than
when using SC.

(a)

(b)

Figure 6. Average security strength and end-to-end latency for SC and MC for the HCHC application
for all distributed embedded architectures.

The effect of using MC on the end-to-end-latency depends on the architecture and energy
constraints. For architectures A1, A2, and A3, MC results in lower latency for all but one energy
constraint. However, for A4, MC results in increased latency, with an increase of 67.7% on average.
For this architecture, in order to achieve the increased security, the optimization utilizes ECC-571,
which has the highest security level, but incurs a significant increase in latency.

To compare the benefits of the mixed cryptography model and DVFS, we compare the MC,
MCR, and SC models for the HCHC application targeting architecture A1. Figure 7 presents the
normalized average security strength achieved using MC, MCR, MC with DVFS, and MCR with
DVFS, compared to the average security level of the SC model. MCR with DVFS achieves the highest
average security strength, with an increase of 55.32 bits (or 23.2%) compared to the SC. At the other
extreme, MC without DVFS increases the average security strength by 40.7 bits (or 17.8%) compared
to the SC. For the mixed cryptography implementations, the restricted MCR model increases the
security strength by up to 10% compared to the MC.

Figure 6. Average security strength and end-to-end latency for SC and MC for the HCHC application
for all distributed embedded architectures.

The effect of using MC on the end-to-end-latency depends on the architecture and energy
constraints. For architectures A1, A2, and A3, MC results in lower latency for all but one energy
constraint. However, for A4, MC results in increased latency, with an increase of 67.7% on average.
For this architecture, in order to achieve the increased security, the optimization utilizes ECC-571,
which has the highest security level, but incurs a significant increase in latency.

To compare the benefits of the mixed cryptography model and DVFS, we compare the MC, MCR,
and SC models for the HCHC application targeting architecture A1. Figure 7 presents the normalized
average security strength achieved using MC, MCR, MC with DVFS, and MCR with DVFS, compared
to the average security level of the SC model. MCR with DVFS achieves the highest average security
strength, with an increase of 55.32 bits (or 23.2%) compared to the SC. At the other extreme, MC without
DVFS increases the average security strength by 40.7 bits (or 17.8%) compared to the SC. For the mixed
cryptography implementations, the restricted MCR model increases the security strength by up to 10%
compared to the MC.

Computers 2018, 7, 29 16 of 22
Computers 2018, 7, x 16 of 21

Figure 7. Normalized average security strength for MC, MCR, MC with DVFS, and MCR with DVFS,
normalized to average security level of the SC security model.

Figure 8 presents the average security strength and end-to-end latency for the HCLC, LCHC,
and LCLC applications using architecture A1. Across all applications, and all but one energy
constraint (i.e., EC = 0.5 J for LCHC), MCR yields a higher security, with increases up to 5.09%. For
tasks with low communication requirements (HCLC and LCLC), the increase in security is fairly
consistent across different energy constraints, which is a result of the relatively small impact
communication has on the end-to-end latency. Since the computational latency for the applications
is the dominant component, the use of DVFS can be applied even when energy constraints are tight.
Importantly, the communication latency is determined by either the wireless communication
protocol (e.g., inter-device communication) or the system bus (e.g., intra-device communication),
neither of which are affected by the use of DVFS. Thus, for applications with high communication,
the use of MCR requires a longer latency, but the use of DVFS has a limited effect in reducing the
energy consumption. Thus, for tight energy constraints, MCR does not yield as much improvement
in the security strength.

(a) HCLC (b) LCHC (c) LCLC

Figure 8. Average security strength and end-to-end latency for (a) HCLC; (b) LCHC; and (c) LCLC
application for architecture A1.

Figure 7. Normalized average security strength for MC, MCR, MC with DVFS, and MCR with DVFS,
normalized to average security level of the SC security model.

