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Abstract: A Ring Oscillator Physical Unclonable Function (RO PUF) is an application-constrained
hardware security primitive that can be used for authentication and key generation. PUFs depend
on variability during the fabrication process to produce random outputs that are nevertheless stable
across multiple measurements. Though industry has a growing need for PUF implementations on
Field Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits (ASIC), the bit
errors in PUF responses become a bottleneck and limit the usage. In this work, we comprehensively
evaluate the RO PUF’s stability on FPGAs, and we propose a phase calibration process to improve
the stability of RO PUFs. We also make full use of the instability of PUFs to provide a novel solution
for authentication. The results show that the bit errors in our PUFs are reduced to less than 1%.

Keywords: physical unclonable function; phase calibration; authentication

1. Introduction

Physical Unclonable Functions (PUF) have been studied to authenticate integrated circuits and
generate cryptographic keys [1]. As a physical component, PUFs are very hard to duplicate or predict
due to the results of random uncontrollable variables in the manufacturing process. Therefore, they
are applied as a source of random, but reliable data for applications such as generating unique
IC identification numbers or encryption keys. A PUF can be broadly classified as a “strong PUF”
or a “weak PUF”. The fundamental difference between weak and strong PUFs is the number of
unique challenges that the PUF can process [2]. Rather than storing secrets in non-volatile memories,
PUFs can provide significantly higher physical security by generating these secrets from unique
PUF responses [3]. When PUF receives a challenge, it reacts with a response, which is known as
a Challenge-Response Pair (CRP). An ideal PUF-based CRP provides strong advantages in that each
response gives negligible information on the responses from different challenges to the same PUF or
even identical challenges on different PUFs [4].

It is essential that given the same challenge, the PUF response should be deterministic.
However, most PUF constructions cannot offer reliable responses without post-processing algorithms.
Thus, they are barely used directly in industry. The high Raw Bit Error Rate (RBER) in the responses
of PUFs requires strong Error Correcting Codes (ECC) to guarantee a low false negative rate
in the authentication process. Nevertheless, a strong ECC requires large memory space and high
calculation complexity. When the decoding demands are large enough, electronics systems with limited
computation and storage capabilities may not be able to afford the burden. As a result, traditional
PUFs do not offer enough reliability for industrial applications [5].

In this paper, we focus on a practical PUF design on FPGAs. We thereby make
the following contributions:
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• We improve the accuracy of Ring Oscillator (RO) frequency measurement on FPGAs.
The proposed phase calibration solution provides efficient estimation of RO frequencies.

• We improve the PUF stability with limited hardware resources. The cost is half of the traditional
RO PUFs.

• We provide a variable output width of responses. Thus, our PUFs are more flexible for
different applications.

• We explore the instability feature of PUF responses. A new design is provided by converting
unstable RO pairs to the stable output.

• We show an obfuscation strategy by using the instability of Phase-Calibrated PUF (PCPUF) responses.
• We discuss the authentication application based on the novel PCPUFs.

The remainder of the paper is organized as follows: Section 2 describes the related work on RO
PUFs. Section 3 introduces our RO PUF design and implementation on FPGAs. Section 4 discusses
the phase calibration process on our PUFs. Section 5 gives a further improved solution of stable
response generation and talks about the applications of our PUF. Section 6 shows the experimental
results of our PUFs. We close with conclusions in Section 7.

2. The RO PUF and Related Work

The RO PUF was introduced by Suh and Devadas in 2007 [1]. Figure 1 shows the traditional
design of an RO PUF, which contains an array of Ring Oscillators (RO), two Multiplexers (MUXes),
two counters and a comparator. Because of manufacturing variations, the wire delay and inverter
delays in each RO are not controllable, which leads to different frequencies of the RO output.
By selecting two ROs according to the PUF input, we can measure the pulses in a defined unit
time with the counters. For example, if the first counter holds a larger value than the second one,
the PUF output is ‘1’. Otherwise, the PUF output is ‘0’. Ideally, the RO PUF will always output the same
bit value given a certain input, but in reality, bit errors and bias are involved in the output. Though the
systematic or correlated process variation and the environmental noise caused by the voltage and
temperature variations degrade the output stability [6], the bit errors of FPGA-based PUFs are directly
generated by a selected pair of ROs with close frequencies, which lead to the unstable measurement
in the counters and the flipped output in the comparator. In [7], RO PUFs are characterized over
125 FPGAs. To improve the quality of ROs, the surrounding logic effect on the oscillator frequencies
was studied, and a strategy was proposed by placing and comparing ROs in a chain-like structure [8].
A reliability-improvement technique was used in the pre-quantization phase of RO PUFs to reduce
the noise in PUF responses [9]. More optimized approaches were mentioned in [10] by introducing
configurable ROs. They also suggested to compare adjacent RO pairs by controlled RO placement,
but the FPGA implementations were not clear. A group-based RO PUF was introduced in [11],
which described a new framework to filter the systematic variation and improve the hardware efficiency.
However, it still required ECC to improve the stability of PUF responses.

Figure 1. The architecture of a traditional Ring Oscillator Physical Unclonable Function (RO PUF).
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Few papers have discussed the impact of bias in RO PUF responses [10], which is the favoring
of RO PUFs to be either one or zero. According to our tests, we found that the counter design
in the traditional RO PUF can contribute significantly to this bias. When CounterAand CounterB
hold the same value, the comparator must make a choice of how to treat this case; in our example,
the comparator puts this “equivalent” case in the “smaller” group. The “larger” group, on the other
hand, can be active only when CounterA receives more pulses than CounterB in the given clock
cycles. Therefore, the output will contain more zeroes than ones. If ROs are placed more regularly,
the frequencies may end up being closer, thus causing more “equivalent” cases. This is aggravated
especially when the counter size is limited. Regardless of the count cycles, the bias caused by
the counter design is still as high as 5.03%. As a result, the bit error rate and the bias are intensified
by the design fault and inaccurate measurement. Another problem of this RO PUF design is
the inefficiency of hardware resource utilization. To generate only one bit of output, the design requires
a log N-bit input and N oscillators. A transient effect of the ring oscillator PUF was proposed with
a good ratio of PUF response variability to response length, but the intra-device variation increased to
1.7% [12], compared to [7], with 0.86% intra-device variation. In this paper, we will discuss a practical
phase calibration technique to improve the quality of RO pairs’ comparison, which achieves a trade-off
between the cost, stability and flexibility.

