
computers

Article

Improving Efficiency of Edge Computing
Infrastructures through Orchestration Models †

Raffaele Bolla 1, Alessandro Carrega 2 ID , Matteo Repetto 2,* ID and Giorgio Robino 2

1 Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN),
University of Genoa, Via Opera Pia 13, 16145 Genova, Italy; raffaele.bolla@unige.it

2 S3ITI Lab, National Inter-University Consortium for Telecommunications (CNIT), Via Opera Pia 13,
16145 Genova, Italy; alessandro.carrega@cnit.it (A.C.); giorgio.robino@cnit.it (G.R.)

* Correspondence: matteo.repetto@cnit.it; Tel.: +39-010-353-2057
† This paper is an extended version of our paper published in Carrega, A.; Portomauro, G.; Repetto, M.;

Robino, G. OpenStack extensions for QoS and energy efficiency in edge computing. In Proceedings of the
3rd IEEE International Conference on Fog and Edge Mobile Computing (FMEC 2018), Barcelona, Spain,
23–26 April 2018.

Received: 22 May 2018; Accepted: 14 June 2018; Published: 20 June 2018
����������
�������

Abstract: Edge computing is an effective paradigm for proximity in computation, but must inexorably
face mobility issues and traffic fluctuations. While software orchestration may provide effective
service handover between different edge infrastructures, seamless operation with negligible service
disruption necessarily requires pre-provisioning and the need to leave some network functions
idle for most of the time, which eventually results in large energy waste and poor efficiency.
Existing consolidation algorithms are largely ineffective in these conditions because they lack context,
i.e., the knowledge of which resources are effectively used and which ones are just provisioned
for other purposes (i.e., redundancy, resilience, scaling, migration). Though the concept is rather
straightforward, its feasibility in real environments must be demonstrated. Motivated by the lack of
energy-efficiency mechanisms in cloud management software, we have developed a set of extensions
to OpenStack for power management and Quality of Service, explicitly targeting the introduction of
more context for applications. In this paper, we briefly describe the overall architecture and evaluate
its efficiency and effectiveness. We analyze performance metrics and their relationship with power
consumption, hence extending the analysis to specific aspects that cannot be investigated by software
simulations. We also show how the usage of context information can greatly improve the effectiveness
of workload consolidation in terms of energy saving.

Keywords: energy efficiency; QoS; edge computing

1. Introduction

Edge computing is an effective solution to tackle a number of challenging requirements that
cannot be satisfied by the legacy cloud paradigm (e.g., geographical distribution, computing proximity,
transmission latency). It represents an essential building block in the 5G vision, in order to create
large distributed, pervasive, heterogeneous, and multi-domain environments [1]. Edge computing
will be an integral part of smart orchestration platforms specifically designed to fulfill the challenging
requirements of many vertical industries: smart manufacturing, energy, e-health, automotive,
media and entertainment [2].

Differently from the cloud, where resources are located in one or a few big data centers and the
workload may be quite predictable, edge computing will inexorably face mobility issues, similar to
those already present in cellular networks. With the growth of user-centric services, characterized by

Computers 2018, 7, 36; doi:10.3390/computers7020036 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-5944-7582
https://orcid.org/0000-0001-8478-2633
http://www.mdpi.com/2073-431X/7/2/36?type=check_update&version=1
http://dx.doi.org/10.3390/computers7020036
http://www.mdpi.com/journal/computers

Computers 2018, 7, 36 2 of 17

interactivity and strict constraints on latency, the workload is expected to follow user distribution
and mobility patterns, hence leading to uneven, unsteady, and non-uniform distribution within the
network. Consequently, the usage of peripheral installations is expected to dynamically vary with
hourly, daily, weekly, and seasonal periodicity.

The heterogeneity in hardware virtualization (especially the hypervisor) does not allow
for migrating virtual functions between different installations. To cope with this limitation,
proper management hooks can be developed for each specific virtual function to enable state migration
between two running instances in different infrastructures. Software-defined networking easily allows
duplication of traffic flows during the migration process, in order to avoid packet losses and timeout
expiration. However, the time to provision resources is not negligible because of technical and
administrative issues; indicatively, it may take from minutes to days to have a Virtual Machine (VM)
ready. Hence, the alternative for mobility management is either reactive provisioning after need,
with a delay that might not be acceptable for most demanding applications, or proactive provisioning,
which implies running idle instances that might never even be used.

Proactive provisioning basically consists in overprovisioning. It has been the common ‘least-effort’
relief for long, but it leads to poor utilization of the overall system, raises power consumption and
crumbles the overall efficiency, hence it is no more acceptable today in its current form, both for
environmental and economical reasons. The real problem is the need to run idle devices, which results
in poor efficiency in terms of power consumption per actual computation load [3]. Such inefficiency is
also intrinsic in the cloud paradigm, but it is far more severe in edge computing due to more variable
workload and larger number of installations.

Despite the plethora of energy-efficiency algorithms already proposed in the literature, we argue
that all of them operate in a “blind” way, i.e., they are not aware of the different role applications may
have in a business process. As a matter of fact, the majority of applications will probably be active and
working most of the the time, but some others might be present just as backup replicas for redundancy
or scaling purposes. In some cases (e.g., billing from utilities), some processes run intensively only
a few days per month, and remain totally idle the rest of the time. When each application is deployed
in a separate VM (as often happen today), consolidation algorithms might be greatly enhanced in both
efficiency and Quality of Service if an explicit indication about the usage pattern were available.

The main novelty of our work consists in exploring this opportunity. Roughly speaking, we think
that unused VMs may be put in special states by the user (equivalent to suspending laptops by closing
their lid), and this information could be used to selectively apply more aggressive power-saving
mechanisms to servers that only host unused VMs. In more abstract terms, this means more ‘context’
is inserted in the consolidation process. Though frequent and timely changes in VMs state may be
cumbersome for humans, the birth of software orchestration tools (e.g., OpenBaton [4]) allows for
easily automating these operations with other relevant life-cycle management actions (i.e., scaling,
backup, resilience).