Figure 8 presents the average security strength and end-to-end latency for the HCLC, LCHC,
and LCLC applications using architecture A1. Across all applications, and all but one energy constraint
(i.e., EC = 0.5 J for LCHC), MCR yields a higher security, with increases up to 5.09%. For tasks with low
communication requirements (HCLC and LCLC), the increase in security is fairly consistent across
different energy constraints, which is a result of the relatively small impact communication has on the
end-to-end latency. Since the computational latency for the applications is the dominant component,
the use of DVFS can be applied even when energy constraints are tight. Importantly, the communication
latency is determined by either the wireless communication protocol (e.g., inter-device communication)
or the system bus (e.g., intra-device communication), neither of which are affected by the use of DVFS.
Thus, for applications with high communication, the use of MCR requires a longer latency, but the use
of DVFS has a limited effect in reducing the energy consumption. Thus, for tight energy constraints,
MCR does not yield as much improvement in the security strength.

Computers 2018, 7, x 16 of 21

Figure 7. Normalized average security strength for MC, MCR, MC with DVFS, and MCR with DVFS,
normalized to average security level of the SC security model.

Figure 8 presents the average security strength and end-to-end latency for the HCLC, LCHC,
and LCLC applications using architecture A1. Across all applications, and all but one energy
constraint (i.e., EC = 0.5 J for LCHC), MCR yields a higher security, with increases up to 5.09%. For
tasks with low communication requirements (HCLC and LCLC), the increase in security is fairly
consistent across different energy constraints, which is a result of the relatively small impact
communication has on the end-to-end latency. Since the computational latency for the applications
is the dominant component, the use of DVFS can be applied even when energy constraints are tight.
Importantly, the communication latency is determined by either the wireless communication
protocol (e.g., inter-device communication) or the system bus (e.g., intra-device communication),
neither of which are affected by the use of DVFS. Thus, for applications with high communication,
the use of MCR requires a longer latency, but the use of DVFS has a limited effect in reducing the
energy consumption. Thus, for tight energy constraints, MCR does not yield as much improvement
in the security strength.

(a) HCLC (b) LCHC (c) LCLC

Figure 8. Average security strength and end-to-end latency for (a) HCLC; (b) LCHC; and (c) LCLC
application for architecture A1.

Figure 8. Average security strength and end-to-end latency for (a) HCLC; (b) LCHC; and (c) LCLC
application for architecture A1.

Computers 2018, 7, 29 17 of 22

5.4. Mixed Cryptography Security Model with Security Policy Constraints

To evaluate the impact of security policies, we analyzed the increased security strength for the
MC and MCR security models with security policy constraint C1 compared the base SC model without
a constraint. Figure 9 presents the increase in average security strength of MC and MCR for the HCHC,
HCLC, LCHC, and LCLC applications targeting architectures A1, A2, A3, and A4. Notably, both MC
and MCR with the security policy constraint C1 yields increased security across all applications
and all architectures. On average, MC yields an increase of 13.2%, and MCR yields an increase of
12.7%. In the best case, MC and MCR yield improvements of 120% and 55%, respectively. In some
cases, MCR yields higher security than MC (e.g., HCHC on architecture A4) with increases up to
44.3%. However, in more cases, MC yields higher security (e.g., LCLC on A2, A3, and A4, and HCLC
and LCLC on A3). We highlight several key observations below.

Computers 2018, 7, x 17 of 21

5.4. Mixed Cryptography Security Model with Security Policy Constraints

To evaluate the impact of security policies, we analyzed the increased security strength for the
MC and MCR security models with security policy constraint C1 compared the base SC model
without a constraint. Figure 9 presents the increase in average security strength of MC and MCR for
the HCHC, HCLC, LCHC, and LCLC applications targeting architectures A1, A2, A3, and A4.
Notably, both MC and MCR with the security policy constraint C1 yields increased security across
all applications and all architectures. On average, MC yields an increase of 13.2%, and MCR yields
an increase of 12.7%. In the best case, MC and MCR yield improvements of 120% and 55%,
respectively. In some cases, MCR yields higher security than MC (e.g., HCHC on architecture A4)
with increases up to 44.3%. However, in more cases, MC yields higher security (e.g., LCLC on A2,
A3, and A4, and HCLC and LCLC on A3). We highlight several key observations below.

