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Abstract: With the sharp rise of functionalities and connectivities in multi-core embedded systems,
these systems have become notably vulnerable to security attacks. Conventional software security
mechanisms fail to deliver full safety and also affect the system performance significantly. In this
paper, a hardware-based security procedure is proposed to handle critical information in real-time
through comprehensive separation without needing any help from the software. To evaluate
the proposed system, an authentication system based on an image procession solution has been
implemented on a reconfigurable device. In addition, the proposed security mechanism is evaluated
for the Networks-on-chips, where minimal area, power consumption and performance overheads
are achieved.
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1. Introduction

Security and trust are becoming crucial design considerations for all contemporary embedded
real-time systems as they are extensively put to use in crucial and decisive applications that require
processing of data in a given time frame. Such embedded systems are now typically found in
telecommunication devices, power grids, satellites, planes, automobiles, ATM machines, military
equipment and medical diagnostic devices. Due to an increase in network connectivity and software
content such devices are now becoming more prone to rapidly spreading security attacks through
malicious software which were previously known to target servers, desktop systems and Internet
connected devices [1].

Malicious software mainly targets embedded systems to get unauthorized access to critical data
(such as confidential files and cryptographic keys), to modify sensitive information saved in the
system’s storage unit and to reduce performance or drain power source (e.g., through execution of
some valid tasks uselessly). These types of attacks are more commonly known as data confidentiality
attacks, data integrity attacks, and performance degradation attacks, respectively. Embedded systems
are usually more susceptible to these types of attacks due to two main features. Primarily, the reduced
system resources and simplified processing cores architecture leave such systems prone to different
kinds of physical attacks. Secondly, the ability to communicate to the outside world, without any
built-in security mechanism, also expose such systems to software attacks leading to unauthorized
accesses. Moreover, download or update of applications and other data by the embedded devices over
insecure network connection or other mechanisms (such as unencrypted Wi-Fi and blue-tooth) always
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make them vulnerable to security attacks. More importantly, real-time embedded systems are designed
and implemented in such a way that their main objective is to complete the specific task in the given
time frame without engaging in the execution of irrelevant security applications such as an anti-virus
software. In contrast to desktop computers that can afford software-based security mechanisms,
resource-limited embedded systems require to use a considerable amount of their resources such
as processing power and battery life to support such solutions. Furthermore, the existing solutions
relying purely on software cannot detect unreported attacks without prior knowledge and regular
updates of virus and malware definitions. Therefore, embedded systems must deploy such security
countermeasures that are self-contained and have the ability to detect such attacks on the run without
utilizing system’s dedicated resources.

In this paper, a new security mechanism has been proposed by isolating and positioning
pivotal processing units in a secure zone to process sensitive data in a independent and secure way.
The proposed secure zone-based solution operates independently without requiring modifications
in the system software. The feasibility of the proposed mechanism is explained by implementing
an authentication system on a reconfigurable device based on an image processing technique. It is
further shown that the given system, when equipped with the presented security mechanism, can
identify software-based attacks swiftly with nominal increase in area and power consumption.
The scalability and functionality of the proposed solution is further verified by implementing it
for the Network on Chip (NoC)-based communication systems and evaluating its performance, power
consumption and area overhead when configured in different network sizes.

The paper has been arranged as follows: The existing hardware-based security mechanisms
are outlined in Section 2. The key concept of managing data by the proposed security mechanism
and its implementation details are discussed in Section 3. Section 4 deals with the assessment of the
proposed security mechanism when utilized within a existing FPGA-based authentication system.
The scalability and performance evaluation for the NoC-based communication systems has been
discussed in Section 5 while conclusion is presented in Section 6 of this paper.

2. Related Work

Various security solutions have been presented in the literature based on the configurations
of the system, functional specifications, types of attacks, and performance requirements. Physical
attacks targeting embedded systems require direct access such as power consumption analysis through
eavesdropping [2], timing analyses [3] and chemical-based attacks [2] but these kinds of attacks have
not been covered here and we have targeted hardware-assisted security solutions capable of identifying
software related attacks.

Presently, different hardware-assisted techniques related to secure processing of information
have been presented ranging from cryptography, reference monitors, hardware virtualization [4] to
dynamic information flow tracking (DIFT) [5]. Solutions related to reference monitors are based on
comparing processor-executed code with a valid model whereas the security module works in parallel
with the processing core as discussed by Kornaros et al. [6]. For instance, the secure reference monitors
with hardware support [7–10] sense divergence in program execution on the run by analyzing system
response against a predefined behavior in order to detect any attacks targeting data integrity. The static
models are normally obtained through static analysis and profiling of the programs to be loaded on
the system.