In a recent paper [5], we have already addressed the design of efficient virtualization frameworks
for edge computing, balancing Quality of Service (QoS) with Energy Efficiency (EE). We have
proposed a set of functional and semantic extensions to OpenStack, a well-known cloud management
software, which enable better management of QoS and EE. Our previous work provided very limited
experimental validation, especially concerning energy efficiency. Indeed, packet loss and jitter were
measured during network re-configuration (changes in forwarding paths), and power profiles of
servers and switches were collected. In this paper, we build on this experimental infrastructure to
analyze its effectiveness (i.e., energy saving) and efficiency (i.e., useful work per watt), which are
aspects that cannot be realistically investigated by simulations. We include deeper investigation on
the relationship between placement strategies and power consumption; we also show how, even with
very simple consolidation strategies, the knowledge of context information allows better results than
existing practice. Finally, we demonstrate that our approach achieves better linear relationship between
usage and power consumption.

Computers 2018, 7, 36 3 of 17

The paper is organized as follows. We review related work in Section 2. We better explain the
main motivations behind our work, and the relationship between service orchestration and workload
consolidation in Section 3. We then describe the implementation of the energy-efficient infrastructure,
which provides support for QoS and power management in Section 4. We report evaluation and
numerical analysis from the testbed in Section 5. Finally, we give our conclusions in Section 6.

2. Related Work

Energy efficiency of cloud infrastructures implies that the least amount of energy be used
for actual computation. This is largely dependent on a more linear relationship between power
and performance [6], which is usually pursued by leveraging existing power saving mechanisms:
performance scaling (e.g., dynamic regulation of voltage/frequency for CPUs), low-power idle,
and, most of all, removal of idle periods. Indeed, running idle servers wastes large amounts of
energy to keep the system up and running, without carrying out any useful work. Under this premise,
running VMs on the smallest number of servers, while either powering down or putting to sleep all
unused devices, is often the most effective solution to save energy. The process of clustering VMs
together and selecting the active servers is conventionally indicated as workload ‘consolidation’.

Similar to our purpose, Shirayanagi et al. [7] considered the presence of backup replicas and links,
and investigated simulations about how power consumption changes when varying their number.
However, the focus was on the power consumption of the network alone. Li et al. [8] investigated the
impact of overprovisioning (e.g., for dealing with sudden peaks of workload) on power consumption.
Their strategy for workload consolidation only considers the servers, and did not take into account
any network metric. In this case, they provided a real implementation, based on their virtualization
infrastructure named iVIC. Evaluation on violations of service-level agreements in case of consolidation
was carried out by Buyya et al. [9], again through simulations.

Despite the large number of algorithms proposed in the literature, the feasibility, effectiveness,
and efficiency of workload consolidation in real testbeds have not been fully investigated yet.
Heller et al. [10] analyzed how redundancy and guard margins influence the power consumption;
their work places VMs on servers with the objective to minimize the power consumption of the data
center network, but does not consider the energy drawn by computing servers. Since the grounds
for any consolidation algorithm is the capability to move VMs between servers, Voorsluys et al. [11]
studied the impact of live migration on application response time.

More recently, Beloglazov et al. [12] proposed OpenStack Neat for balancing QoS and energy
consumption. Their framework monitors CPU utilization by VMs, estimates overloading/underloading
conditions on each server, and uses OpenStack Application Programming Interfaces (APIs) for
live-migration of VMs between servers. Their consolidation strategy is power-unaware, since only
the utilization metric is used. Even if power saving should stem from putting idle servers to sleep,
their hardware did not support this state, so they only computed estimations for energy saving.
Compared to our approach, Neat does not include a power monitoring framework, software-defined
networking, and specific context for applications. Rossigneux et al. [13] implemented Kwapi,
which is an OpenStack extension to collect real-time power measurements from servers. We used this
framework in our implementation [14], and enriched it by also collecting power consumption from
networking equipment. Kwapi was also used by Cima et al. [15] in their implementation of OpenStack
extensions for energy efficiency. This work has very similar objectives to ours: an energy-efficient
cloud infrastructure with enhanced API for power management. The API includes specific commands
to change the power state of servers (sleep/active). The authors measured migration times and service
downtime for live migration, and energy saving with power-unaware consolidation strategies similar
to Neat. Our work follows a similar approach, but we also include software-defined networking for
bandwidth reservation, and context information for VMs, which enables better QoS management and
more aggressive consolidation strategies.

Computers 2018, 7, 36 4 of 17

3. A Paradigm for Energy-Efficient Computing

Fed by the outbreak of cloud services, the usage of data centers is still expected to increase in
the next years. Data centers are already responsible for a large share in overall energy consumption
(around 2%) [16], so energy saving is necessary among the top management priorities.

The introduction of more efficient hardware, power-saving mechanisms, and more energy-efficient
infrastructure design has notably reduced previous forecasts on energy consumption, but the still
increasing trend motivates additional effort. As a matter of fact, recent reports on the sustainability
of data centers show that larger installations are already approaching ideal effectiveness, while there
are still large margins of improvement for small installations [16,17], like those expected for
edge computing.

In particular, the real challenge to tackle is power consumption per useful computing work. In this
respect, we believe that sharing more context information between the service and the virtualization
infrastructure represents a necessary evolution to boost far more efficiency than today, effectively
balancing performance, QoS, and power consumption.

3.1. Efficiency vs. Effectiveness

The prevailing optimization target for energy-efficiency in data centers is usually Power Usage
Effectiveness (PUE), which is defined as the ratio between total facility energy (also including cooling,
lightning, power distribution losses) and IT equipment energy. The actual significance of this parameter
is still controversial, though, because it does not account for efficiency of IT equipment [18,19].
For example, in case of low server utilization, the amount of power drawn to keep up and running the
whole infrastructure is disproportionate to the actual computation service. Workload consolidation
explicitly pursues Computing Usage Efficiency, by chasing a more linear relationship between power
consumption and infrastructure usage.

The common weakness of most consolidation algorithms is to take into account static metrics
only (i.e., CPU, RAM, bandwidth demand), and to neglect the current utilization of resources.
Low utilization is most likely to happen with variable workload; this is a typical situation for billing
applications, video streaming, and many other relevant services which are used with more or less
predictable periodic patterns. As we already discussed, such applications are typically sized to deal
with peak load, in order to avoid service disruption and delay caused by technical and administrative
provisioning procedures.