Figure 9. Percentage improvement of average security strength of MC and MCR, compared to SC,
with security policy constraint C1 for HCHC, HCLC, LCHC, and LCLC applications (rows) and the
four distributed heterogeneous architectures A1, A2, A3, and A4 (columns).

For low-communication tasks (i.e., HCLC and LCLC), MC typically yields a higher average
security strength. Low communication applications tend to have less inter-device communication.
As such, the increased latency required by the asymmetric cryptography for inter-device
communication is less than in other applications. This in turn allows DVFS to be used more
aggressively to reduce energy consumption. For LCLC on architecture A4, this increase in security is
52.1%.

For the HCHC application on architectures A1 and A2, the benefits of MC and MCR
cryptography decrease and the energy constraint increases. This decrease is not a direct effect of the
MC or MCR model or the security policy constraint. Instead, it is primarily due to the high level of
security the SC model can achieve when the energy constraint is relaxed. Specifically, the average
security strength for MC or MCR with security policy constraint C1 is consistent across different
energy constraints, whereas the average security for SC increases linearly with the increased energy
constraint. Thus, relative to SC, the advantage of MC and MCR is not as significant.

For HCLC on architecture A2, the increase in average security strength varies across the different
energy constraints, with increases ranging from 18.6% to 44.3%. Notably, the greatest increase in
security is achieved for energy constraints of 2–2.5 J, which are in the middle of the constraints

Figure 9. Percentage improvement of average security strength of MC and MCR, compared to SC, with
security policy constraint C1 for HCHC, HCLC, LCHC, and LCLC applications (rows) and the four
distributed heterogeneous architectures A1, A2, A3, and A4 (columns).

For low-communication tasks (i.e., HCLC and LCLC), MC typically yields a higher average
security strength. Low communication applications tend to have less inter-device communication.
As such, the increased latency required by the asymmetric cryptography for inter-device
communication is less than in other applications. This in turn allows DVFS to be used more aggressively
to reduce energy consumption. For LCLC on architecture A4, this increase in security is 52.1%.

For the HCHC application on architectures A1 and A2, the benefits of MC and MCR cryptography
decrease and the energy constraint increases. This decrease is not a direct effect of the MC or MCR
model or the security policy constraint. Instead, it is primarily due to the high level of security the SC
model can achieve when the energy constraint is relaxed. Specifically, the average security strength
for MC or MCR with security policy constraint C1 is consistent across different energy constraints,
whereas the average security for SC increases linearly with the increased energy constraint. Thus,
relative to SC, the advantage of MC and MCR is not as significant.

Computers 2018, 7, 29 18 of 22

For HCLC on architecture A2, the increase in average security strength varies across the different
energy constraints, with increases ranging from 18.6% to 44.3%. Notably, the greatest increase in
security is achieved for energy constraints of 2–2.5 J, which are in the middle of the constraints
considered. These results can primarily be attributed to the lack of an ED device supporting parallel
execution of tasks, which results in the optimization finding very different configurations that
meet the energy and security constraints. In other words, the number of feasible configuration
for this architecture and application is small, so the genetic algorithm requires more effort to find
feasible configurations.

Compared to MC without a security policy constraint, using security constraint C1 results in a
159% increase in latency, on average. This increase is mainly attributed to the requirement to asymmetric
cryptographic implementation for inter-device communications, which increase the latency for the
communication methods with the longest latency. Without the security policy constraint, asymmetric
cryptography is utilized for only 24.5% of the inter-device communication for MC, compared to 100%
with the constraint. However, using MCR with the security policy constraint results in a 27% decrease
in end-to-end latency. This is due to two reasons. First, MCR without the constraint already uses
asymmetric cryptography for 48.5% of inter-device communication, on average, so the impact of
the security policy is diminished compared to MC. Second, symmetric cryptography can reduce the
latency for intra-device communication, yielding an overall decrease will still achieve a higher average
security strength.

