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Abstract: Over the past decades, many systems composed of arrays of microphones have been
developed to satisfy the quality demanded by acoustic applications. Such microphone arrays
are sound acquisition systems composed of multiple microphones used to sample the sound
field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays
(FPGAs) to manage the audio data samples and to perform the signal processing operations
such as filtering or beamforming has lead to customizable architectures able to satisfy the most
demanding computational, power or performance acoustic applications. The presented work
provides an overview of the current FPGA-based architectures and how FPGAs are exploited for
different acoustic applications. Current trends on the use of this technology, pending challenges and
open research opportunities on the use of FPGAs for acoustic applications using microphone arrays
are presented and discussed.
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1. Introduction

Sensor arrays have been useful tools for radar-related applications, radio astronomy and other
applications including indoor localization systems or environmental monitoring. Over the past decades,
many systems composed of microphone arrays have been developed and evaluated for sound source
location, separation and amplification in difficult acoustic environments. Large microphone arrays
like [1–3] have been built in the early 2000s to evaluate different algorithms for speech enhancement
targeting conference rooms. Small microphone arrays are nowadays ubiquitous in many consumer
devices such as laptops, webcams or smartphones as an aid for speech recognition [4] due to
the improvement of the recognition when compared to a single omnidirectional microphone [5].
Multimodal computing applications such as person tracking systems, hearing aid systems or
robot-related applications benefit from the use of microphone arrays. The computational demand of
such applications is not always satisfied when targeting real-time or large microphone arrays.

Field-Programmable Gate Array (FPGA) is a semiconductor device providing thousands of
arrays of programmable logic blocks and specific-operation blocks. FPGAs are reprogrammed to
enable the hardware description of the desired application or functionality requirements. Customized
designs built with this technology achieve low latency, performance acceleration and a high power
efficiency, which made them very suitable as hardware accelerators for applications using a microphone
array. FPGAs are well-suited for high-speed data acquisition, parallel processing of sample data
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streams and to accelerate audio streaming applications using microphone arrays to achieve real-time.
Moreover, the multiple I/Os that FPGAs offer, facilitates the interface of microphone arrays with
a relatively large number of microphones. As a result, FPGAs have displaced Digital Signal Processors
(DSPs) for acoustic applications involving microphone arrays in the recent past.

FPGA technology has disruptive characteristics which are changing the way microphone arrays
are used for certain acoustic applications. The latest FPGA-based architectures are capable to fully
embed all the computational tasks demanded by highly constraint acoustic imaging applications.
Nevertheless, many FPGA-based architectures must solve similar challenges when interfacing and
processing multiple data streams from large microphone arrays. Moreover, different FPGA-based
architectures have been proposed for sound source localization. Here, a review of how FPGAs are used
for applications based on microphone arrays is presented. This survey intends to present the most
relevant uses of FPGAs combined with microphone arrays. The challenges, trends and potential use
that FPGA’s technology has for acoustic-related microphone arrays are also presented and discussed.

An introduction of microphone arrays, detailing the most common types of microphones and
explaining the type of processing done with microphone arrays is presented in Section 2, followed by
a brief explanation of the FPGA technology in Section 3. A categorization of the state-of-the art based
on the role of the FPGA when processing the signal data coming from the microphone arrays is
proposed in Section 4. Such an overview provides a perspective on how FPGAs have been adopted for
the different types of applications involving microphone arrays. An analysis of advanced FPGA-based
architectures of acoustic beamformers is presented in Section 5. This analysis focused on how existing
beamforming techniques are implemented on FPGAs, the level of integration on the FPGA and how the
selection of the microphone affects the architecture. Moreover, the reasons of the incremental adoption
of FPGAs is further discussed in Section 6, providing an overview of the recent trends. The current
challenges and research opportunities are discussed in Section 7. Finally, the conclusions are drawn in
Section 8.

2. Microphone Arrays

Microphone arrays have advanced together with recent developments in microphone technology.
Large microphone arrays like [2], composed of hundreds of Electret-Condenser microphones (ECMs),
have evolved to compact microphone arrays composed of Micro-Electro-Mechanical Systems (MEMS)
microphones to be integrated in smartphones, tablets or voice assistants, such as Amazon’s Alexa [6].
Microphone arrays have been used in hearing aids [7], for echo cancellation [8], in ambient
assisted living [9], in automotive [10,11], for biometrical systems [12,13], for acoustic environmental
monitoring [14], for detection and tracking of Unmanned Aerial Vehicles (UAVs) [15,16], or for using
UAVs for rescue activities [17], for speech enhancement [5,18] and in many other applications [19].
The miniaturization of the packaging while keeping the quality of the microphones’ response has lead
to compact microphone arrays and created opportunities for new acoustic applications.