Yan et al. in [11] have presented a concept of hardware isolation for mobile devices which is based
on disabling the dangerous hardware components when sensitive applications are running. They have
not verified this approach by practically implementing it for a realistic system. Rathgeb et al. [12]
presented a secure processing technique by implementing generic modules as secure blocks
where interconnections among them can be reconfigured using run-time partial reconfiguration.
Such approaches cannot be deployed where system switches rapidly between secure and insecure
mode, as partial reconfiguration results in significant performance overhead.
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Security systems based on cryptography such as encryption devices have been used extensively
for the implementation of strong isolation. Thekkath et al. [13] provide a security mechanism at
process level by isolating trusted process’s data and instruction code from untrusted and vulnerable
processes. To prevent illegal extraction of information, dedicated tags are assigned to each process
and cryptographic algorithms are used to encrypt the data and code. Similarity, Suh et al. [14] have
presented an encryption-based security technique by isolating the processor resources from external
memory unit and other untrusted I/O devices. They have implemented a security kernel within the
untrusted operating system and secure context manager.

Hardware-assisted solutions based on DIFT techniques [5,15,16] are also quite capable to handle
software related attacks. These solutions mainly rely on flagging data arriving from insecure input
peripherals and then following the trail as the system processes the data. These kinds of solutions
are based on making modifications in the source code of the application, system memory and the
architecture. Such requirements have made these solutions unlikely choice to secure embedded
systems. Furthermore, techniques achieving security through hardware virtualization [17–19] depend
on dedicated software support more commonly known as “hypervisor” to execute tasks requiring
security. Moreover, latest surveys [20,21] have presented that even these types of refined techniques
are vulnerable to security breaches and constrained in terms of code and data memory. Therefore, it is
very essential to come up with a new security solution that is capable of processing critical information
in a secured manner with no or little help from the software running on the system.

Fiorin et al. [22] have presented a data protection module, for multi-core systems, to detect illegal
accesses to specific blocks of the memory unit by verifying access rules and using address lookup tables.
Similarly, another solution has been presented by Lukovic et al. [23] to detect buffer overflow-based
attacks by including a dedicated security module within the network interface attached to each of the
processing cores. Following the same pattern, Porquet et al. [24] have presented a security mechanism
for network on chip architectures with a shared memory unit. Their basic idea is to segregate several
applications based on the required trust level and process information securely using both dedicated
software and hardware modules. More recently, Wassel et al. [25] proposed a low-latency and
non-interfering security mechanism, called SurfNoC, to protect system against side-channel attacks
such as timing analysis. This is achieved by maximizing temporal and spatial isolation of different
communication flows in the system through network scheduling in a wave manner. Wassel et al.
extended this work [26] and proposed a partitioning mechanism through packet scheduling to pass
packets between different domains with lower latency. Grammatikakis et al. [27] have proposed
a self-contained NoC firewall within the network interface by validating the memory requests against
the predefined set of rules. Hu et al. [28] have also presented a similar solution by incorporating
access rules verification and authentication mechanism for certain regions of the memory units. In our
previous work [29], we have presented an identity and address verification-based security module for
multi-core systems in order to detect security attacks and stop illegal accesses to the memory. Kornaros
and Leivadaros [6] have proposed a system level framework for updating firmware in interconnected
embedded devices by classifying data types to transmitted, processed and stored data and tailoring
a solution for each type of data by encryption or isolation.

The reference monitoring and DIFT-based security solutions either require changes in main
hardware resources (such as processor and memory architecture) or partial software support which
are not ideal for embedded systems especially for battery operated devices where power consumption
and available resources are one of the main design concerns. In one of our previous work [30],
it is shown that security mechanisms that rely on cryptography are not realistic and scalable for
multi-core based SoC devices due to their limited resources, high performance and power consumption
overheads. In contrast, our proposed security solution does not require modifications in the processor
or memory architecture, operates independently without any help from software side and bears
minimal performance overhead for NoC-based systems [31]. Security mechanisms for NoC-based
multi-core systems (such as [22,24,27–29] have only been designed specifically for shared-memory
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architectures and provide protection to memory units only whereas our proposed solution can be used
to isolate any processing block ranging from memory controllers to other I/O peripherals. Similarly,
the hardware-based security solutions, as discussed by Yan et al. [11], are based on disabling some
unreliable processing cores when sensitive applications are running. For real-time embedded systems,
such approaches are clearly not feasible. On the other hand, our proposed security mechanism works
alongside unreliable processing cores without disabling them. Furthermore, these existing solutions
target specific security attacks whereas our hardware-assisted secure mechanism can handle data
integrity, confidentiality and denial of service attacks as well.