In a few cases, MC and MCR with security policy constraint C1 decrease the end-to-end latency,
even compared to the base SC case. To illustrate this case, Figure 10 presents the increase in end-to-end
latency of MC and MCR with security constraint C1 compared to SC for application LCLC on
architecture A3. Using MC, asymmetric cryptography is used for only 27.3% of the communication
channels. Combined with the fact that inter-device communication is lower than other applications,
the impact of using asymmetric cryptography is minimal, and the optimization algorithm is able to
optimize both average security and latency relative to SC. In contrast, for MCR, as the energy constraint
is relaxed, the end-to-end latency increases. From our observations, for tight energy constraints,
inter-device communication is rare, so, again, asymmetric cryptography is used infrequently (e.g., 9% of
the communication channels). As the energy constraint is relaxed, asymmetric algorithms are used
more often, as much as 27.3%, which results in a significant increase in end-to-end latency.

Computers 2018, 7, x 18 of 21

considered. These results can primarily be attributed to the lack of an ED device supporting parallel
execution of tasks, which results in the optimization finding very different configurations that meet
the energy and security constraints. In other words, the number of feasible configuration for this
architecture and application is small, so the genetic algorithm requires more effort to find feasible
configurations.

Compared to MC without a security policy constraint, using security constraint C1 results in a
159% increase in latency, on average. This increase is mainly attributed to the requirement to
asymmetric cryptographic implementation for inter-device communications, which increase the
latency for the communication methods with the longest latency. Without the security policy
constraint, asymmetric cryptography is utilized for only 24.5% of the inter-device communication for
MC, compared to 100% with the constraint. However, using MCR with the security policy constraint
results in a 27% decrease in end-to-end latency. This is due to two reasons. First, MCR without the
constraint already uses asymmetric cryptography for 48.5% of inter-device communication, on
average, so the impact of the security policy is diminished compared to MC. Second, symmetric
cryptography can reduce the latency for intra-device communication, yielding an overall decrease
will still achieve a higher average security strength.

In a few cases, MC and MCR with security policy constraint C1 decrease the end-to-end latency,
even compared to the base SC case. To illustrate this case, Figure 10 presents the increase in end-to-
end latency of MC and MCR with security constraint C1 compared to SC for application LCLC on
architecture A3. Using MC, asymmetric cryptography is used for only 27.3% of the communication
channels. Combined with the fact that inter-device communication is lower than other applications,
the impact of using asymmetric cryptography is minimal, and the optimization algorithm is able to
optimize both average security and latency relative to SC. In contrast, for MCR, as the energy
constraint is relaxed, the end-to-end latency increases. From our observations, for tight energy
constraints, inter-device communication is rare, so, again, asymmetric cryptography is used
infrequently (e.g., 9% of the communication channels). As the energy constraint is relaxed,
asymmetric algorithms are used more often, as much as 27.3%, which results in a significant increase
in end-to-end latency.

Figure 10. Percentage change in end-to-end latency of MC and MCR with security policy constraint
C1 compared to SC for the LCLC application on architecture A3.

Finally, we sought to understand the impact of the different security models and the three
security policy constraints on the resulting diversity of the cryptographic implementations used.
Figure 11 presents how many cryptographic algorithms and how many different key sizes are used
based on SC, MC, and MCR security models with security policy constraints C1, C2, and C3, averaged
across all applications and architectures. The diversity of the SC security model is very low, on
average using only 1.5 different key sizes. Both MC and MCR without security policy constraints

Figure 10. Percentage change in end-to-end latency of MC and MCR with security policy constraint C1
compared to SC for the LCLC application on architecture A3.

Computers 2018, 7, 29 19 of 22

Finally, we sought to understand the impact of the different security models and the three security
policy constraints on the resulting diversity of the cryptographic implementations used. Figure 11
presents how many cryptographic algorithms and how many different key sizes are used based on SC,
MC, and MCR security models with security policy constraints C1, C2, and C3, averaged across all
applications and architectures. The diversity of the SC security model is very low, on average using
only 1.5 different key sizes. Both MC and MCR without security policy constraints result in using
slightly more than two different cryptographic implementations, with MCR yielding a significant
increase in the distinct number of key sizes used.