Tackling more linearity between power consumption and effective data center productivity,
some recent proposals consider CPU utilization as main metric for consolidation [12,15]. This approach
achieves better efficiency, but it needs some time to detect overloading conditions, hence leading to
potential violations of the Service Level Agreement (SLA). Indeed, we think that service users should
be aware of any potential performance violations, and should be rewarded for their willingness to
participate in more aggressive power-saving mechanisms (for instance, by dynamic and context-aware
pricing schemes [20]).

3.2. More Context for Edge Applications

Our energy-efficiency scheme stems from the availability of novel software development
and orchestration paradigms for cloud-based applications, as TOSCA [21] and ETSI MANO [22].
Such paradigms build complex applications as logical topologies (service graphs) of elementary
components (nodes or virtual functions) that are deployed in independent virtual machines or containers.
These models make extensive usage of metadata and annotations to drive the (semi-)automated
orchestration process; our idea is to include specific context information concerning QoS and energy
efficiency, which can be used to design advanced consolidation strategies [14].

Specifically, we consider the following kinds of context information for each VM:

Computers 2018, 7, 36 5 of 17

• service level, related to the criticality of the service and the expected QoS (CPU load,
network bandwidth);

• availability, indicating whether the component will be used or not in the next timeframe.

We model the above information by a colored label associated with each VM:

• red, for those VMs that require strict commitment on processing, memory, availability,
and bandwidth requirements;

• yellow, for those VMs that do not operate close to their performance limit, so there is some degree
of flexibility on QoS constraints;

• green, for unused (idle) VMs

Red labels are assigned to VMs that host the most critical software, with strict QoS constraints.
As compensation for higher fares, users expect no overcommitment and no live migration to occur
in this case. For instance, full CPU usage is always assumed, while network bandwidth is reserved
according to the maximum declared throughput. Yellow labels are assigned to standard VMs, for which
overcommitment is acceptable. In this case, CPU usage may be assumed equal to a declared average
load, while network reservation may use mean or equivalent bandwidth values. Finally, green labels
are assigned to idle and unused VMs. They can be subject to extreme overcommitment and
aggressive power-saving mechanisms, provided they return available with very low delay (i.e., below
a few seconds).

In addition to labeling, we also include max/average CPU utilization and network throughput
requirements as metadata available in the service graph. This classification could be easily extended to
more classes and a richer semantics for QoS.

4. Energy-Efficient Infrastructure

Our energy-efficient infrastructure builds on and extends previous work with similar
objectives [12,13,15]. The target is to design a framework that is agnostic of any specific orchestration
model and consolidation algorithm. In this respect, it is conceived to extend existing management
software by allowing better control on network traffic and power management. Figure 1 shows the
architecture of our energy-efficient infrastructure, which includes:

• computing hardware and hypervisors, with power-saving mechanisms;
• cloud management software (CMS) that implements the Infrastructure-as-a-Service (IaaS) model;
• software-defined network (SDN), fully programmable for optimizing network paths according to

bandwidth requests; power-saving mechanisms are also available in network devices;
• monitoring, which collects measurements about power consumption and CPU utilization from all

servers and network devices;
• management interfaces, which allow interaction both for using and managing the infrastructure.

Our Energy-Efficient infrastructure implements the Infrastructure-as-a-Service model and
provides two kinds of interfaces: North and East.

The North interface is conceived to deploy and run applications. It includes all APIs to create,
destroy, and manage cloud resources; in addition, we envision additional semantics to specify the
context information discussed in Section 3.2. Though these APIs could be used by humans, we expect
an orchestration tool takes care of automating the application life-cycle.

The East interface provides access to control and management features. In addition to typical
administrative operations in cloud management software (e.g., user management, provider networks,
hypervisor management, VM migrations), we also include power-management and SDN capabilities.
As depicted in Figure 1, the typical usage of this interface is by consolidation algorithms. An example
of a novel algorithm that makes use of context information is described in our previous work [14].

Computers 2018, 7, 36 6 of 17

Cloud Management Software

Software orchestration

En
er

gy
-E

ffi
ci

en
t M

an
ag

em
en

t

SD
N

Co
nt

ro
lle

r

Context information
(labelling and QoS parameters)

Power management

SDN Northbound

Cloud Mgmt API

Po
we

r C
nt

r

Figure 1. Architecture of the energy-efficient infrastructure.

4.1. Computing Servers

Computing servers support ACPI power states and optionally other power-saving mechanisms
(dynamic voltage/frequency scaling, low-power idle). Currently, we only use ACPI S3 state
(aka ‘Standby’, ‘Sleep’, or ‘Suspend-to-RAM’). This is one of the most useful power states, since it
almost cuts off all power, while allowing for restoring full operation in a few hundred milliseconds.
We plan to include additional controls over other power-saving saving mechanisms in future updates.
For what concerns remote control of these states, a Power State Management Profile is already available
in the DTMF Common Information Model [23] and mapped to IPMI [24], but it is not available in most
commercial devices. While lacking broad support for specific interfaces, a custom API is currently used
to change the power state from ACPI S0 to S3 (i.e., to put the device to sleep), whereas Wake-on-Lan is
used to resume it back to full operation (from ACPI S3 to S0).

Our installation uses the QEMU/KVM hypervisor, which is the default choice for OpenStack
(see below).

4.2. Cloud Management Software

We use the open-source OpenStack framework as cloud management software. Our installation
includes authentication (Keystone), computing (Nova), networking (Neutron), image (Glance),
storage (Cinder), and telemetry (Ceilometer) modules. The Neutron ML2 plugin is used for virtual
networking, together with openvswitch software-based switch. VLAN encapsulation is used for tenant
networks because this is the only tunneling protocol managed by OpenFlow in physical switches.
The network node is installed on a dedicated machine. A shared file system is available on all compute
nodes, so that live-migration of VMs is possible between hypervisors.

4.3. Software-Defined Network

The Software-Defined Network is composed of OpenFlow software switches, running openvswitch.
We preferred software switches running on commercial desktops over commercial hardware
because the latter does not provide ACPI power states, so cannot be used to conduct live tests
on power consumption. In addition to OpenFlow, network devices also expose the GAL interface
(Green Abstraction Layer [25]), a recently introduced standard to report and modify energy-related
characteristics (power states, power/performance relationship, etc.). The GAL is used to collect the
power profile of each device (e.g., the description of how energy consumption changes with different

Computers 2018, 7, 36 7 of 17

utilization levels), and to change the power state from active (ACPI S0) to sleep (ACPI S3). Devices are
resumed back to full operation (from ACPI S3 to S0) by the Wake-on-Lan protocol.