2.1. Type of Microphones

The most popular type of microphones to compose microphone arrays is briefly described here.
Microphones can be grouped based on their transducer principle, that is, how the microphone converts
the acoustic vibration into an electrical signal. There are several types of transducers such as condenser
or capacitor microphones, dynamic microphones, piezoelectric microphones,... Over all the variety
of the available microphones, two main categories have predominated when building microphone
arrays: ECMs and MEMS microphones (Figure 1).
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Figure 1. Example of ECMs (left) and MEMS microphones (right).

2.1.1. ECMs

ECMs are a type of condenser microphone composed of conductive electrode members on
different plates, one of which is a moveable diaphragm. One of the plates is a stable dielectric material
called electret with a permanent electric charge, which eliminates the need for a polarizing power
supply. ECMs only require certain power supply to power an integrated preamplifier. The capacitance
of the parallel plate capacitor changes when the distance between the two plates varies when the
sound wave strikes the surface of the moveable diaphragm. ECMs have a whole acoustic frequency
response and a low distortion in the signal transmission since the capacitance effect varies due to
an electromechanical mechanism. The relatively small package of ECMs made them the preferred
choice to build the first large microphone arrays like in [1–3]. The output format of ECMs composing
microphone arrays has been traditionally analog. The output impedance rounds from a few hundred
to several thousand ohms [20], which must be considered when selecting the codec. This impedance is
determined in case of the ECMS by the value of the load resistance with a corresponding change in
sensitivity [21].

2.1.2. MEMS Microphones

A MEMS microphone is a miniature microphone, usually in the form of a surface mount device,
that uses a miniature pressure-sensitive diaphragma to sense sound waves. Similarly to ECMs,
the variations of the diaphragma directly determine the capacitance. This diaphragm is produced
by surface micromachining of polysilicon on a silicon substrate or etched on a semiconductor using
standard Complementary Metal Oxide Semiconductor (CMOS) processes [22]. MEMS microphones
include significant amounts of integrated circuits for signal conditioning and other functions within
the same package of the sensor since it shares the same fabrication technologies used to make
integrated circuits.

MEMS microphones are categorized based on the type of output, which can be analog or
digital [23]. Analog MEMS microphones present an output impedance of a few hundred ohms
and an offset DC voltage between ground and the supply voltage. Despite this offset avoids the
clipping of the peaks of the highest amplitude output signals, it also leads to a high-pass filter effect
which might attenuate low frequencies of interest. Regarding the high impedance, a possible solution
to avoid attenuations at the output side is the use of programmable gain amplifiers at the codec side.

Because MEMS microphones are produced on a silicon substrate, a clear benefit of digital
MEMS microphones is the easy integration of the transducer element together with an amplifier
and an Analog-to-Digital Converter (ADC) in the same die or in the package of the microphone.
As a result, digital MEMS microphones drastically reduce all the required circuitry to interface the
digital signal processor unit. Due to integrating all the ADC circuitry into the microphone’s package,
digital MEMS microphones provide advantages in the design phase. Each new design iteration requires
adaptations in the signal conditioning circuitry when using analog microphones.

The encoded output format of digital MEMS microphones are Pulse Density Modulation (PDM)
or Inter-IC Sound (I2S) output interface. PDM represents an oversampled 1-bit audio signal and
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brings low noise. The data from two microphones share the same data line at different shared
clock edge, guaranteeing their synchronization. Same principle can be applied to microphone
arrays, where multiple digital MEMS microphones can be synchronized by using the same clock.
The synchronization of the microphones is crucial in microphone arrays, which might determine what
type of MEMS microphone to use since arrays composed of analog MEMS microphones must be
synchronized at the ADC. I2S MEMS microphones present the same properties as the PDM MEMS
microphones, but integrate in the silicon all the circuitry required for the PDM demodulation and
multi-bit Pulse Code Modulation (PCM) conversion. Thus, I2S MEMS microphones output is filtered
and decimated at baseband audio sample rate.

2.1.3. Considerations

The selection of the type of microphones when building a microphone array is determined by the
different features that each microphone’s technology provides. The type of microphones and the output
data format determine the overall output response and the digital signal processing requirements.

Despite ECMs and MEMS microphones operate as condenser microphones, MEMS microphones
benefit from the enormous advances made in silicon technology over the past decades and present
several advantages [24,25] that make them more suitable for many acoustic applications.

• MEMS microphones have less sensitivity to temperature variations than ECMs.
• MEMS microphones’ footprint is around 10 times smaller than ECMs.
• MEMS microphones have a lower sensitivity to vibrations or mechanical shocks than ECMs.
• ECMS have a higher device-to-device variation in their frequency response than MEMS microphones.
• ECMs need a specific soldering process and are unable to be undertaken re-flow soldering,

while MEMS can.
• MEMS microphones have a better power supply rejection compared to ECMs, facilitating the

reduction of the components’ count of the audio circuit design.