Computers 2018, 7, x 19 of 21

result in using slightly more than two different cryptographic implementations, with MCR yielding
a significant increase in the distinct number of key sizes used.

Figure 11. Diversity of cryptographic implementations, reported as the number of distinct
cryptographic algorithms and key sizes used, for SC, MC, and MCR security models with security
policy constraints C1, C2, and C3.

The security policy constraints can have different impacts on the cryptographic diversity
depending on the security model used. In some cases, the policy may force the optimization to use a
greater number of cryptographic algorithms and, in other cases, it can reduce the diversity. Security
policy constraint C1 not only yields an increase in diversity of the cryptographic algorithms but also
increases the diversity of key sizes, with increases of 88.6% and 138.7% for MC and MCR,
respectively.

Using security policy constraint C2 with MC yields lower diversity in the cryptographic
algorithm but the highest diversity if key sizes. However, for MCR, security policy constraint C2
yields increased diversity in both algorithms and key size. MCR with C2 uses 2.75 different
cryptographic algorithms and 5.1 different key sizes. Only MCR with security policy constraint C3
yields higher diversity in the cryptographic algorithms (2.13 vs. 2.77), but with lower diversity in key
sizes (4.13 vs. 4).

6. Conclusions and Future Work

This paper presented a modeling and optimization framework for adaptive, distributed,
reconfigurable, and heterogeneous embedded systems. Our modeling framework supports the
efficient and robust modeling of applications, architectures, mixed cryptographic implementations,
and security policy constraints. To support the analysis and evaluation of mixed cryptographic
implementations, we present a level-based security metric for specifying a relative ranking of the
available implementations. Our experimental results demonstrate that mixed cryptographic
implementations yield increased security compared to using a single cryptographic algorithm, with
increases in the average equivalent key size (up to 45%). Using several representative benchmarks,
we further analyzed and highlighted the applications types and architectures for which the MC and
MCR security models are most suited. For HCHC application with architecture A1, MCR yields
higher security (up to 45.4% improvement), whereas for HCLC application with architecture A2, MC
yields higher security (up to 38.03% improvement). Lastly, imposing security policy constraints can
yield increased security strength (up to 44.7%) and increased diversity (up to 289%) for the same
energy constraint.

Future work includes analyzing the impact diversity in cryptographic implementation afforded
by the mixed cryptographic approach, and its overall effect on system security. As the use of mixed
cryptographic implementations will require more complex key management schemes, we further

Figure 11. Diversity of cryptographic implementations, reported as the number of distinct
cryptographic algorithms and key sizes used, for SC, MC, and MCR security models with security
policy constraints C1, C2, and C3.

The security policy constraints can have different impacts on the cryptographic diversity
depending on the security model used. In some cases, the policy may force the optimization to use a
greater number of cryptographic algorithms and, in other cases, it can reduce the diversity. Security
policy constraint C1 not only yields an increase in diversity of the cryptographic algorithms but also
increases the diversity of key sizes, with increases of 88.6% and 138.7% for MC and MCR, respectively.

Using security policy constraint C2 with MC yields lower diversity in the cryptographic algorithm
but the highest diversity if key sizes. However, for MCR, security policy constraint C2 yields increased
diversity in both algorithms and key size. MCR with C2 uses 2.75 different cryptographic algorithms
and 5.1 different key sizes. Only MCR with security policy constraint C3 yields higher diversity in the
cryptographic algorithms (2.13 vs. 2.77), but with lower diversity in key sizes (4.13 vs. 4).