OpenDayLight is used as network controller. We use the l2switch feature to provide full connectivity
among all nodes, while explicit flows are configured between VMs with bandwidth requirements.
This approach limits the number of OpenFlow rules to specific flows with QoS requirements (which
will be mapped to higher priority traffic classes), while falling back to best effort flooding behavior for
ancillary traffic (e.g., DNS queries and DHCP).

The l2switch uses controlled flooding to forward packets, so it generates a large amount of
network traffic, but it is extremely resilient to failures and does not require reconfiguration in the
case of VM migration. Instead, explicit configuration of paths results in better and more efficient
usage of the infrastructure, but needs reconfiguration in the case of migration/failure that may lead
to performance degradation and service disruption. There aspects are explicitly considered in our
performance evaluation (see Section 5.2).

Configuration of QoS parameters (priority queues, traffic shapers, scheduling disciplines) in the
physical switches is not implemented yet, but it is already on the development roadmap.

4.4. Monitoring Framework

The main objective for the monitoring component is the collection of measurements from
heterogeneous devices, by retrieving data from different meters, with different communication
protocols, and with different data formats. To this aim, we use Kwapi [13], a modular framework for
monitoring power consumption and publishing data in an OpenStack Ceilometer. We extended Kwapi
to collect data about CPU usage of the hypervisors, so we can build the power profile of each device,
i.e., the relationship between power consumption and performance [26].

Kwapi includes drivers to query commodity power meters over SNMP, serial/usb wattmeters,
and the IPMI interface available in many recent computing boards; this covers most hardware that
could be deployed in edge sites, including legacy servers with a single motherboard as well as
blade servers.

4.5. North and East Interfaces

The North interface is the OpenStack API. We use a richer semantics that let users specify context
information. This information is not directly used by OpenStack, which does not include any specific
logic, but is exposed to external management software (e.g., QoS/Consolidation algorithms) via the
East interface.

Our implementation exploits the plain OpenStack interface to share context based on the
model described in Section 3.2. The specific implementation of the abstract model includes the
following information:

• active/paused state. According to OpenStack documentation, VMs can be in different steady states,
roughly corresponding to ACPI power states. We expect that users make use of the PAUSED state
to indicate those VMs that are not currently used (green label, i.e., spare components for horizontal
scaling or backup), hence implicitly requesting (temporary) low service levels;

• bandwidth requirements. These are properties in the form 〈key, value〉 associated to each VMs and
stored in the metadata server, which extend QoS constraints already present in OpenStack API
(Currently, QoS support in OpenStack is very limited, and only covers a few configurations in the
hypervisor, but none in the physical network);

• service level. This is also encoded by a property in metadata server and is representative of the
degree of acceptable overprovisioning (yellow/red label).

The usage of virtual power states (active/paused) better matches the green class to its meaning,
facilitates the detection of state transitions, and allows smoother transitions of power states of the
underlying hardware.

Computers 2018, 7, 36 8 of 17

The East interface is a collection of control and management APIs to exploit the unique features
of this kind of infrastructure. From top to bottom on the right side of Figure 1, we find the cloud API,
the power management interface, and the network API.

The cloud API is the standard OpenStack interface, used in admin mode to retrieve information
about the virtualization system (running VMs, state, tenant networks, VLAN ids, etc.) and to trigger
migration of VMs. It is also used to detach hypervisors from the OpenStack controller before putting
them to sleep, in order to avoid any unreachability error.

The power management interface is used to:

• retrieve information about current power consumption;
• build power profiles for servers and network devices by correlating power consumption with

different load conditions (CPU usage);
• change the power state of servers and network devices.

The first two operations rely on the monitoring framework described in Section 4.4, whereas the
last one uses the GAL for network devices, a custom interface for compute nodes, and the Wake-on-Lan
protocol for all devices (see Sections 4.1 and 4.3).

Finally, the network API allows programmatic configuration of the communication infrastructure.
We use RESTCONF [27], available as an OpenDayLight feature, which provides high-level network
abstraction through the Yang model. This interface can be used to set flows in the underlying data
path, according to the specific strategies computed by management algorithms.

5. Evaluation and Numerical Results

5.1. Experimental Setup

We deployed a working testbed as depicted in Figure 2. It is a small testbed, but it is rather
representative of edge installations, which are not expected to have the same size as modern data
centers. It is composed of the hardware and virtual components shown in Table 1.

Table 1. Hardware used in the experimental testbed.

Role ID Type
CPU

RAM Disk Net
Model Speed Cores

OS compute node
C1 Phy Core i7-6770HQ 2.66 GHz 4 32 GB 256 GB 1 × 1 GB
C2 Phy Core i7-6770HQ 2.66 GHz 4 32 GB 256 GB 1 × 1 GB
C3 Phy Core i7-6770HQ 2.66 GHz 4 32 GB 256 GB 1 × 1 GB

OS network node NN VM kvm64 2.30 GHz 2 4 GB 32 GB 1 × 1 GB

OS storage node SN Phy Core i5-750 2.67 GHz 4 2 GB 750 GB 1 × 1 GB

Network switch

S1 Phy Atom N550 1.5 GHz 2 2 GB 500 GB 4 × 1 GB
S2 Phy Atom N550 1.5 GHz 2 2 GB 500 GB 2 × 1 GB + 2 × 100 Mb
S3 Phy Atom D510 1.66 GHz 2 1 GB 120 GB 2 × 1 GB
S4 Phy Atom 230 1.6 GHz 1 4 GB 160 GB 2 × 100 Mb

The installed software is the Newton release for OpenStack, and Carbon for OpenDayLight.
We used a mix of bash scripts and simple java programs for triggering our APIs and QoS parameters.

According to similar works in the literature, we selected low-end hardware for our testbed.
Indeed, our work leverages innovative technologies (power saving mechanisms and protocols,
software-defined networking) that are not yet largely available together in commercial devices for
cloud installations.

Computers 2018, 7, 36 9 of 17

NN C1 C2 C3

S1 S2

S3 S4

Figure 2. Experimental testbed. NN = Network Node, C = Compute node (server), S = Switch.