The advantages of the MEMS technology explains why MEMS microphones have slowly replaced
ECMs as the default choice for microphones arrays since their introduction by Knowles Acoustics
in 2006.

The output format is another relevant factor to be considered since it directly affects to the requirements
of the digital signal processing system. Analog microphones demand certain considerations when selecting
the codec due to the high impedance and the voltage offset at the microphone’s output. Codecs, such
as digital pre-amplifiers [26], convert the analog signals from analog microphones, in particular ECMs.
This pre-amplifiers drives an over-sampled sigma delta ADC to PDM output data. This type of integrated
circuits facilitates the interface of analog microphones with digital processing systems by providing
a compatible digital data format like PDM or I2S audio bus [27]. The use of digital MEMS microphones,
however, reduces the complexity of the hardware since they do not require external amplifiers. This
fact makes digital MEMS microphones immune to Radio Frequency (RF) noise and less sensitive to
electromagnetic interference compared to analog versions [28].

At the digital signal processing system side, the PDM data format produced at a high-sample
rate needs to be demodulated to an analogue form before being heard as audio or converted to PCM
format if it needs to be digitally analysed [29]. The operations required to demodulate the oversampled
PDM signals consists of a multi-filter stage for the PDM demodulation and PCM conversion [30].
The integration of the PDM demodulation in the silicon reduces the I2S MEMS microphones’ flexibility
since they present a fixed demodulator architecture [31]. The PDM demodulation circuitry integrated
on the chip is a fixed decimator by a factor of 64 followed by a low-pass filter to remove the remaining
high frequency components in the signals. The microphone operates as an I2S slave, transferring the
PCM data word length of 24 bits in 2’s complement, as depicted in Figure 2. Due to the fixed decimation
factor, the digital signal processing system must wait several clock cycles before to receive the PCM
signal from each microphone. This solution might satisfy some acoustic applications requirements, but
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it certainly reduces the opportunities of exploring alternative demodulation architectures based on the
target application demands. For instance, different design strategies related to the architecture of the
PDM demodulation are proposed in [32] to accelerate a particular type of acoustic application.

Figure 2. Example of two microphones with I2S output format sharing the interface to a digital signal
processing system [31]. SCK, WS and SD are the serial data clock, serial data-word select and the serial
data output for the I2S interface respectively.

2.2. Microphone Array Processing

Microphone arrays exploit the processing of signals captured by multiple spatially-separated
microphones. The distance between microphones results in a difference in the path length between
the sound sources and the microphones. This difference results in a constructive interference when
the path length is equal for both microphones, obtaining an amplification of the signal by a factor of
the number of microphones. The difference is dependent on the angle of incidence of the acoustic
wave and the distance between the microphones. Therefore, microphone arrays are able to reinforce
the sound coming from a particular direction while attenuating the sound arriving from different
directions. The microphone arrays’ frequency response depends on [33]:

• the number of microphones
• the spacing between microphones
• the sound source spectral frequency
• the angle of incidence

A high number of microphones improves the frequency response by increasing the Signal-to-Noise
Ration (SNR) [34] and by spatially filtering more precisely the sound field. Regarding the microphone’s
spacing, a large distance between microphones improves the array’s response for lower frequencies,
a short spacing prevents spatial aliasing [35]. The array geometry, referring to the position of the
microphones in the array, is a wide research field [36] because the geometry aims to enhance acoustic
signals and separate them from noise based on the acoustic application [37]. Figure 3 depicts some
examples of array geometries.

Figure 3. Examples of microphone arrays geometries.

The angle of incidence can be modified, performing a spatially filtering of the sound field,
by adapting the path lengths of the input data of the microphones. The concept of steering the
microphone’s response in a desired direction is called beamforming [38,39]. The beamforming methods
can be applied in the time domain or in the frequency domain. Time-domain beamformers apply
different time delays to each microphone to compensate for the path length differences from the sound
source to the microphone arrays. The basic time-domain beamfomer is the well-known Delay-and-Sum.
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The time delays can be also integrated in Finite Impulse Response (FIR) filters, like one per microphone,
performing the Filter-and-Sum beamformer. Both beamformers can be also applied in the frequency
domain. In that case, the signal received from each microphone is separated into narrow-band
frequency bins through discrete Fourier transformation, before applying phase shift corrections to
compensate the difference in path lengths. The beamforming operations present a high-level of
parallelism and demand a very low latency when targeting real-time applications. Both are well-known
features that FPGA present nowadays.

3. FPGA Technology

FPGAs are semiconductor devices composed of logic blocks interconnected via programmable
connections. The fundamental units of an FPGA are Configurable Logic Blocks (CLBs) consisting
of Look-Up Tables (LUTs) constructed over simple memories, SRAM or Flash, that store Boolean
functions. Each LUT has a fixed number of inputs and is coupled with a multiplexer and a Flip-Flop
(FF) register in order to support sequential circuits. Likewise, several CLBs can be combined for
implementing complex functions by configuring the connection switches in the programmable routing
fabric. The flexibility of FPGAs enables the possibility of embedding application specific architectures,
which can be tuned to target performance, power efficiency or low latency.