6. Conclusions and Future Work

This paper presented a modeling and optimization framework for adaptive, distributed,
reconfigurable, and heterogeneous embedded systems. Our modeling framework supports the
efficient and robust modeling of applications, architectures, mixed cryptographic implementations,
and security policy constraints. To support the analysis and evaluation of mixed cryptographic
implementations, we present a level-based security metric for specifying a relative ranking of
the available implementations. Our experimental results demonstrate that mixed cryptographic
implementations yield increased security compared to using a single cryptographic algorithm, with
increases in the average equivalent key size (up to 45%). Using several representative benchmarks,
we further analyzed and highlighted the applications types and architectures for which the MC and
MCR security models are most suited. For HCHC application with architecture A1, MCR yields
higher security (up to 45.4% improvement), whereas for HCLC application with architecture A2,

Computers 2018, 7, 29 20 of 22

MC yields higher security (up to 38.03% improvement). Lastly, imposing security policy constraints
can yield increased security strength (up to 44.7%) and increased diversity (up to 289%) for the same
energy constraint.

Future work includes analyzing the impact diversity in cryptographic implementation afforded
by the mixed cryptographic approach, and its overall effect on system security. As the use of mixed
cryptographic implementations will require more complex key management schemes, we further seek
to integrate key management within the system level optimization framework. Future work also
includes adapting the proposed self-aware optimization framework to integrate dynamic profiling
methods and runtime adaptive security policies. As the heterogeneous components integrated within
the embedded devices within the distributed architecture will impact the overall performance, energy
consumption, and security, future work includes investigating the use of automated exploration [9,10]
of the heterogeneous resources within the embedded devices.

Author Contributions: H. Nam and R. Lysecky conceived and designed the experiments; H. Nam performed the
experiments; H. Nam and R. Lysecky analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wang, X.; Wang, S.; Bi, D. Distributed Visual-Target-Surveillance System in Wireless Sensor Networks.
IEEE Trans. Syst. Man Cybern. B Cybern. 2009, 39, 1134–1146. [CrossRef] [PubMed]

2. Jahnavia, V.; Ahameda, S. Smart Wireless Sensor Network for Automated Greenhouse. IETE J. Res. 2015, 61,
180–185. [CrossRef]

3. Rifà-Pous, H.; Herrera-Joancomartí, J. Computational and Energy Costs of Cryptographic Algorithms on
Handheld Devices. Future Internet 2011, 3, 31–48. [CrossRef]

4. Gu, Z.; Han, G.; Zeng, H.; Zhao, Q. Security-Aware Mapping and Scheduling with Hardware Co-Processors
for FlexRay-based Distributed Embedded Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3044–3057.
[CrossRef]

5. Zhang, X.; Zhan, J.; Jiang, W.; Ma, Y.; Jiang, K. Design Optimization of Energy- and Security-Critical
Distributed Real-Time Embedded Systems. In Proceedings of the IEEE International Symposium on Parallel
& Distributed Processing Workshops and PhD Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 741–750.

6. Medien, Z.; Machhout, M.; Bouallegue, B.; Khriji, L.; Baganne, A.; Tourki, R. Design and Hardware
Implementation of QoSS-AES Processor for Multimedia applications. Trans. Data Priv. 2010, 3, 43–64.

7. Pop, P.; Eles, P.; Peng, Z.; Pop, T. Analysis and Optimization of Distributed Real-Time Embedded Systems.
ACM Trans. Des. Autom. Electron. Syst. 2006, 11, 593–625. [CrossRef]

8. Selicean, D.; Pop, P. Design Optimization of Mixed-Criticality Real-Time Embedded Systems. ACM Trans.
Embed. Comput. Syst. 2015, 14, 50.

9. Pomante, L. System-level Design Space Exploration for Dedicated Heterogeneous Multi-Processor Systems.
In Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, Sousse, Tunisia, 22–24 June 2011; pp. 79–86.

10. Pomante, L. HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems: An Extended Design Space
Exploration Approach. IET Comput. Dig. Tech. 2013, 7, 246–254. [CrossRef]

11. Shang, L.; Dick, R.P.; Jha, N.K. SLOPES: Hardware–Software Co-synthesis of Low-Power Real-Time Distributed
Embedded Systems with Dynamically Reconfigurable FPGAs. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 2007, 26, 508–526. [CrossRef]

12. Lin, C.-W.; Zhu, Q.; Sangiovanni-Vincentelli, A. Security-Aware Mapping for TDMA-Based Real-Time
Distributed Systems. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 24–31.