5.2. Performance

The application of power-saving mechanisms is expected to impact the Quality of Service (QoS)
perceived by the applications, but this aspect is always neglected when the evaluation of consolidation
algorithms is carried out by simulations. Indeed, the migration of VMs interrupts the service, and also
requires change in the network configuration, to re-route packets. As a first result, we extend the
measurements already reported in our previous work [5].

5.2.1. Forwarding Paths

A distinctive characteristic of our framework is the integration with SDN protocols (i.e., OpenFlow),
which allows optimal bandwidth usage through the configuration of forwarding paths between VMs
(‘Explicit path’). When VMs are moved to a different server, the underlying forwarding path has to be
updated, and this may result in packet losses, jitter variations, and broken connectivity. To understand
the potential impact of network re-configuration, we generated a UDP traffic stream from a VM hosted
on C2 to a VM hosted on C1. The stream was generated with iperf (https://iperf.fr/), a largely used
open-source tool for testing TCP, UDP, and SCTP; the usage of UDP packets enables for measuring
performance without the interference of any congestion avoidance and error recovery procedure.

We chose to change the configuration of the network path without migrating VMs, in order
to only capture the effects due to OpenFlow operation. The path is changed from the sequence
〈C1, S1, S3, S2, C2〉 to 〈C1, S1, S4, S2, C2〉. For comparison, we also consider the plain behavior of the
l2switch feature in OpenDayLight (‘Pure flooding’), which is used in our framework to provide full
connectivity among all nodes.

Figure 3a shows that there is no loss with low bit rate (below 1 Mbps). For moderate rates
(10–30 Mbps), the l2switch flooding performs better, since there is no need for re-configuration.
However, with larger rates, the number of lost packets remains quite constant in case of configured
paths, while it rapidly raises for flooding. This happens because losses occur for a short time during
the path re-configuration, which is fixed independently of the stream rate, while flooding creates wide
network congestion (see Figure 3b).

5.2.2. Live Migration

Live migration is an essential feature for any consolidation algorithm because it moves VMs
between different servers with minimal service disruption. However, critical applications may be
sensible to service discontinuity, so it is important to evaluate this delay.

To assess the impact of live migration, we measured how the execution time increases when such
an event occurs. We considered a transcoding application, which has a deterministic behavior and
generates high computing load. Table 2 lists the main parameters for the transcoding application.

https://iperf.fr/

Computers 2018, 7, 36 10 of 17

The migration process in our experimental setup is controlled by a KVM/QEMU hypervisor.
There are several parameters that can be set in the OpenStack configuration files to tune this process;
we found the most relevant for performance is the ‘live migration downtime’. According to the
documentation, live migration copies the instance’s memory from the source to the destination
hypervisor without stopping the instance. It works in an iterative way, by copying over and over
again pages that are written by the instance in the meantime (marked as dirty pages). To avoid looping
forever, the instance is paused for a short time periodically, so that the remaining few pages can
be copied without interference from memory writes. This interval is proportional to the parameter
aforementioned; if the memory copy cannot be completed within this internal, the instance is resumed
and the process repeats from beginning. The procedure increments the downtime interval linearly at
successive iterations until the maximum permitted value (i.e., the live migration downtime parameter)
is reached; if a clean copy of the memory is not completed, the migration fails.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

L
o
s
t
P

a
c
k
e
ts

Bitrate [Mbps]

Pure flooding
Explicit path

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

s1-nn
s1-c1

s1-s3
s1-s4

s2-c2
s2-s4

s2-c3
s2-s3

Netw
ork

B
a
n
d
w

id
th

 [
M

b
is

/s
]

Links

Pure flooding
Explicit path

(b)

Figure 3. Comparison of network performance for flooding (l2switch behavior) and explicit path
configuration. (a) packet loss; (b) bandwidth usage.

Table 2. Relevant parameters of the transcoding application.

Parameter Original Value Final Value

Video length ca 22 m 52 s Same
Transcoding tool ffmpeg 3.4.1 N/A

Video stream h264 (native) mpeg4 (native)
Audio stream aac (native) mp3 (libmp3lame)

Container format mp4 avi
Transcoding time (w/o migration) N/A ca 4 m 6 s

In a nutshell, a live migration process periodically interrupts the execution with linearly increasing
intervals. This raises the suspect that, overall, smaller downtime values might lead to longer service
disruption and unavailability than larger values, even if that looks counterintuitive. In addition,
network bandwidth is used intensively during the migration, hence multiple failed attempts also turn
into high overhead.

The above impression is partially confirmed by analyzing the total processing time and migration
time for video transcoding (see Figure 4). We measured a smaller (almost negligible) increase in the
service processing time while using the two larger downtime values. We also see the great reduction
in total migration time when using such longer downtime values. From this evaluation, we conclude
that setting longer live migration downtime values is often beneficial both from service and migration
performances, hence we fixed these parameters to 2000 ms in all successive trials.

Computers 2018, 7, 36 11 of 17

 0

 50

 100

 150

 200

 250

 300

 350

500 1000 1500 2000

D
u
ra

ti
o
n
 [
s
]

Live_migration_downtime value [ms]

Processing time
Migration time

0.00% +0.63%
-1.52% -1.22%

Figure 4. Duration of service processing and migration, in case a VM is migrated between two servers.

5.2.3. Availability

Every power-saving mechanism entails reduced capability (e.g., lower frequency, shut down
components), hence some time elapses before returning to full operation. In our case, paused VMs
may be hosted on a sleeping server. The time to get them ready for use is some hundred milliseconds
for hardware wake-up, plus additional time for the operating system to carry out resume operations;
in total, this sums up to a few seconds.

The above value is some order or magnitude smaller than provisioning a VM from scratch.
In addition, the main concept behind our approach is that users voluntarily put their VMs in the
paused state, so they are aware of the time to get them active again. Based on these considerations,
we think that more precise measurements are not necessary at this stage.

5.3. Energy Efficiency: Performance vs. Power Consumption

Given the antithetical goals of energy efficiency and QoS, it is natural to wonder how they
are balanced in our paradigm. Indeed, the two aspects are often investigated separately, and their
correlation is not studied. To this aim, we analyze how consolidation affects the overall efficiency,
given by the ratio between performance and power consumption. We suppose having six VMs, and we
select three different placement strategies. Each placement corresponds to more or less aggressive
consolidation, by using less of more servers, respectively. The placement of VMs for each strategy is
described in Table 3. In this case, we perform the evaluation in static conditions for consolidations,
i.e., the placement does not change during each experiment.