3. Design Approach and Architecture

Software attacks have become increasingly widespread and a buffer overflow is one of the
major causes of security outbreaks. Although buffer overflows may arise unintentionally due to
common programming errors, it is one of the most common types of software attacks targeting data
integrity. In the case of buffer overflow-based attacks, the additional data may point to the malicious
code designed to execute new instructions and initiating specific tasks on the system under attack.
This research work is based on the hypothesis that the buffer overflow-based attacks can be addressed
through dedicated security modules. The main aim of this research is to explore and develop a generic
and scalable security hardware module for multi-core systems that can detect buffer overflow-based
attacks, identify the compromised processing cores under attack and stop its propagation in order to
keep the system secure and infection free.

This section explains the design steps of our proposed security solution along with its basic
architecture layout considering a conventional embedded system based on a FPGA device. Normally
an embedded system consists of a microprocessor, Input/output devices, memory unit and other
peripherals which are essentially required to run the given task. The main objective of designing
a hardware-assisted security module is to restrain the unreliable hardware modules from accessing
trusted processing units when critical tasks are under execution.

In order to execute the critical tasks in a protective environment, a secure zone has been designed
whereas its functionality has been tested for a FPGA-based embedded system and a NoC-based
multi-core architecture as well. The basic concept is to adjust processing blocks requiring security in
an isolated environment such that they are only accessible via a security checking module. The block
level implementation of a conventional embedded system accommodating a secure zone is presented
in Figure 1. The processing blocks executing or storing critical data are to be implemented separately
inside the secure zone from untrusted processing blocks (such as peripherals and controllers).

Input 
peripheral

DDR 
Memory

Microblaze
processor

Output
peripheral

Processor Local bus (PLB)

output 
controller

input 
controller

secure 
controller

secure 
zone

Block 
RAM

Input

Unsecure region

Figure 1. Prototype of embedded system enabled with secure zone.
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As shown in Figure 1, the secure zone communicates directly with the Processor Local Bus (PLB)
and the secure controller only. The permission is granted by the secure zone after confirming the access
control rules (e.g., write access only, read access only, and/or both write and read access). These access
rules are initialized at the time of configuration. The processing blocks implemented inside the secure
zone are only accessible by the untrusted processing blocks via specialized interface as indicated in
Figure 2.

Processing 
block

Secure Zone

secure interface

sec_controller_in

systembus_plb_in
plb data_out

controller_out

processing block

processing block

Figure 2. Block level implementation of secure zone.

The control input, sec_controller_in, to the secure zone is produced by the secure controller
which operates independently and has no linkage with the other processing blocks or software running
on the system. On the contrary, the second control input, systembus_plb_in is produced by PLB
which is managed directly by the task/software under execution. In order to access the processing
blocks within the secure zone, the secure interface must receive the same access control signals from
both of the control inputs.

The internal working of the interfacing module is presented in Figure 3. This module is responsible
for verifying the incoming data before authorizing access to the processing blocks within the secure
zone. For instance, in order to update the storage module within the secure zone, the software will
generate signal requesting write access whereas the user is also required to generate the same signal
using secure controller. In the event of any security attack, the secure interface will fail to verify the access
control signals and in that case an alert signal will be generated, preventing access to the secure zone
processing blocks. This has been further elaborated in the next section.

Input port Output Port

data_in data_out

Secure 
mode 

Access rules 
check

Port_inPort_out

To  secure zone 
blocks

Controller
output

From secure zone 
blocks

PLB 
mode

Figure 3. Internal working of secure interface.
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4. FPGA-Based Embedded System

As a proof of concept, the proposed security mechanism is implemented and tested by
incorporating it in a signature-based authentication system [31] as shown in Figure 4. Such systems
have many applications where security is the primary concern. For instance, banking institutes can use
it to validate signatures automatically on the checks. The prototype design has been implemented on
a specialized FPGA device, Spartan-3A DSP Video Starter Kit (VSK), which has dedicated hardware
resources to process video data in real-time. This VSK comes with a reference design which is
customized to implement an authentication system according to our proposed solution with the help
of Xilinx Embedded Development Kit (EDK) [32].