3. RO PUF Improvement and Implementation on FPGAs

Though RO PUFs have been heavily studied, there are still possibilities of improvement
particularly with respect to implementations on FPGAs. In this section, we will discuss some practical
hardware optimizations for RO PUFs.

3.1. RO PUF Design Improvement

While PUFs have been primarily targeted towards Application-Specific Integrated Circuits (ASIC)
designs, in this paper, we explore their potential on FPGAs. According to our tests on the Kintex-7
FPGA [13], the frequency of a five-stage inverter chain RO is approximately 475 MHz when the system
clock is 200 MHz. In the crossing timing domain between the ROs and PUF control logic circuit, a high
RO frequency adds to the instability of measurements. As with all oscillators, the rate of oscillation
is determined by the length of a delay implemented in a loop. Thus, to reduce the frequency, more
inverters can be added in the ROs, but this requires more hardware resources. In this work, we choose
a design that takes advantage of the Lookup Tables (LUTs) of the Configurable Logic Blocks (CLBs)
and the general purpose interconnect [14] on the FPGA. As shown in Figure 2, the first part consists of
a four-LUT delay and a one-LUT inverter. The reset signal is to control the enable timing of all LUTs.
In the second part, a single inverter in the loop implements a high gain inverting amplifier. The output
frequency is divided by two in order to eliminate output glitches. Overall, this architecture only needs
six LUTs and a D-type Flip-flop (FD).

Figure 2. The RO architecture for an FPGA implementation. FD, D-type Flip-flop.

In order to generate variable length responses, we choose a design as shown in Figure 3.
This example uses 128 ROs to provide 128-bit CRPs. Once a challenge is received, it is stored in a shift
register. We select the first seven bits from the register as the input of the upper decoder and MUX
in order to select an RO from the array. Likewise, another RO is selected using the next seven bits from
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the challenge shift register. If the addresses are the same, the second seven-bit address is added by one
to avoid selecting the same RO for comparison. Next, we shift the challenge register to select a new
RO pair. The shift pattern can be complex for security consideration. To make it easy to understand,
we shift one bit to the left each time. If the challenge is 128 bits, we can generate a 128-bit response
with 127 shift operations.

Figure 3. Architecture of our RO PUF.

Alternatively, the shift register can be replaced by a non-cryptographic hash function.
Compared to cryptographic hash functions, which have one-way, collision resistant and deterministic
properties, a non-cryptographic hash function is significantly faster and low cost. It is also easy
implement on FPGAs. Algorithm 1 shows the ElfHashexecution progress in our PUF:

Algorithm 1 ElfHash process.

1: procedure HASH SHIFT
2: hash← 0
3: x ← 0
4: count← 0
5: loop 1:
6: hash← (h << 4) + challenge
7: challenge← challenge + 1
8: if x = hash and 0xF0000000 then
9: hash← hash xor (x >> 24)

10: hash← hash and (not x)
11: count← count + 1
12: if count = 128 then goto loop 1.
13: end hash

In the traditional design, metastability can exist at the input of the counters. This occurs
when the counters receive a clock rising edge for comparison. If the RO output happens to flip
when a counter value is changing, the result of the comparison will not be larger, smaller or equal,
but instead, a metastable state. We have verified this scenario on our FPGA implementations.
Because of the metastability, the bit errors in the responses increase. Note that the counters receive
RO output in the asynchronous timing, while their enable and disable are controlled by the system
clock. Thus, the counter value becomes invalid if the measurement window closes at the input edge.
The comparison result thus drops to the metastability state. Our solution is to use two registers to
store the counter values. By involving a register that is in the same clock domain with the comparator,
the counter can always provide a valid value before comparison. Therefore, the metastability is safely
eliminated. Only larger, small and equal states are measured by the comparator. The corresponding
result is recorded in the response register as an output bit.
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3.2. RO PUF Implementation on an FPGA

Few papers have clear descriptions on how the RO PUF is implemented on FPGAs [10,15,16].
Incorrect HDL coding can lead to logic unit rebuilding during synthesis, which results in functionality
failure. For example, inverters built with inv(1) <= not inv(0); statements will be optimized out
and cannot be placed as RO arrays. Therefore, to implement the ring oscillators on FPGAs, we use
the LUTs directly in our code and add element placement constraints to fix the LUTs with a certain
delay. In our work, we used the Vivado development kit and the Kintex-7 FPGA provided by Xilinx to
show the RO PUF implementation on FPGAs [13,17]. In the Kintex-7, a CLB contains a pair of slices,
and each slice is composed of four six-input LUTs and other elements [18]. By setting the initial value
to “01”, a one-input LUT (LUT1) can perform the same function as a digital inverter. An example
of the traditional RO implementation is shown in Figure 4. We place one LUT3 (three-input LUT)
in the left slice and four LUT1s in the right slice. These five LUTs and the white connections form
a basic RO. Apart from the feedback input of another inverter, LUT3 also includes a reset input and an
enable input. The left LUTs in a CLB are reserved for other logic of the RO.

Figure 4. LUT-based RO placement example.