Table 3. Allocation of VMs for different consolidation strategies.

Strategy Compute1 Compute2 Compute3

1. Max saving All VMs (VM1–6) – –
2. Balanced 3 VMs (VM1, 3, 5) 3 VMs (VM2, 4, 6) –
3. Max performance 2 VMs (VM1, 4) 2 VMs (VM2, 5) 2 VMs (VM3, 6)

We evaluated with real data how power consumption and performance change for each strategy.
We used the stress-ng tool (http://kernel.ubuntu.com/~cking/stress-ng/) to incrementally increase
the CPU load for each VM. We consider 100% as full utilization of one VM, so the total load for six VMs
equals 600%; the incremental step is fixed at 25%. We increment the load for each VM in numerical
order, i.e., first, we increase the load for VM1 and, when it is full (100%), we start with VM2, and so on
until the last VM (VM6) is fully loaded.

http://kernel.ubuntu.com/~cking/stress-ng/

Computers 2018, 7, 36 12 of 17

We show power consumption and performance for the three strategies in Figure 5. We see that
a large power consumption gap is present between Strategy 1 and Strategy 2 (around 40% increase),
while the difference is limited between Strategy 2 and Strategy 3 (Figure 5a). This is obvious if we
consider the network topology (Figure 2): by placing VMs on Compute2, we need to wake up two
additional switches (S2 and S3), which are not necessary for Strategy 1, whereas no additional network
devices are necessary when switching from Strategy 2 to Strategy 3.

 0

 40

 80

 120

 160

 200

 240

 0 100 200 300 400 500 600

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 [
W

]

Cumulative CPU load [%]

Strategy 1
Strategy 2

Strategy 3

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

1 VM 2 VMs 3 VMs 6 VMs
B

o
g
o
 o

p
s
/s

Number of VMs running per server

VM1
VM2

VM3
VM4

VM5
VM6

(b)

Figure 5. Comparison of power consumption and performance for the three consolidation strategies;
(a) power consumption; (b) performance.

Strategy 1 achieves larger energy saving, but we must also take performance into account
for fair comparison. To this aim, we consider the number of operations per seconds, as reported
by stress-ng metrics for full-load experiments (i.e., all VMs running at 100% CPU). Though such
metric is not a reliable performance indicator and has not been designed to be used for scientifically
accurate benchmarking, it is enough to get a notional rough comparison of performance between
different set-ups. We note that performance is almost constant while running one, two, or three VMs
concurrently on the same hypervisor, but it significantly degrades for six VMs (Figure 5b). This is
not surprising, since each processor on the compute nodes has four cores with hyper-threading;
though they appear as eight vCPUs to the OS, hyper-threading is not equivalent to having additional
real cores.

For better evaluation, we compare in Figure 6 the variation of three relevant indexes for the
different strategies, arbitrarily assuming Strategy 1 as base reference (100%): performance, power,
and overall efficiency. We consider total operations per seconds as performance index, the power
consumption of the whole infrastructure as power index, and the operations over power consumption
ratio as efficiency index. We take into consideration three levels of CPU utilization for VMs:
100% (full load), 75% (high load), and 50% (medium load).

Figure 6 shows that, for full-load utilization, Strategies 2 and 3 have almost identical performance
(+28% with respect to Strategy 1), but different power profiles (+35% and +44% increase). Strategy 1
is undoubtedly the most efficient solution (+5%, +11% than other Strategies), though this comes at
the cost of worse performance. We can say that Strategy 2 is better than Strategy 3, since we have
higher efficiency and lower power consumption with the same performance level. Instead, comparison
between Strategy 1 and Strategy 2 is not straightforward because it depends on the overall optimization
objectives (which may lean towards performance or energy saving). In general, Strategy 1 is preferable,
since the energy saving is larger than the performance penalty, hence efficiency is higher with respect
to the other scenarios.

Computers 2018, 7, 36 13 of 17

When VMs need less CPU time (i.e., lower utilization level), there is more room for overcommitment.
Indeed, the performance increment is limited to 15% with 75% CPU load and negligible with 50%
CPU load. Since the power increment is comparable for all CPU loads, this turns into greater loss of
efficiency from Strategy 1 to Strategy 3.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Performance Power Efficiency

a) 100% load

R
e
la

ti
v
e
 v

a
lu

e
s
 [
%

]

Strategy 1 Strategy 2 Strategy 3

+28%

+35%

-5%

+28%

+44%

-11%

Performance Power Efficiency

b) 75% load

+15%

+34%

-14%

+15%

+43%

-20%

Performance Power Efficiency

c) 50% load

+2%

+36%

-25%

+1%

+47%

-31%

Figure 6. Comparison of performance, power, and overall efficiency for the three consolidation
strategies, under different utilization factors.

We conclude by remarking that more aggressive consolidation (Strategy 1) is the optimal choice
when VMs are not 100% loaded. Instead, when VMs are fully loaded, less aggressive consolidation
brings larger performance gains, which motivates a slight loss of efficiency. In general, less aggressive
consolidation is better suited for latency-sensitive and mission-critical applications, where performance
should prevail over power efficiency. This observation should be taken into account while designing
consolidation algorithms; the labeling scheme used in our consolidation strategy enables for easily
taking into account the different requirements, hence supporting the definition of optimal consolidation
plans tailoring the need of different classes of applications.

5.4. Consolidation and Energy Saving

The last part of our work is devoted to evaluation of energy saving with a sample application.
The purpose is comparison among three cases: no workload consolidation, workload consolidation
without context information, and workload consolidation with context information. To this purpose,
we developed a very simple elastic service, made of one control master and several slaves for load
balancing. Elastic applications are suitable to tackle variable workload, since they scale according to
the current computation need. In our framework, the master delegates processing tasks to the slaves,
and we name it “dispatcher”; the slaves carry out computing tasks in parallel, and are indicated as
“workers”. The application is a video-transcoding service, which uses as many workers as needed to
transcode multiple video files in parallel, one on each worker. Since the main purpose is the evaluation
of power saving, we do not consider more complex actions as video queuing.