13. Lin, C.-W.; Zhu, Q.; Sangiovanni-Vincentelli, A. Security-Aware Modeling and Efficient Mapping for
CAN-Based Real-Time Distributed Automotive Systems. IEEE Embed. Syst. Lett. 2015, 7, 11–14. [CrossRef]

14. Jiang, K.; Eles, P.; Peng, Z. Co-Design Techniques for Distributed Real-Time Embedded Systems with
Communication Security Constraints. In Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), Dresden, Germany, 12–16 March 2012; pp. 947–952.

http://dx.doi.org/10.1109/TSMCB.2009.2013196
http://www.ncbi.nlm.nih.gov/pubmed/19336319
http://dx.doi.org/10.1080/03772063.2014.999834
http://dx.doi.org/10.3390/fi3010031
http://dx.doi.org/10.1109/TPDS.2016.2520949
http://dx.doi.org/10.1145/1142980.1142984
http://dx.doi.org/10.1049/iet-cdt.2013.0026
http://dx.doi.org/10.1109/TCAD.2006.883909
http://dx.doi.org/10.1109/LES.2014.2354011

Computers 2018, 7, 29 21 of 22

15. Singh, G.; Kinger, S. Integrating AES, DES, and 3-DES Encryption Algorithms for Enhanced Data Security.
Int. J. Sci. Eng. Res. 2013, 4, 7.

16. Mansour, I.; Chalhoub, G. Evaluation of different cryptographic algorithms on wireless sensor network
nodes. In Proceedings of the 2012 International Conference on Wireless Communications in Unusual and
Confined Areas (ICWCUCA), Clermont Ferrand, France, 28–30 August 2012.

17. Peter, S.; Zessack, M.; Vater, F.; Panic, G.; Frankenfeldt, H.; Methfessel, M. Encryption-Enabled Network Protocol
Accelerator. In Proceedings of the International Conference on Wired/Wireless Internet Communications,
Tampere, Finland, 28–30 May 2008; pp. 79–91.

18. Kuppuswamy, P.; Al-Khalidi, S. Hybrid Encryption/Decryption Technique Using New Public Key and
Symmetric Key Algorithm. Int. J. Inf. Comput. Secur. 2014, 6, 372–382. [CrossRef]

19. Xin, M. A Mixed Encryption Algorithm Used in Internet of Things Security Transmission System.
In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, Xi’an, China, 17–19 September 2015.

20. Ravi, S.; Raghunathan, A.; Kocher, P.; Hattangady, S. Security in Embedded Systems: Design Challenges.
ACM Trans. Des. Autom. Electron. Syst. 2004, 3, 461–491. [CrossRef]

21. Verbelen, Y.; Braeken, A.; Kubera, S.; Touhafi, A.; Vliegeny, J.; Mentens, N. Implementation of a Server
Architecture for Secure Reconfiguration of Embedded Systems. ARPN J. Syst. Softw. 2011, 1, 270–279.

22. Hwang, D.; Schaumont, P.; Tiri, K.; Verbauwhede, I. Securing Embedded Systems. IEEE Secur. Priv. 2006, 4,
40–49. [CrossRef]

23. Xiao, K.; Forte, D.; Jin, Y.; Karri, R.; Bhunia, S.; Tehranipoor, M. Hardware Trojans: Lessons Learned after
One Decade of Research. ACM Trans. Des. Autom. Electron. Syst. 2016, 22, 6. [CrossRef]

24. Fern, N.; San, I.; Koç, Ç.K.; Cheng, K.-T. Hiding Hardware Trojan Communication Channels in Partially
Specified SoC Bus Functionality. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 36, 1435–1444.
[CrossRef]

25. Nam, H.; Lysecky, R. Latency, Power, and Security Optimization in Distributed Reconfigurable Embedded
Systems. In Proceedings of the Reconfigurable Architecture Workshop (RAW), Chicago, IL, USA, 23–27 May
2016; pp. 124–131.