Figure 5 shows the RO placement given by Figure 2. Four delay LUT2s are placed in the left slice,
and the invert LUT is located in the right slice. The output of the first stage oscillator is connected to
the FD, which builds another oscillator with another LUT2 in the right slice. Since the delay LUTs
contain no logic, ‘keep’ attributes are required in the design to stop logic optimization by the synthesis
tool. Additionally, a combinatorial loop in the FPGA is considered bad design practice in most cases,
which increases the number of cycles by infinitely going around the circle in the same path. To avoid
unnecessary errors during synthesis and bitstream generation, some constraints are applied to let
Vivado ignore these loops.

Figure 5. Improved LUT-based RO placement example.

Figure 6 shows the manual placement of one RO PUF. To maintain the randomness and
uniqueness, all the timing critical Flip-Flops (FFs)and LUTs must be placed carefully. One hundred
twenty eight ROs are listed in six columns regularly in order to maximize the manufacturing differences
between PUFs. Between columns, two slices are reserved for the relevant logic between ROs and
the control unit. LUTs and FFs of the Finite-State Machine (FSM) are placed at the bottom of the RO
array. Other primitives with no effects on the performance are placed by Vivado automatically.
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Figure 6. RO PUF manual placement overview.

However, manual placement of PUFs can be very time-consuming. In our example, each RO
array contains 768 LUTs and 128 FFs. If the hardware specification is modified, it may lead to
a reconstruction of the architecture. As a result, most of the cells have to be placed again. To make
the progress more efficient, we show an automatic code generation process in Figure 7. The hardware
specification module defines the length of CRPs, performance requirements and usable platforms.
The information is translated to an acceptable format for the Shell script so that the code generation
script knows the scale of the RO array. With pre-defined templates, we are able to generate the code
and constraints automatically.

Figure 7. RO PUF code generation.

On the other hand, improper routing also affects the uniqueness of PUFs. Though our LUT and
FF placement constraints have fixed the internal routing path of each RO, the other parts are routed by
Vivado automatically. The critical path is between the RO array enable and the counter enable. If the RO
array enable has a long delay while the counter enable has a short delay, it indicates that the timing to
generate RO pulses is postponed and the counter is enabled in advance. As a consequence, the window
for measurement may not match the RO output well, which leads to the potential issues of uniqueness
and bias. To eliminate the effect of unexpected delay, we adjust the unsatisfied wire delay by changing
paths manually in the Vivado implementation user interface, which is saved in the constraints.

A key metric of any PUF is its reliability. In order to evaluate the stability, we have implemented
three RO PUFs on the FPGA, which are based on Figure 3. We generated 100,000 random challenges
and applied the challenge twice to each PUF. The two responses for each PUF were compared, and
the Hamming distance between the two responses were recorded. Ideally, there should be no difference
between the two responses because the challenge was the same and the Hamming distance should
be zero. Figure 8 shows the Hamming distance distribution for the three PUFs. Without any error
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correction or fault tolerance methodology, there are about 10 bit errors in each 128-bit response. It is
clear that a 7.81% bit error rate is unsatisfactory for authentication. Without very strong ECC, we will
have a high false negative rate. To address the instability of PUFs, we will introduce a phase calibration
process in the next section.
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Figure 8. Intra-PUF Hamming distance without ECC.

4. Phase Calibrated PUF

Improving the stability of PUFs requires an accurate measurement of the RO frequency. With the
traditional RO PUF, theoretically, one could use a longer measurement time to count RO pulses and
thus improve the measurement accuracy. However, we found that extending the measurement time
from 16 clock cycles to 512, in order to get larger samples, had limited improvement on the stability.
Since the ROs are not driven by the system clock and each enable signal has its own delay, the output
can be unstable when the counter is enabled and disabled [8]. As a result, the count may be off by one
or two. Previously, we discussed adding a counter register to eliminate the unknown state; this does
not address the correctness due to instabilities at the boundaries of the measurement cycle. Due to this
unpredictable behavior, even though we tested some “stable” RO pairs 1000 times and got the same
results every time, the next measurement might still produce a different value with a small probability.
In this section, we propose an efficient solution instead of the repeated testing, which can solve this
problem with limited cost.

4.1. Phase Calibration Process

The Phase Calibration Process (PCP) is a critical part of our solution, which aims to measure
the frequency of ROs quickly and accurately. The basic idea is to shift the phase of the RO output
signal in order to eliminate asynchronous timing measurement error. To implement it on FPGAs,
we use a primitive that offers a programmable delay function, i.e., Xilinx provides an input delay
resource called IDELAYE2 [19]. It can be accessed directly from the FPGA logic and allows incoming
signals to be delayed on an individual input pin basis. Figure 9 shows the IDELAYE2 primitive,
which offers a variable delay mode that can control the delay value after configuration by manipulating
the control signals CEand INC. When CE goes high, the increment/decrement operation begins on
the next positive clock edge. The programmable delay taps into the IDELAYE2 primitive wrap-around.
When the last tap delay is reached (Tap 31), a subsequent increment function will return to Tap 0.
In Figure 9, a reset is detected (LDis High) in the first clock event, causing the output DATAOUT
to select Tap 0 as the output from the 31-tap chain. In the second clock event, a pulse on CE and
INC is captured on the rising edge of C. This indicates an increment operation. The output changes
without glitches from Tap 0 to Tap 1. In the third clock event, CE and INC are no longer asserted, thus



Computers 2018, 7, 40 8 of 23

completing the increment operation. The output remains at Tap 1 indefinitely until there is further
activity on the LD, CE or INC pins.

Figure 9. Input delay resource and timing diagram.

The architecture of our Phase-Calibrated PUF (PCPUF) is shown in Figure 10. It mainly consists of
a 128-RO array, a control unit, a comparison unit, a pair of decoders, MUXes, IDELAYE2s and counters.
The tap control is to control the delay of IDELAYE2. Since PCP requires a strict RO enable timing,
only one selected RO pair is enabled in the measurement period. Otherwise, the control unit resets all
the ROs.