We allocated one VM for the dispatcher and nine VMs for workers (worker1, worker2, . . . , worker9);
the dispatcher is considered a critical service (“red” label), while workers are paused/unpaused
depending on the current workload. Each VM has 1 vCPU and 2 GB RAM. For simplicity, we do not
overcommit resources, i.e., the maximum number of VM per server is limited to 4 (since each server
has four physical cores).

We also developed a very simple energy management and consolidation strategy, which makes use
of the Eastbound interface. It periodically checks the status of VMs (active vs. paused), and performs
consolidation, by clustering VMs on the smallest number of servers, minimizing the overall power

Computers 2018, 7, 36 14 of 17

consumption of computing servers and network switches. In addition, it puts idle servers in the sleep
state, and wakes them up when a request for ‘unpause’ is received.

The placement strategy for consolidation is a very simple heuristics, which is not worth discussing
in detail. The same algorithm is applied when context information is available and when it is not.
In the last case, obviously, the status is not considered in the placement decision, and only servers that
do not host any VM can be put to sleep. We deliberately did not use advanced and complex algorithms
for evaluation, for more fair comparison between the two cases.

We generated a sequence of nine tasks with the same processing time (around 21 min), every 90 s.
This leads to a bell-shaped utilization curve. Figure 7a shows the measured power consumption in
the three different scenarios: (i) without consolidation; (ii) with a consolidation procedure that does
not take into consideration context information; and (iii) with our consolidation scheme that uses
context information.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 5 10 15 20 25 30 35 40
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 [

W
]

N
o

. o
f a

c
tiv

e
 ta

s
k
s

Time [m]

Workload

W/o consolidation

Consolidation w/o context

Consolidation w/ context

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

P
o

w
e

r
s
a

v
in

g
 [

%
]

Time [m]

With context

Without context

(b)

Figure 7. Comparison between consolidation without and with context information. (a) power
consumption; (b) power saving.

The utilization shape is reflected in power consumption, which increases when more tasks are
present (see Figure 7a). Without context information, all VMs are treated equally by the consolidation
procedure, independently of their actual utilization and role. This basically prevents servers from
sleeping (since the number of VMs is quite large with respect to the number of servers, and there
is no overcommitment); only one redundant switch can be put to sleep. Instead, when our simple
orchestration policy changes the state of unused VMs to “PAUSED”, the consolidation algorithm takes
them apart and some servers and switches can sleep, hence leading to lower energy consumption in
the presence of low workload.

Figure 7b shows power saving of the two consolidation strategies with respect to the scenario
with no consolidation. We note that, in both cases, power saving decreases with higher processing
load, as expected.

Figure 8 shows that, using context information, we can achieve a better linear relationship
between server utilization and power consumption. Indeed, the linearity is more evident in lower
power consumption corresponding to scarce utilization. The overall curve has a more stepwise
shape with respect to other scenarios, and this can be ascribed to the small number of devices in the
testbed. When more devices are used, together with dynamic voltage/frequency scaling mechanisms,
the stepwise behavior becomes negligible.

Computers 2018, 7, 36 15 of 17

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
[W

]

Utilization [%]

No consolidation
Consolidation w/o context
Consolidation w/ context

Figure 8. Power consumption vs. server utilization.

6. Conclusions

A lot of effort has been devoted in recent years to designing consolidation strategies that maximize
the effectiveness of power-saving mechanisms. These approaches do not take into account the actual
context, i.e., whether virtual resources are really used or just provisioned for other purposes (including
service migration, availability and resilience). Orchestration paradigms can be effectively used to
reflect the current role of each virtual resource in proper infrastructure parameters; for instance,
we inserted metadata and applied virtual power states in a very similar way to physical hardware.
This allows more awareness in the consolidation strategy and brings better opportunities to selectively
apply aggressive power-saving mechanisms.

Through orchestration, users are left the responsibility to accept light penalties in responsiveness
and availability, and their willingness to take part in such mechanisms may easily be fostered by
suitable pricing schemes. This is the main strength behind the overall approach, which can effectively
balance power consumption with QoS in edge computing.

Author Contributions: Conceptualization, M.R.; Funding acquisition, R.B.; Investigation, A.C. and M.R.;
Methodology, M.R.; Project administration, R.B.; Software, A.C. and G.R.; Visualization, M.R.; Writing—Review &
Editing, M.R.

Funding: This work was supported in part by the European Commission under the projects ARCADIA (contract
No. 645372) and MATILDA (contract No. 761898).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Soldani, D.; Manzalini, A. On the 5G Operating System for a True Digital Society. IEEE Veh. Technol. Mag.
2015, 10, 32–42. [CrossRef]

2. Kennedy, D.; Bourse, D.; Mohr, W.; Bedo, J.-S.; Herzog, U. 5G Empowering Vertical Industries; Whitepaper from
the 5G-PPP, ERTICO, EFFRA, EUTC, NEM, CONTINUA and Networld2020 ETP, 2016. Available online:
https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf (accessed on 20 June 2018).

3. Bolla, R.; Khan, R.; Repetto, M. Assessing the Potential for Saving Energy by Impersonating Idle Networked
Devices. IEEE J. Sel. Areas Commun. 2016, 34, 1676–1689. [CrossRef]

4. Carella, G.A.; Pauls, M.; Magedanz, T.; Cilloni, M.; Bellavista, P.; Foschini, L. Prototyping nfv-based
multi-access edge computing in 5G ready networks with open baton. In Proceedings of the IEEE Conference
on Network Softwarization (NetSoft), Bologna, Italy, 3–7 July 2017.

http://dx.doi.org/10.1109/MVT.2014.2380581
https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf
http://dx.doi.org/10.1109/JSAC.2016.2545414

Computers 2018, 7, 36 16 of 17

5. Carrega, A.; Portomauro, G.; Repetto, M.; Robino, G. OpenStack extensions for QoS and energy efficiency
in edge computing. In Proceedings of the 3rd IEEE International Conference on Fog and Edge Mobile
Computing (FMEC 2018), Barcelona, Spain, 23–26 April 2018.

6. Barroso, L.A.; Hölzle, U. The case for energy-proportional computing. Computer 2007, 40, 33–37. [CrossRef]
7. Shirayanagi, H.; Yamada, H.; Kono, K. Honeyguide: A VM migration-aware network topology for saving

energy consumption in data center networks. In Proceedings of the IEEE Symposium on Computers and
Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 460–467.