Video 
frame 
buffer

Camera 
controller MPMC

(Multiport 
memory 

controller)

Microblaze
processor

DDR2
RAM

Video 
frame 
buffer

DVI out

 Processor Local Bus (PLB)

Display 
controller

Video 
controller

Secure-zone 
controller

Secure 
Zone

Block RAM

Mode 
input

Camera 
input

Figure 4. Prototype of image processing-based authentication system enabled with secure zone.

The secure zone has been implemented for the given authentication system as shown in Figure 5.
Here, the image library block is used to store images of valid signatures whereas the signature matching
block is the primary module that has been used to process signature images arriving from the camera
controller and perform verification based on template matching technique. Considering the sensitivity
of the data, the image library and signature matching block have been placed inside the secure zone to
perform authentication procedure in a protected environment.

The processing blocks (signature matching and image library), handling sensitive images, are placed
separately from untrusted blocks (e.g., DDR2_RAM, PLB, display controller). In general, the signature
matching block performs authentication whereas the image library is essentially a database of
reference images. The blocks placed within this secure zone are accessible to the untrusted blocks
after performing access rules checks. In order to access image library or signature matching block,
the secure-zone controller and the PLB must pass the same access rights signals. After successful
verification by the secure interface, the camera_controller_in and systembus_plb_in signals are transferred
to the signature matching block implemented inside the secure zone. For instance, to update images in
the image library, software will generate write access request through systembus_plb_in and at the same
time it is also required to have a write access request from secure_controller_in input signal. In the event
of any security attack, the access control signals will mismatch and an alert signal will be generated,
stopping access to the secure zone. This is achieved through the secure interface as shown in Figure 3.
The permission is granted by the secure zone after confirming the access control rules (e.g., write access
only, read access only, and/or both write and read access) from both of the control inputs are identical.
As the attacker does not have access to secure interface, even trying to send an access request just
through PLB will be denied as secure module access control signals indicating no access or a different
authorized access to the user such as read access instead of write access.
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Figure 5. Secure zone with secure interface.

The flowchart, as shown in Figure 6, is being implemented inside the secure zone to perform
signature matching by verifying the incoming image frames from the camera sensor. The user signs
on the specific sheet, which is placed in front of the camera at the fixed distance. After verifying the
access rights through secure interface module, the system performs signature matching by following the
steps as presented in this figure.

camera sensor

Get image frame

Preprocessing

Edge detection

Edge thinning

Image library

Template 
matching
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available

YES

Signature 
match

Signature verified

yes

No

Signature not verified

NO

Signature sheet

Img Controller

Im
age p

ro
cessin

g b
lo

ck

Figure 6. Image Processing-based authentication (signature matching) system flowchart.

4.1. Security Effectiveness

The vulnerabilities in the software, executing on an embedded system, can be exploited at
run-time by different security attacks. Usually, the application data is susceptible to attacks when
system resources are accessible through untrusted communication medium. Typical examples are
buffer overflow attacks [33], in which a part of the code is modified and the return address is replaced
which in turn transfer the control to another region pointing to a harmful piece of code. As per the
Sourcefire report [34], 14% of all vulnerabilities and 35% of critical ones in the last two decades are
buffer overflow attacks. For this purpose, the effectiveness of the proposed security mechanism is
evaluated by analyzing the system behavior under various buffer-overflow-based attacks.
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To modify the image library contents, we instantiated a buffer overflow attack as shown in
Figure 7. During application execution, the control register is overwritten at the stack frame and
additional data is inserted for illegal branch instruction, which in turn overwrites the return pointer of
the given function call. Therefore, the control flow is switched to the location where illegal image frame
has already been placed by the attacker. Using the standard interface, without any protection mechanism,
the image library is modified illegally through buffer-overflow-based attack. On the contrary, when the
secure zone is enabled with secure interface, the attack alert signal is generated successfully.

Program 
instructions

Program 
instructions

Stack d
irectio

n

Invalid image 
frame

(a) (b)

Malicious 
code

“lib_update” 
call frame

Control register 
and return 

address register 
are overwritten

ret addr reg

“lib_update” 
call frame

control reg

ret addr reg

control reg

Figure 7. Code Execution (a) Without buffer overflow attack; (b) With buffer overflow attack.