Figure 10. Architecture of Phase-Calibrated PUF (PCPUF).

Algorithm 2 shows the details of the PCP. In order to generate a one-bit response, the first
two seven-bit values of the challenge register are loaded to the register addr_A and register addr_B.
After checking the values, we reset CounterA and CounterB. The tap value is loaded to IDELAYE2
primitives before being added by one. By default, the tap value is zero. When the delay is set,
the control unit enables the selected RO pair and starts testing. Each measurement takes 16 clock cycles.
Then, the tap value is added by one, and the new measurement starts. Between two measurements,
the selected RO pair is kept disabled before the delay is set. When we complete the test from Tap 0 to
Tap 31, a one-bit output is generated by comparing the counter values. Then, the challenge register
shifts its value and launches the next response generation. Though the PCP slows down the response
generation compared to the traditional RO PUFs, the PCPUF still keep an output speed of 625,000 bit/s.
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Algorithm 2 PUF phase calibration process.

1: procedure PCP
2: tap← 0
3: Loop 1:
4: reset CounterA, CounterB
5: load addr_A, addr_B
6: if addr_A = addr_B then addr_B← addr_A + 1
7: Loop 2:
8: load tap to IDELAYE2
9: tap← tap + 1

10: enable RO(addr_A), RO(addr_B)
11: Loop 3:
12: enable CounterA, CounterB
13: read RO(addr_A), RO(addr_B)
14: if count cycle < 16 then goto Loop 3
15: keep CounterA, CounterB
16: disable RO(addr_A), RO(addr_B)
17: if tap < 32 then goto Loop 2
18: if CounterA > CounterB then
19: output 1
20: else
21: output 0
22: shift Challenge
23: goto Loop 1.

4.2. Analysis of Phase Calibration Efficiency

Considering the calculable factors of FPGA, the accuracy of frequency estimation by using
the phase calibration process depends on the skew rate, threshold voltage and the relevant signal
cycle. The skew rate and the threshold voltage determine the skew between the system clock and
the counters. When the control unit enables or disables the counters at the beginning or at the end of
the phase calibration process, the RO outputs may change between the voltage thresholds, VOH min
and VOL max. This may lead to a metastable state of the counter value. According to the I/O buffer
specification model of the Kintex-7, if the FFs are in the same bank, the skew should be 50 ps to
100 ps. The internal signal voltage of the Kintex-7 is designed to swing between −0.5 and 1.1 volts,
with anything below 0.4 volts considered a ‘0’ and anything above 0.7 volts considered a ‘1’ [20]. In the
worst case, the metastability duration of each rising edge or falling edge is 18.75 ps. Since the RO
output phase at the beginning of the window is unpredictable, we can calculate the probability of
the metastability occurrence in Figure 11 as:

prising_edge = p f alling_edge =
18.75ps× 2

4210ps
= 0.00891 (1)

in which 4210 ps is the average RO cycle. Though the rising edge and falling edge have the same
probability, they are not independent events for any RO within one tap delay. Now, we focus on
the entire process in Figure 11. We create a window of 16 system clock cycles (80 ns), within which
the counters of the RO PUF become active. Due to the wire delay, the selected RO pair may not be
enabled at the same time. The delay between each RO and the related counter depends on a tap ranging
from zero to 31. Since each tap of IDELAYE2 offers a 78-ps delay in the normal environment, we can
have as much as a 2.418-ns delay of the RO output, which is long enough to find the metastability.
Ideally, these 32 taps’ phase shift will not affect the RO frequency measurement. However, some
measurements show different counter values due to the metastability. According to our simulation, one
metastability occurrence at one edge of the window has a probability of 0.00775. The probability of two
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metastability occurrences at both edges of the window is 0.00113. There is no possibility of any more
unpredictable states as the window only has two edges. Thus, the expected value of metastability is:

E[X] = 1× 0.00775 + 2× 0.00113 = 0.01116 (2)

Therefore, among the 32 taps’ shift cases, most of the counter values reflect the frequency of
the selected RO correctly. The metastability only happens with a very low possibility.

Figure 11. PUF phase calibration timing.

Apart from the calculable factors, measurement errors are also generated by the noise margin,
which is the amount by which the signal exceeds the threshold for a proper ‘0’ or ‘1’. Being affected by
uncontrollable factors such as temperature, voltage and aging effects, we can hardly calculate the fault
tolerance capability of the phase calibration process directly [21]. However, we are able to obtain
the probability of bit flipping after PCP through large amounts of tests. Next, we estimate the efficiency
of PCP by computing the intra-PUF Hamming distance.

4.3. Estimation of Intra-PUF Hamming Distance

The bit error rate is one of the most critical characteristic of PUFs. To estimate the RBER
of PCPUFs, we need to know the intra-PUF Hamming distance first, which can be calculated
through the distributions of RO frequencies and the Bit Flipping Rate (BFR). As we mentioned,
when the frequencies of two ROs are closer, temperature, voltage and aging effects during operation
lead to higher BFR. We begin with measuring the rising edges of ROs in the unit time and show
the probability distribution in Figure 12. The unit time is set to 80 ns (16 clock cycles). Since we add
the measured data from Tap 0 to Tap 31 and compute the average value, the results may not be integral.
A fitting Gaussian curve is generated according to the discrete data, which are used to provide an ideal
discrete distribution D( f ) for our computation.
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Figure 12. Distribution of RO rising edges on average.
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We define a specific bit flipping rate λ according to the difference of the discrete data. Marked as
f1 and f2, the frequencies of two ROs determine the probability of bit flipping. A measured
λ(| f1 − f2|) in Figure 13 shows the statistical BFR results, which follows part of a normal distribution
3.61 × 108N(−12.99, 1.882). When two ROs have a | f1− f2| larger than one, their output is very stable.
However, the BFR increases sharply when the difference range is less than 0.5. To further improve
the reliability of PUFs, these RO pairs can be blocked from the RO pair selection sets.
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Figure 13. Distribution of one-bit RO output flipping rate.