8. Li, B.; Li, J.; Huai, J.; Wo, T.; Li, Q.; Zhong, L. EnaCloud: An Energy-Saving Application Live Placement
Approach for Cloud Computing Environments. In Proceedings of the IEEE International Conference on
Cloud Computing (CLOUD ’09), Bangalore, India, 21–25 September 2009; pp. 17–24.

9. Buyya, R.; Beloglazov, A.; Abawajy, J. Energy-Efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open Challenges. In Proceedings of the 2010 International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas,
NV, USA, 12–15 July 2010.

10. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. ElasticTree:
Saving Energy in Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, San Jose, CA, USA, 28–30 April 2010; USENIX Association: Berkeley,
CA, USA, 2010; p. 17.

11. Voorsluys, W.; Broberg, J.; Venugopal, S.; Buyya, R. Cost of Virtual Machine Live Migration in Clouds:
A Performance Evaluation. In Proceedings of the 1st International Conference on Cloud Computing
(CloudCom ’09), Beijing, China, 1–4 December 2009; pp. 254–265.

12. Beloglazov, A.; Buyya, R. OpenStack Neat: A framework for dynamic and energy-efficient consolidation of
virtual machines in OpenStack clouds. Concurr. Comput. Pract. Exp. 2015, 27, 1310–1333. [CrossRef]

13. Rossigneux, F.; Gelas, J.P.; Lefèvre, L.; de Asunção, M.D. A Generic and Extensible Framework for Monitoring
Energy Consumption of OpenStack Clouds. In Proceedings of the 2014 IEEE Fourth International Conference
on Big Data and Cloud Computing, Sydney, NSW, Australia, 3–5 December 2014.

14. Carrega, A.; Repetto, M. Energy-Aware Consolidation Scheme for Data Center Cloud Applications.
In Proceedings of the 2017 29th International Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017.

15. Cima, V.; Grazioli, B.; Murphy, S.; Bohnert, T. Adding energy efficiency to Openstack. In Proceedings of the
Sustainable Internet and ICT for Sustainability (SustainIT), Madrid, Spain, 14–15 April; pp. 1–8.

16. Shehabi, A.; Smith, S.; Sartor, D.; Brown, R.; Herrlin, M.; Koomey, J.; Masanet, E.; Horner, N.; Azevedo, I.;
Lintner, W. United States Data Center Energy Usage Report; Technical Report LBNL-1005775; Ernest Orlando
Lawrence Berkeley National Laboratory: San Jose, CA, USA, 2016.

17. Avgerinou, M.; Bertoldi, P.; Castellazzi, L. Trends in Data Centre Energy Consumption under the European
Code of Conduct for Data Centre Energy Efficiency. Energies 2017, 10, 1470. [CrossRef]

18. Brady, G.A.; Kapur, N.; Summers, J.L.; Thompson, H.M. A case study and critical assessment in calculating
power usage effectiveness for a data centre. Energy Convers. Manag. 2013, 76, 155–161. [CrossRef]

19. Yuventi, J.; Mehdizadeh, R. A critical analysis of Power Usage Effectiveness and its use in communicating
data center energy consumption. Energy Build. 2013, 64, 90–94. [CrossRef]

20. Wang, C.; Nasiriani, N.; Kesidis, G.; Urgaonkar, B.; Wang, Q.; Chen, L.Y.; Gupta, A.; Birke, R. Recouping
Energy Costs From Cloud Tenants: Tenant Demand Response Aware Pricing Design. In Proceedings of
the 2015 ACM Sixth International Conference on Future Energy Systems (e-Energy ’15), Bangalore, India,
14–17 July 2015; pp. 141–150.

21. Topology and Orchestration Specification for Cloud Applications, version 1.0; OASIS Standard, 2013. Available online:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf (accessed on 20 June 2018).

22. Network Functions Virtualisation (NFV); Management and Orchestration. ETSI GS NFV-MAN 001 V1.1.1;
European Telecommunications Standards Institute: Sophia Antipolis, France, 2014.

23. DTMF. Power State Management Profile, version: 2.0.0; Specification DSP1027; 2009. Available online:
https://www.dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf (accessed on 20 June 2018).

24. Hass, J. IPMI CIM Mapping Guideline; Document Revision 0.60; 2006. Available online: https://www.intel.
com/content/dam/www/public/us/en/documents/product-briefs/cim-mapping-guideline-.6.pdf
(accessed on 20 June 2018).

http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1002/cpe.3314
http://dx.doi.org/10.3390/en10101470
http://dx.doi.org/10.1016/j.enconman.2013.07.035
http://dx.doi.org/10.1016/j.enbuild.2013.04.015
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/cim-mapping-guideline-.6.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/cim-mapping-guideline-.6.pdf

Computers 2018, 7, 36 17 of 17

25. Green Abstraction Layer (GAL); Power Management Capabilities of The Future Energy Telecommunication Fixed
Network Nodes, version 1.1.1; ETSI ES 203 237; European Telecommunications Standards Institute:
Sophia Antipolis, France, 2014.

26. Kanapram, D.; Lamanna, G.; Repetto, M. Exploring the trade-off between performance and energy
consumption in cloud infrastructures. In Proceedings of the 2nd IEEE International Conference on Fog and
Edge Mobile Computing (FMEC 2017), Valencia, Spain, 8–11 May 2017; pp. 121–126.

27. Bierman, A.; Bjorklund, M.; Watsen, K. RESTCONF Protocol; RFC 8040; Internet Engineering Task Force, 2017.
Available online: https://tools.ietf.org/html/rfc804 (accessed on 20 June 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/rfc804
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	A Paradigm for Energy-Efficient Computing
	Efficiency vs. Effectiveness
	More Context for Edge Applications

	Energy-Efficient Infrastructure
	Computing Servers
	Cloud Management Software
	Software-Defined Network
	Monitoring Framework
	North and East Interfaces

	Evaluation and Numerical Results
	Experimental Setup
	Performance
	Forwarding Paths
	Live Migration
	Availability

	Energy Efficiency: Performance vs. Power Consumption
	Consolidation and Energy Saving

	Conclusions
	References