26. Sandoval, N.; Mackin, C.; Whitsitt, S.; Lysecky, R.; Sprinkle, J. Runtime Hardware/Software Task Transition
Scheduling for Runtime-Adaptable Embedded Systems. In Proceedings of the International Conference on
Field-Programmable Technology (ICFPT), Kyoto, Japan, 9–11 December 2013; pp. 342–345.

27. Najib, A.K. An Empirical Study to Compare the Performance of some Symmetric and Asymmetric Ciphers.
Int. J. Secur. Appl. 2013, 7, 1–16.

28. Kim, H.; Lee, S. Design and Implementation of a Private and Public Key Crypto Processor and Its Application
to a Security System. IEEE Trans. Consum. Electron. 2004, 50, 214–224.

29. Iana, V.; Anghelescu, P.; Serban, G. RSA encryption algorithm implemented on FPGA. In Proceedings of the
International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 7–8 September 2011.

30. NIST Special Publication 800-57. Recommendation for Key Management, Part 1: General; NIST Special
Publication: Gaithersburg, MD, USA, 2016.

31. Li, H.; Huang, J.; Sweany, P.; Huang, D. FPGA implementations of elliptic curve cryptography and Tate
pairing over a binary field. J. Syst. Arch. 2008, 54, 1077–1088. [CrossRef]

32. Jaervinen, K. The State-of-the-Art of Hardware Implementations of Elliptic Curve Cryptography.
In Proceedings of the Workshop on Hardware Benchmarking, Bochum, Germany, 7 June 2017.

33. Alrimeih, H.; Rakhmatov, D. Fast and Flexible Hardware Support for ECC Over Multiple Standard Prime
Fields. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 2661–2674. [CrossRef]

34. Homaifar, A.; Qi, C.X.; Lai, S.H. Constrained optimization via genetic algorithms. Simulation 1994, 62,
242–254. [CrossRef]

35. Hilton, A.; Culver, T. Constraint-handling methods for optimal groundwater remediation design by genetic
algorithms. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
San Diego, CA, USA, 14 October 1998; pp. 3937–3942.

36. Tessema, B.; Yen, G.G. An Adaptive Penalty Formulation for Constrained Evolutionary Optimization.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2009, 39, 565–578. [CrossRef]

http://dx.doi.org/10.1504/IJICS.2014.068103
http://dx.doi.org/10.1145/1015047.1015049
http://dx.doi.org/10.1109/MSP.2006.51
http://dx.doi.org/10.1145/2906147
http://dx.doi.org/10.1109/TCAD.2016.2638439
http://dx.doi.org/10.1016/j.sysarc.2008.04.012
http://dx.doi.org/10.1109/TVLSI.2013.2294649
http://dx.doi.org/10.1177/003754979406200405
http://dx.doi.org/10.1109/TSMCA.2009.2013333

Computers 2018, 7, 29 22 of 22

37. Liu, X.; Zhao, M.; Li, S.; Zhang, F.; Trappe, W. A Security Framework for the Internet of Things in the Future
Internet Architecture. Future Internet 2017, 9, 27. [CrossRef]

38. Dick, R.P.; Rhodes, D.L.; Wolf, W. TGFF: Task Graphs for Free. In Proceedings of the International Workshop
on Hardware/Software Codesign, Seattle, WA, USA, 18 March 1998.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fi9030027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Threat Model
	Security-Driven Optimization Methodology
	Application Modeling
	Dataflow Model
	Execution Latency Model
	Communication Latency

	Mixed Cryptography Security Model
	Embedded System Architecture Model
	Embedded Device
	Power Consumption

	Energy Optimization Methods
	Genetic Optimization Algorithm
	Security Policy Constraints

	Experimental Results
	Experimental Setup
	Genetic Algorithm Performance
	MC/MCR Security Model
	Mixed Cryptography Security Model with Security Policy Constraints

	Conclusions and Future Work
	References