For any single bit, the probability of error occurrence can be computed as:

∞

∑
f2=0

∞

∑
f1=0

D( f1)× D( f2)× λ(| f1 − f2|) = 0.0029 (3)

The probability that 128-bit responses contain exactly n bit errors is:(
128
n

)
0.0029n(1− 0.0029)128−n (4)

According to Equation (4), the ideal intra-PUF Hamming distance is shown in Figure 14. Therefore,
we can calculate the average number of errors, which is 0.3688 in a 128-bit response.
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Figure 14. Expected intra-PUF Hamming distance.
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5. PCPUF Application

PUFs are well known to be used for authentication. In this section, we explore the feature
of PCPUFs and propose new strategies to generate secure responses. We also discuss their
authentication application.

5.1. Unstable-Stable Response

Modeling and machine learning attacks are well known for PUF adversaries. The successful
prediction is due to the accurate calculation and measurement of physical parameters such as delay
and frequency. To achieve a secure PUF-based solution against those attacks, we propose a novel
method to generate responses, which uses the instability of PUFs. Since the unstable bits in the RO
PUF response are hard to predict, they provide a better security guarantee than the stable ones. In the
past, these unstable bits have been simply considered for random number generation applications.
For other scenarios, only stable bits are usually required. In our work, we find the possibility to transfer
unstable bits to stable bits and apply them to PUF responses, which are presented as Unstable-Stable
Responses (USR), a more stable and secure response.

Figure 15 shows how to generate USR with a PCPUF. We set another hash function module out
of the PCPUF, which can provide multiple sub-challenges with only one challenge input. Once a
sub-challenge is created, it is sent to the challenge register for temporary storage. By reading
the value from the register, PCPUF selects two RO pairs and keeps outputting the one-bit response to
the first address of the unstable bit counter 1000 times. The accumulated value in the counter reflects
the stability of this output. A number that is close to zero or 1000 is known to be stable, while 500 is
regarded as the most unstable. With the help of the internal hash function module, the model generates
a 128-bit raw response and stores it in the counter. Since PCPUFs provide good stability in their
responses, the obvious unstable bits become so limited that less than one unstable bit can be found
in 128 bits. In the unstable bit counter, we mark the unstable bits as ‘1’ and stable ones as ‘0’. The counter
records the number of ones and sends the 128 bits to the response register. Obviously, a 128-bit response
marked with only unstable bits is highly-biased towards zeroes. Therefore, the counter enables the hash
function module in order to launch the next progress with a different internal challenge. Another raw
response is generated and transferred to an internal response in the counter. We apply a bitwise OR
operation to this internal response and the one that was previously stored in the response register.
After updating the register value, the new response should have a higher probability of containing
more ones. By repeating the same process, the response in the register will eventually reach a balance
between ‘1’ and ‘0’. Now, it is ready to serve as the final response.

Note that the current design cannot guarantee a static threshold of how many times the process
should be executed. The first reason is that the unstable bits selected by the hash function module
are not controllable. Secondly, the ones in two responses may be overlapped. Thus, the amount of
ones is reduced by the OR operation. To estimate the threshold, we define u as the number of unstable
bits in the 128-bit internal response. The probability that a certain bit is not set to ‘1’ in one process is
1− u

128 . If we assume that the process in Figure 15 is repeated n times, the probability that the bit is not
set to ‘1’ after n process iterations is:

p0 = (1− u
128

)n (5)

The probability that it is ‘1’ is therefore:

p1 = 1− (1− u
128

)n (6)

Given the 128 bits in the complete response, we should have on average 64 ones and 64 zeroes.
Since the 128 bits are independent, we can calculate the expected number of ones as 128p1. In order to
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have the expected 64 ones, p1 should thus equal 64
128 . Plugging in Equation (6), we can calculate that n

should be:
n

log 0.5
log(1− u

128 )
(7)

By solving the equation, we are able to set a reasonable threshold in order to control the bias.
When the unstable bits is 0.5%, n is about 138. Though it is possible to control the bias with a dynamic
adjustment, the required logic resources will increase significantly. This strategy can be applied to
different PUFs for stability improvement.

Figure 15. Generating stable responses by using unstable raw responses.

5.2. USR-Based Authentication

As a well-known application of PUFs, authentication does not require a very low bit error
rate of the PUF responses. Thus, we can apply our USRs directly to the solution. For the simplest
authentication, we compare two responses and check if the mismatched bits are larger than a threshold
t. In this application, the false negative rate and false positive rate are critical for performance
evaluation. Given a bit error rate e in 128-bit USRs, the false negative should be:

fn =
min{m,128}

∑
n=t+1

(16384−m
128−n )(m

n)

(16384
128 )

, m ≈ 1282 · e (8)

On the other side, the false positive is:

fp =
t

∑
n=0

(
128
n

)
(1− p)n p128−n (9)

in which p is the probability of a random collision in 128 trials. Ideally, the value is close to 0.5.
Apart from the accuracy, we also need to estimate the cost of this solution. One important aspect

is the utilization of the memory space. In the simplest solution, we do not require ECC as the bit error
rate in USRs is very low. Thus, there is no additional overhead except the CRPs. Given the CRP length
of n, the memory cost is 2n bits per CRP. This is acceptable for small amounts of authentication requests.
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However, as the requests grow, the memory cost increases linearly. A lightweight solution is to record
the instability information of PUFs instead of CRPs. The assumption is that we trust the security
of the database, which contains some sensitive information of PUFs. In that case, we can calculate
the USRs with the known hash function, instability RO pairs and the corresponding challenges.