Beside handling buffer-overflow-based attacks that target integrity of the data, our security
mechanism is capable of detecting data confidentiality and denial of service attacks as well.
For instance, if the system software is get infected with malware and the attacker tries to extract
the data, the secure interface will terminate the data flow as the sensitive information from the secure
zone can only be extracted by providing the identical access rights through the secure-zone controller
and PLB modules as explained earlier in Section 3. Similarly, denial of service attacks are avoided by
monitoring the incoming requests and granting access to the secure zone modules when required such
as updating the image library module implemented within the secure zone. Although the modules
inside the secure zone can only be activated through secure-zone controller, the attacker can generate
repeated requests deliberately to slow down the system performance that ultimately results in battery
drainage. In our security mechanism, we have monitored the access rights, being generated by the
PLB data_in, through a specialized counter for a specific period of time. For instance, if the attacker
generates unnecessary accesses to the secure region modules continuously then such requests will be
filtered out. The control flow of the system with and without secure zone implementation is presented
in Figure 8. Without secure zone, the control flow as shown in Figure 8a will be followed and the
image library will be updated by the software by transferring the write_access control signal. In the
event of a buffer overflow, as mentioned earlier, the attacker can modify the access rights within the
systembus_plb_in input signal and acquire unauthorized access to the image library block.

Consequently, the access signal is modified illegally through a buffer-overflow-based attack and
return address of the function is updated leading to the malicious code. In this way, the images within
the image library block are updated illegally without any authorization. Alternatively, the control
flow as presented in Figure 8b will be followed when secure zone-based solution is in use. In our
proposed security mechanism, the access control signal extracted from the systembus_plb_in input
will be compared with the control signal derived from the secure_controller_in input. In the case of
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buffer-overflow-based attack, the access control signal generated by the software is overwritten but the
secure-zone controller output remain unaffected as it has direct link with the software. When control
flow comes to the “access rule check”, stage, a mismatch is successfully discovered and the secure
interface of the secure zone alerts the system.

Get 
Mode

Get 
access 
mode

Access 
rules 
check

Update 
image 
library

write_access

signature 
matching

read_access

Generate 
attack 
alert

mismatch

Get 
access 
mode

Update 
image 
library

write_access

Signature 
matching

read_access

(a) (b)

Check 
denial of 
service

secure_controller_in systembus_plb_insystembus_plb_in

Figure 8. System control flow diagram. (a) Normal control flow without secure interface; (b) Control
flow with secure interface.

4.2. Area and Power Consumption Overhead

In order to evaluate overhead of the proposed solution, the area and power consumption has
been measured in two steps. In the first step, the authentication system is implemented without secure
zone. In the second step, after testing and functional verification of the basic system, the secure zone
(secure-zone controller and interface) is implemented. Xilinx Synthesis Tool (XST) is used to generate
the area and power consumption overhead results at both steps.

For fair comparison, the area overhead results are obtained by disabling the Block RAM (BRAM)
and DSP blocks for the secure interface and secure-zone controller implementation. XST is configured
to use flip flops and lookup tables only during synthesis phase. In our case, the area overhead is
calculated by measuring number of slices utilized when the modified system, equipped with the
proposed security mechanism, is synthesized for the given FPGA device. As presented in Figure 9a,
our proposed solution has incurred an area overhead of 1.23% only.

Today’s FPGA-based embedded systems have increased substantially in computational power
and capacity which has resulted in significant rise in power consumption. Efficient management of
system resources with minimal impact on the power consumption has now become one of the prime
design concerns. For this purpose, we have measured the increase in dynamic power consumption of
the modified system when enabled with the secure controller and interface as compared to the standard
system. The XPE (Xilinx Power Estimator) tool [35] has been to measure the power consumption
overhead. As indicated in Figure 9b, our proposed security mechanism has resulted a rise of 2 mW in
power consumption as compared to standard design with no dedicated security modules.
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Figure 9. (a) FPGA slice utilization with and without secure zone; (b) Power Consumption with and
without secure zone.

4.3. Performance Evaluation

The performance of the given system always gets affected whenever a dedicated hardware module
is included serially within the processing blocks. In order to assess how the proposed security solution
impacts the execution time of the system, the performance overhead is calculated for two different
test cases.