As we mentioned above, an effective solution is based on the assumption that the database
is secure. However, we must consider the scenario that the information is disclosed to attackers.
The typical solution is to encrypt the database. Alternatively, we can choose a solution that combines
the ECC and Bloom filter [22], which is both secure and efficient.

5.3. Obfuscation-Based Authentication

Since some authentication applications require a higher security level, we provide another
scheme for our PUFs with a strong obfuscation. Our prime goal is that even if a current response is
disclosed, it does not leak non-negligible information about the next responses with the same challenge,
which means attackers cannot use the replay attack to pass the authentication when a repeated
challenge is applied. Secondly, the scheme has strong modeling attack resistance by involving unstable
bits in the responses, but the authentication accuracy will not be affected in the database. Furthermore,
though probe attacks can obtain the information, the final response is still unpredictable.

The scheme starts from the N-bit challenge register in Figure 16. Before launching the challenges,
a PCPUF stability model is created in the hardware memory. It records the stable RO pairs and unstable
ones. After a challenge is received from the database, the register value will not be updated until
the final response is generated. In the first loop, the challenge is hashed by a one-way hash function
module with an initial seed. The hash value is sent to the secure address generator as a secure challenge.
By mapping the generated addresses to the PCPUF stability model, we select N − 1 stable bits and
one very unstable RO pair. We enable the unstable RO pair in order to generate one-bit output for
obfuscation. The position of the inserted unstable bit depends on the hash value. The N-bit temporary
response is saved in RegisterA. Then, we apply the exclusive or operation to the value between
RegisterA and RegisterB and store the result in RegisterB. In the first loop, the value in RegisterB is
zero as it is reset along with a new challenge. Since the secure address generator knows the selected
N− 1 stable bits, they are sent to the one-way hash function module and hashed as the secure challenge
of the second loop. Before the hash operation, a one-bit ‘0’ is added to the end of the stable bits to
ensure that the input length is N-bit. This process repeats T times to generate the final response. In the
loop t, the secure address generator still selects N − 1 stable bits and one unstable RO pair, which is
stored in RegisterA. However, there are t accumulated unstable bits in RegisterB, given the different
inserted positions by the secure address generator. As Algorithm 3 showed, the final response contains
T unstable bits.

To check the collision, we involve a Bloom filter and its reset control logic module in our scheme.
A Bloom filter is a space-efficient probabilistic data structure that is used to test whether an element is
a member of a set. With an obfuscation bit mask from the secure address generator, the N − T stable
bits are sent from RegisterB to the Bloom filter. After being added by T-bit zeroes, the string is hashed
by k hash functions, and the hashed values are stored in an M-bit Non-Volatile Memory (NVM) Bloom
filter. The NVM should be tamper resistant against any malicious reset. Whenever a final response is
generated, we check the Bloom filter first to ensure that the response has never been released before.
If there is no collision, we update the Bloom filter with the k hash values and output RegisterB as
the final response. However, once a collision is found, the final response will be stalled in RegisterB.
As a further obfuscation, we rerun this process for T times to generate a new response. However,
this time, we switch the hash function input to the entire RegisterA, which means the unstable bit
is included in the one-way hash input. After T loops, the final response will hardly disclose any
information of the PUF state and pattern.
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Figure 16. Secure obfuscation-based authentication solution.

Due to memory space limitation, it is not possible to store infinite hash values in the NVM.
Therefore, we use a reset control logic to clean the Bloom filter when the false positive reaches a preset
threshold. According to our scheme, the PUF is not allowed to generate the same response twice within
the threshold times. Modeling attacks are also inefficient as stable response bits, and the internal state
is obfuscated by the unstable bits, one-way hash function and the Bloom filter. Even if the Bloom filter
is reset, the pattern cannot be detected due to the T times one-way hashing. The complexity of our
scheme also makes probe attacks useless since the next final response is unpredictable given a known
PCPUF model, Bloom filter content and the current register value. Since the attackers cannot try all 2N

input patterns when N is large, our scheme is secure.
To authenticate our PUFs in a secure way, we avoid recording any data in the database that

may disclose the information of the PUFs. Instead, we use Bloom filters for authentication, in which
the hash functions provide strong resistance against software reverse engineering. When a PUF
is manufactured, we test the PUF and store the PCPUF stability model in the database. Then, we
redo the response generation process by software, with our challenge set and the known initial
seed in the PUF. Since we cannot predict the unstable bits in the response, all the possibilities must
be generated by an authentication tree, as shown in Figure 17. The responses of R1 are generated
after the first loop of calculations according to the challenge C1. R1(0) and R1(1) are based on
the assumption that the obfuscating unstable bit is ‘0’ and ‘1’. In the second loop, the responses of
R2 are generated with the N − 1 stable bits from R1, and the unstable bits lead to four combinations.
By following this progress, we obtain 2T possibilities of the final response. With the same challenge C1,
the final response of this PUF must belong to the set of RT. Thus, all the responses in this set need to be
recorded in the Bloom filter with C1 as one-time CRP. As we apply nonce to the challenge set, it is not
necessary to calculate and store the final response set of the second T loop. By mapping the response
set with one-way hash functions, we can guarantee the data security in the database.
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Algorithm 3 Secure authentication scheme.

1: procedure OBFUSCATION
2: wait:
3: enable new challenge goto loop 1
4: goto wait
5: Loop 1:
6: reset RegisterB,
7: t← 1
8: ChallengeRegister ← new challenge
9: Loop 2:

10: if t = 1 then hash(new challenge(N))
11: else if t = T + 1 & no collision then goto Loop 3
12: else if t = T + 1 & collision then output RegisterB goto wait
13: else if no collision then hash(RegisterA (N − 1)+‘0’)
14: else if collision then hash(RegisterA (N))
15: generate N − 1 stable bits with the PCPUF model
16: generate 1 unstable RO pair with the PCPUF model
17: generate 1 obfuscation bit with the RO array
18: generate inserted position with the hash value
19: RegisterA ← N bits
20: RegisterB← RegisterA ⊕ RegisterB
21: t← t + 1
22: goto Loop 2
23: Loop 3:
24: receive ob f uscation bit mask
25: BloomFilter ← RegisterB(N − T) + T‘0’
26: if collision then t← 1 goto Loop 2
27: else if no collision then update BloomFilter output RegisterB goto wait
28: end Loop 3

Figure 17. PUF authentication tree in the database.

This security scheme sacrifices hardware resources, however. For instance, after generating
one million responses, the Bloom filter will be reset to maintain a false positive of 10−6. The size of
NVM and the number of hash functions are calculated as:

M = − n ln p
(ln 2)2 ≈ 3.42 MB (10)

k =
M
n

ln 2 ≈ 20 (11)
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In the database, the false positive rate of the Bloom filter affects the authentication accuracy.
Thus, it needs to be much lower than that in the PUF. If we set it to 10−20, the size of Bloom filter for
one million CRPs is:

M′ = − n ln p
(ln 2)2 ≈ 11.43 MB (12)

Obviously, the cost is higher than the USR-based authentication solution. In summary, there is
always a trade-off between the cost and the security. Those low-cost solutions are suitable for a large
amount of chips, while this scheme enhances the security level for some critical applications.

6. Experimental Results

In this section, we present the measured data from six implemented PCPUFs on two KC705 boards,
as shown in Figure 18. The temperature of FPGAs was controlled at 30 ◦C according to the on-chip
sensor, and the voltage was 1.008 V. Table 1 lists the post-implementation primitive utilization of
the traditional RO PUF with the shift register and the optimized PCPUF. We excluded the UART and
FIFO module in the design to make a fair evaluation. The overall utilization of our PCPUF was 0.58%
of the look-up tables and 0.05% of the flip-flops on the Kintex-7 FPGA. We cannot compare our PC
PUF design with a traditional RO PUF architecture (Figure 1), because only 35 RO arrays can be placed
on a Kintex-7 FPGA, which means four FPGAs are required to provide enough area for a 128-bit
traditional RO PUF implementation. By using a shift register or hash function in our design, we are
able to easily generate 128-bit responses in a fraction of a single FPGA.

Table 1. FPGA resource usage of the shift-register RO PUF and the optimized PCPUF implementations
for a 128-bit response. Traditional RO PUF cannot be implemented on FPGAs for 128 bits. CLB,
Configurable Logic Block.

Ref Name RO PUF PCPUF Functional Category

LUT1 514 2 LUT
LUT2 268 857 LUT
LUT3 175 55 LUT
LUT4 52 94 LUT
LUT5 273 30 LUT
LUT6 293 279 LUT

MUXF7 0 34 MuxFx
MUXF8 0 16 MuxFx
FDCE 20 16 Flop and Latch
FDRE 430 195 Flop and Latch
FDSE 1 1 Flop and Latch

CARRY4 7 9 CarryLogic
IBUF 4 4 IO
OBUF 2 2 IO
BUFG 1 1 Clock

IDELAYE2 0 2 IO
IDELAYECTRL 0 1 IO

Slice 647 365 CLB Slice
Utilization 1.26 0.71 %
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Figure 18. PCPUF tests on KC705 boards.

6.1. Randomness

We applied 15 NIST randomness tests to evaluate the randomness of our PCPUF responses.
The p-values and proportions are listed in Table 2. As the p-values were all larger than 0.01, we accepted
the responses as random [23]. Though we used a pseudorandom number generator to generate
challenges, the proportions showed that at least 98% of sequences passed the tests.

Table 2. Results of NIST randomness tests.

Statistical Test p-Value Proportion

frequency 0.066882 0.98972
block frequency 0.213309 0.98972

cumulative sums 0.534146 0.98978
runs 0.739918 0.99075

longest run 0.031497 0.98939
rank 0.219646 0.98988
FFT 0.392456 0.98991

non-overlapping template 0.122325 0.98940
overlapping template 0.062947 1.00000

universal 0.599114 1.00000
approximate entropy 0.637119 1.00000
random excursions 0.778616 0.98902

random excursions variant 0.137809 0.98905
serial 0.039329 0.99161

linear complexity 0.534146 1.00000

6.2. Uniqueness

The evaluation of the uniqueness of PCPUFs is shown in Figure 19, which compares three groups
of 100,000 128-bit responses. The responses were generated by downloading the same bitstream to
two different Kintex-7 FPGAs. The fitting curves had a µ converging to 64; thus, there were 50% bits
flipped on average. Therefore, the responses were unique. Moreover, we have compared the responses
from six PUFs on two FPGAs, and they all followed a normal distribution.



Computers 2018, 7, 40 19 of 23

30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Mismatched Bit Number

P
ro

b
ab

il
it

y

 

 

PUF 1 vs. PUF 2

fitting curve

30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Mismatched Bit Number
P

ro
b
ab

il
it

y

 

 

PUF 1 vs. PUF 3

fitting curve

30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Mismatched Bit Number

P
ro

b
ab

il
it

y

 

 

PUF 2 vs. PUF 3

fitting curve

Figure 19. Inter-PUF Hamming distance.

6.3. Stability

As shown in Section 4, the average number of errors was 0.3688 in 128-bit responses, which means
the theoretical bit error rate was 0.29%. To verify that, we generated challenges with a pseudorandom
number generator. Each challenge was used twice in order to provide two responses for comparison.
The test was repeated 100,000 times. Figure 20 shows the measured intra-PUF Hamming distance of
our PCPUFs. Compared to the corresponding results with no ECC and phase calibration in Figure 8,
the fitting curves for PCPUFs have an obvious shift to the left and approach the ideal bound in Figure 14.
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Figure 20. Intra-PUF Hamming distance with phase calibration.