In the first case, we have evaluated the delay introduced by our proposed solution in the
image processing-based authentication system. The secure controller and secure interface have been
implemented in a pipelined architecture to minimize their impact on the system execution time.
To measure the delay, at first we have synthesized our design with and then without security
mechanism. The timing information is produced with the help of XST. The time taken by the secure
zone to update image library, utilizing secure interface, is defined as the secure execution time (SET) and
it is measured by using Equation (1).

SET(Cycles) = NET + [
pd2 − pd1

pd1
× NET] (1)

where pd1 and pd2 are the worst-case times required by the standard interface and the secure interface
respectively to generate output signals. Normal execution time (NET) is defined as the total number
of clock cycles required to update the image library using standard interface without any security
mechanism. The performance overhead in terms of total number of cycles required to update image
library through secure interface is presented in Figure 10. It is observed that the delay introduced by our
security mechanism remains constant and it is directly proportional to the number of images being
updated. For instance, the secure interface induces 21.64% increase in the total number of cycles to
update 25 images as compared to the standard interface.
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Figure 10. Performance overhead: Number of cycles required to update image library.
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In the second case, we have implemented the proposed solution for a NoC-based multi-core
systems which has been discussed in detail in the next section.

5. NoC-Based Communication Architecture

NoC-based communication architectures in multi-core systems have become apparent as
a promising substitute to shared bus architecture and have been investigated extensively in terms
of system performance, network topologies, application-specific implementations and routing
mechanisms. Security aware architectures for such multi-core systems have come forth lately in
the research literature as the network connectivity and complex embedded cores have also made
these systems more susceptible to the software-based attacks. The protection of sensitive information
has become the main design goal, especially in shared memory-based architectures where, without
required protection, the application data can be modified by the compromised processing cores through
illegitimate access to the security critical areas of the memory.

In order to determine the scalability of the proposed solution, we have implemented the secure
interface for NoC-based communication architecture. A standard five-port router is designed for
this purpose and the secure interface unit is embedded into the router’s local input port as shown in
Figure 11. It is assumed that each router has secure_mode input signals attached to its local channel’s
input port. The processing core requiring higher level security can be configured to such routers
whereas normal cores can be attached to standard routers. In this way, the trusted processing cores can
be isolated from other untrusted cores.
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Figure 11. Secure interface embedded inside local input port of the router.

The processing core is attached with the local channel of the router and other four channels are
connected with its adjoining routers. As the processing core communicates with other cores through
the local channel, it is the perfect place to configure secure interface in order to verify the access rights
and detect any compromised packet as soon as it is injected. The packet being injected comprises
four flits, which will be stored at the buffer of the input port. XY routing algorithm and a cut-through
flow control mechanism has been implemented in order to route the packet flits. The header flit stores
the address of the source and destination cores along with the access control rules (e.g., write access
only, read access only, and/or both write and read access). The secure interface module receives
access_rights input from the header flit of the packet and verifies it with the secure_mode input as
discussed earlier in Section 3). If both inputs are correctly verified then an enable signal is generated
and in case of any mismatch an alert signal will be generated by secure interface module for further
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action. After getting the alert signal, based on the security policy, the manager core can either disable
the compromised core or reset the system to its default configuration.

For hardware resources evaluation, the router is designed and developed for a Xilinx Virtex-7
FPGA where target technology is 28 nm. To evaluate the impact of the secure interface on the router,
the increase in area and power consumption is measured in two steps. At first, a standard router
without secure interface is synthesized and configured for 16 and 32 bit channel width, and network
sizes of 16, 64 and 256 nodes in mesh topology. In the second step, after implementing and verifying
the functionality of a standard router, the secure interface module is embedded in the local input port
of the router. The modified router is again synthesized for the same channel widths and network
configurations, using XST, as mentioned earlier.

5.1. Area and Power Consumption Overhead

Area overhead is calculated by observing increase in the slice utilization when the router is
enabled with the secure interface and synthesized and compared to a standard router without the
security feature. The slice utilization of various configurations of the router has been presented in
Figure 12. In our case, the secure interface has presented an area overhead of four slices only when
configured for different number of nodes.