Table 3 shows the average bit error rate of three shift register-based RO PUFs and six PCPUFs.
Compared to RO PUFs, PCPUFs have an obvious improvement on the response stability. Though the
bit error rates were higher than the ideal bound, all the results were smaller than 1.00%. This is still
acceptable if we take the measurement errors into consideration. Since we did not apply ECC in our
PUFs, the bit error rate was low enough for authentication purposes. Within the temperature range of
a normal testing environment, we observed no significant changes of the bit error rate.
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Table 3. Bit Error Rate (BER) of RO PUFs and PCPUFs.

FPGA1 BER FPGA1 BER FPGA2 BER

RO PUF1 7.10% PCPUF1 0.54% PCPUF1 0.37%
RO PUF2 8.09% PCPUF2 0.85% PCPUF3 0.70%
RO PUF3 7.13% PCPUF3 0.62% PCPUF2 0.91%

We compare the stability of PCPUF with four novel FPGA-based PUF implementations in Table 4.
The improved configurable RO PUF is known for ID generation with a strict Hamming distance [24].
The composite PUF was developed for a larger challenge space and superior quality metrics with
acceptable resource requirements [25]. Another improved RO PUF was proposed in [26], which was
capable of generating multiple output bits from each RO pair and allowed one to create a higher
number of pairs of ROs. The last one applies the Full Scan Technique (FST) on different numbers of
RO stages to determine the one with the highest diverseness of RO frequencies [27]. Compared to
these RO PUF designs with their own advantages, our work focused on the improvement of stability.
Therefore, it provided a lower bit error rate in the responses.

Table 4. Bit error rate Comparison of different PUF implementations on FPGAs.

PUF Type FPGA Type Bit Length Max BER Min BER

Configurable RO PUF Spartan 3 63 1.02% 0.71%
Composite RO PUF Spartan 3 4 8.46% 1.06%
Improved RO PUF Spartan 3E 4 2.58% 1.69%

FST RO PUF Spartan 2 NA 2.68% 0.67%
PC RO PUF Kintex 7 128 0.91% 0.37%

6.4. Bias

Ideally, there should be 50% ones and 50% zeroes in a response. However, our RO PUF
implementation on Kintex-7 FPGAs had a bias ranging from 41% to 58% according to our tests.
As a comparison, we list the bias of PCPUFs in Table 5. Each result was based on the mean of 100,000
128-bit responses. Without any post-processing, all six PUFs produced bias within ±2% of ideal,
which proves the effectiveness of the phase calibration on the improvement of the RO PUF bias.

Table 5. Bias of RO PUFs and PCPUFs.

FPGA1 Bias FPGA1 Bias FPGA2 Bias

RO PUF1 40.85% PCPUF1 49.21% PCPUF1 48.72%
RO PUF2 47.10% PCPUF2 49.77% PCPUF3 51.08%
RO PUF3 58.42% PCPUF3 51.35% PCPUF2 50.14%

6.5. Authentication Application

The performance of USR-based authentication is shown in Table 6. Compared to the measured
raw response of PCPUFs, USRs had a lower bit error rate. When we set the threshold to 20, all three
PCPUFs had a low false positive and false negative rate in theory. We also verified the bound by
measuring 300,000 CRPs on an FPGA. The results showed that no false positive or false negative
was detected.
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Table 6. False positives and false negatives of USR-based authentication.

FPGA1 BER t False Positive False Negative

PCPUF1 0.30% 20 4.30× 10−16 5.38× 10−22%
PCPUF2 0.38% 20 4.30× 10−16 1.41× 10−19%
PCPUF3 0.31% 20 4.30× 10−16 8.82× 10−22%

Table 7 shows the other authentication solutions with Hamming ECC and
Bose-Chaudhuri-Hocquenghem (BCH)ECC. Hamming(255,247) could correct one bit error
in 128-bit responses, while BCH(255,128,15) had a correct capability of as many as 15. However,
the overhead of BCH ECC was much larger than that of Hamming ECC. We applied both ECCs to
the shift register-based RO PUFs and our PCPUFs. Compared to the poor performance on RO PUFs,
the lower bit error rate of PCPUFs took better advantage of ECCs. When those 100,000 CRPs were
tested with BCH ECC, no false negative was detected. Though it is hard to estimate the accurate
false negatives of BCH ECC-based authentication on PCPUFs, we can compare the overhead of these
solutions in order to find a better trade-off. The codeword of BCH ECC was almost the same size
as the key, while our USR-based solution had no additional overhead at all. Therefore, USR-based
authentication is recommended when the memory space becomes a critical bottleneck.

Table 7. Performance of ECC-based authentications.

PUF Type ECC Type Overhead False Negative

RO PUF1 Hamming(255,247) 8 1
RO PUF2 Hamming(255,247) 8 1
RO PUF3 Hamming(255,247) 8 1
RO PUF1 BCH(255,128,15) 116 3.82× 10−2

RO PUF2 BCH(255,128,15) 116 4.84× 10−2

RO PUF3 BCH(255,128,15) 116 2.21× 10−2

PCPUF1 Hamming(255,247) 8 1.21× 10−2

PCPUF2 Hamming(255,247) 8 2.10× 10−2

PCPUF3 Hamming(255,247) 8 1.59× 10−2

PCPUF1 BCH(255,128,15) 116 <10−6

PCPUF2 BCH(255,128,15) 116 <10−6

PCPUF3 BCH(255,128,15) 116 <10−6

7. Conclusions

In this paper, we demonstrated a practical design and implementation of RO PUFs on FPGAs.
Our main contribution was the phase calibration process, which focused on improving the frequency
measurement techniques in the crossing clock domain area. By using a phase calibration process,
the 7.81% bit error rate was reduced to less than 1%. Another contribution was the application of
instability in PCPUFs. By using the unstable RO pairs as stable responses and obfuscation, we improved
the stability and security of PCPUF-based authentication.
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