Similarly, the power consumption overhead has also been measured. In our case, the main focus
is in the power consumed by the when the secure interface enabled router is in operation. The increase
in power consumption has been measured by calculating the dynamic power consumed by modified
router and compared to the same router architecture without secure interface. This overhead is evaluated
using the XPE tool [35]. As illustrated in Figure 13, the power consumption overhead remains constant
for different network sizes. This is expected as the secure interface module working does not depend on
the network size.
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Figure 12. Area overhead of security interface on the routers for different network sizes. (a) 4 × 4 mesh
network; (b) 8 × 8 mesh network; (c) 16 × 16 mesh network.
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5.2. Performance and Energy Evaluation

Beside measuring the area and power consumption overhead at router level, hardware level
changes in the router architecture have certain impacts on the overall system performance, therefore it
is very critical to evaluate the performance and energy consumption overhead at the network level as
well. Firstly, to evaluate impact of the secure interface on the performance of each router, the propagation
delay of the modified router is calculated by using Equation (2).

Delay(Cycles) =
pd2 − pd1

pd1
× packet_pd_cycles (2)

where pd1 and pd2 are the respective propagation delays required by a router to generate output when
configured without and with a secure interface module. The packet_pd_cycles is the propagation delay,
measured in clock cycles, incurred by the standard router to transmit one complete packet from one
input port to the output port. To get performance evaluation results, a cycle accurate interconnection
network simulator [36] is used. The secure interface is configured inside each router using the simulator
for a mesh network of 4 × 4, 8 × 8 and 16 × 16 nodes with XY routing scheme and virtual cut-through
packet switching technique with a packet consisting of four flits. The simulator is configured to use
first 2000 cycles as warm-up period and run the experiment up to 200,000 cycles. The simulator is then
set up to inject packets at different rates until the network reaches to a saturation point where injection
of new packets is not possible in the system unless existing packets are processed. During warm-up
period the simulation results are ignored and collected for active cycles only.

Total packet latency has been used to measure performance overhead which is the number of clock
cycles required for all the injected packets to reach their corresponding destinations. At first, the results
are collected by measuring the packet latency for the standard router architecture. After getting the
base results, the router configurations are adjusted to incorporate the propagation delay presented by
secure interface block.

Network energy consumption overhead is measured by configuring the Orion power model [37]
within the simulation framework. In the first step, extra energy required by the secure interface module
within the router is measured with the help of XPE tool. In the second step, to get the total network
energy consumption overhead, the simulator framework is modified to add the secure interface module
energy overhead for each router.

The network energy consumption and packet latency are calculated by first simulating the
network in various network configuration settings with and without the secure interface. For this
experimental evaluation, we have used both various traffic patterns as explained below.

Three different synthetic traffic patterns are used for the simulations: uniform, transpose and
hotspot traffic patterns.

Uniform Traffic Pattern: Under this traffic pattern, packets are uniformly distributed to all the
processing cores, which result in high inter-node communication density. The simulation results are
presented in Figures 14 and 15. The proposed modifications in the router architecture have negligible
impact on the packet latency, where maximum percentage increase of 9.92% is reported for 16 node
network as compared to 3.38% increase for the network of 256 nodes. As can be seen in Figure 15 that
the proposed security solution has not contributed significantly in the network energy consumption.
For instance, as presented in Figure 20b, the secure interface enabled routers have increased network
energy consumption by 0.73% for 16 nodes network in the worst case scenario.

Transpose Traffic Pattern: In transpose, as a non-uniform traffic pattern, packets are generated
based on a fixed pairing of sources and destinations (a processing core with value an−1, an−2, ..., a1, a0

communicates with the processing core an/2−1, ..., a0, an−1, ..., an/2). Under such non-uniform traffic
patterns, communication between remote cores occurs more frequently and source to destination hop
count varies in a non-uniform manner which results in earlier network saturation at a lower packet
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injection rate when compared to uniform traffic pattern. The detailed simulation results are presented
in Figures 16 and 17.

Under transpose traffic pattern our proposed solution has a lower impact on the packet latency
and energy consumption as compared to uniform traffic pattern, as will be discussed later in the paper.

Hotspot Traffic Pattern: As realistic applications might generate communication traffic where one
or more processing cores accept a greater number of packets as oppose to other processing cores
causing hotspot regions. This behavior can be best described synthetically under hotspot traffic pattern
where different processing cores are designated as hotspot cores with higher packet injection rate.
To evaluate the behavior of our proposed security mechanism under hotspot traffic pattern, a various
number of cores are labeled as hotspots and configured to accept double packets as compared to the
remaining cores. Hotspots are placed and simulated in three different configurations: one hotspot
in the center, three hotspots placed in close proximity and four distributed hotspots with utmost
hop-count. For example, the detailed simulation results have been illustrated in Figures 18 and 19 for
the four hotspots that are configured in distributed manner and being placed from each other with
minimum hop-count of 3, 6 and 14 nodes for the network of 16, 64 and 256 nodes respectively.
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Figure 14. Average packet latency with uniform traffic pattern. (a) 4 × 4 mesh network; (b) 8 × 8 mesh
network; (c) 16 × 16 node network.
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Figure 15. Network energy consumption with uniform traffic pattern. (a) 4 × 4 mesh network;
(b) 8 × 8 mesh network; (c) 16 × 16 mesh network.
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Figure 16. Average packet latency with transpose traffic pattern. (a) 4 × 4 mesh network; (b) 8 × 8 mesh
network; (c) 16 × 16 node network.
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Figure 17. Network energy consumption with transpose traffic pattern. (a) 4 × 4 mesh network;
(b) 8 × 8 mesh network; (c) 16 × 16 mesh network.
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Figure 18. Average packet latency with four distributed hotspots. (a) 4 × 4 mesh network; (b) 8 × 8 mesh
network; (c) 16 × 16 node network.
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Figure 19. Network energy consumption with four distributed hotspots. (a) 4 × 4 mesh network;
(b) 8 × 8 mesh network; (c) 16 × 16 mesh network.

As summarized in Figure 20, the proposed security solution has presented approximately
comparable or slightly increased overhead both for packet latency and energy consumption under
hotspot traffic pattern when compared with the remaining traffic patterns. For example, with four
distributed hotspots in 16, 64 and 256 nodes network, the packet latency is increased by 8.83%,
5.38% and 2.91% respectively as compared to 9.72%, 6.51% and 4.10% increase for three closely placed
hotspots under similar network settings. Similarly, the network energy consumption overhead for
different synthetic patterns is summarized in Figure 20b. These overheads can be reduced further by
analysing the communication pattern and the nodes with recurring traffic pattern can be placed in
a neighboring area.

The scalability of the proposed security mechanism is further evaluated by measuring its
impact on the performance by simulating multi-threaded applications for a system having 64 cores.
For this purpose, the traffic patterns for a number of applications are generated through the Netrace
library [38,39]. Netrace is a utility that generates packet traces by simulating a 64-core system executing
multi-threaded applications from the PARSEC V2.1 benchmark suite [40]. The traffic patterns for
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two applications from this benchmark are used in our simulator in a 8 × 8 mesh network environment.
The impact of embedding secure interface inside each router on average message latency is shown
in Figure 21. From these results, it is clearly indicated that the network performance is not much
affected when such benchmark applications data is simulated. Moreover, our proposed mechanism
has negligible performance overhead when simulated for the benchmark applications as compared to
the results generated for the different synthetic traffic patterns.
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Figure 20. Maximum percentage increase in packet latency and total network energy consumption
under different synthetic traffic patterns. (a) Percentage increase in packet latency. (b) Percentage
increase in total network energy consumption.

(a) (b)

Figure 21. Message latency for 64 node network using multithreaded applications from PARSEC
benchmark suite. (a) blackscholes application; (b) fluidanimate application.

6. Conclusions and Future Work

In this paper, a practical hardware-based security solution is proposed for a FPGA-based
embedded systems and NoC-based communication architecture. The security mechanism has been
implemented as a secure zone and it is able to efficiently detect software attacks by identifying
unauthorized accesses to the blocks configured within the protected zone. The effectiveness of
the proposed mechanism is verified by initiating a buffer-overflow-based software attack which
is eventually detected successfully. The feasibility of our solution is illustrated by implementing
an authentication system based on a FPGA device with the area and power consumption overheads
of 1.23% and 9.5% respectively. Additionally, for NoC-based communication architecture, the secure
interface has presented a negligible area and power consumption overhead against a standard router.
Moreover, experimental results have been obtained through simulation to present the impact of our
approach on the packet latency and total energy consumption for different network sizes and it is
shown that the performance and energy overhead is minimal.
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Currently, the secure-zone controller module is configured to take input from system user
manually. In future work, different ways of autonomous configuration will be investigated and
a mechanism will be devised to configure the secure-zone controller remotely over a dedicated secure
communication medium.
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