Figure 4 depicts the FPGA’s design flow. FPGAs are programmed with Hardware Description
Languages (HDL), which describe the desired functionality to be mapped onto the reconfigurable
hardware. The hardware description elaborated by the designer is used by the vendor’s synthesizer
in order to find an optimized arrangement of the FPGA’s resources implementing the described
functionality. During the synthesis, the design is translated to Register Transfer Logic (RTL) netlists.
This feature distinguishes FPGAs from Application-Specific Integrated Circuits (ASICs), which are
custom manufactured for specific design tasks. The application’s functionality can also be described
though digital logic operators represented as schematics diagrams. The netlists generated at the
synthesis stage are used during the implementation stage to perform several steps: translation,
mapping, place and routing. The translation merges the incoming netlists and constraints into the
vendors’ technology of the target FPGA. The mapping fits the design into the available resources,
such as CLBs and I/Os. The place and route step places the design and routes the components to
satisfy the timing constraints. Finally, a bitstream, which is used to program the FPGA with the design,
is generated and downloaded to the device.

FPGA’s design flow demands the design verification at the implementation stage, which is done
through logic or timing simulations. Moreover, the synthesis and implementation stages require
many compute-intensive operations, demanding minutes to hours to be completed based on the used
amount of FPGA’s resources. As a result, the overall design flow becomes a high-time and effort
demanding task. In the recent past, several High-Level Synthesis (HLS) tools have been developed to
alleviate the hardware description by using high-level descriptive languages, such as C/C++ [40,41]
or OpenCL [42]. This high-level approach allows the increment of the reusability of the hardware
descriptive code and facilitates the debugging and verification process.
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entity leddcd is

port(

d: in std_logic_vector(3 downto 0);

s: out std_logic_vector(6 downto 0)

);

end;

architecture leddcd_arch of leddcd is 

begin

s <= “1110111”when d=“0000” else

“0010010”when d=“0001” else

“1101101”;

end leddcd_arch; 
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Figure 4. FPGA’s Design Flow.

FPGA’s resources have increased in the latest years following the improvements in the RTL
technology. This increment in the available resources enables the embedding of general-purpose
soft-core processors using the reconfigurable logic. Most of these customizable processors are 32-bits
processors with a Reduced Instruction Set Computer (RISC) architecture. Existing open source soft-core
processors, such as the OpenRISC [43], and especially the recent RISC-V [44] architecture, have been
proposed in recent years as alternative to the Xilinx’s Micro/PicoBlaze [45] or the Intel/Altera’s
Nios-II [46] soft-core processors. The use of these soft-core processors are extended in control-related
applications or for the management of communication processes. The designer’s effort to program
such general-purpose processors is reduced due to the use of high-level languages. Although this
type of embedded processors allows a fine tune customization at instruction levels and can be easily
modified, their performance is not very high as they operate in a range from 50 MHz until 250 MHz.
In recent years, there has been a move towards System-on-Chip (SoC) and FPGAs have been combined
with hard-core processors, which are processors implemented with a fixed architecture in the silicon.
Hard-core processors together with FPGA fabric provide a larger interconnection bandwidth between
both technologies and achieve faster processing speed since they are not limited by the reconfigurable
logic speed. Figure 5 depicts a Xilinx Zynq SoC FPGA serie [47], composed of a Processing System (PS),
which is a dual-core ARM Cortex-A, and a Programmable Logic (PL) based on Artx-7 or Kintex7 FPGA
fabric. Such SoC FPGAs demand, however, a hardware/software co-design to be fully exploited.
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Figure 5. The SoC FPGAs Zynq serie [47] is composed of a hard-core processor (PS) and the FPGA
reconfigurable logic (PL).

4. Categorization of FPGA-Based Designs for Microphone Arrays

There are many examples of the use of FPGAs for microphone arrays’ applications. Beyond the
type of acoustic applications, the FPGA’s designs can be grouped into three main categories based on
the embedded functionality:

• FPGAs satisfy the low latency and the deterministic timing required for the management of
multiple data streams coming from multiple microphones. In several acoustic applications,
FPGAs are used for the audio signal treatment by grouping the multiple data streams in
an appropriated format before being processed. A common example is the serialization of
the parallel incoming signals from the microphone array.

• Microphone arrays can be used to locate sound sources. Several FPGA-based designs embed
not only the acquisition, demodulation and filtering of the data stream from the microphones,
but also the required algorithms to locate sound sources. Further classification can be done based
on the level of complexity of such algorithms, and the consequent computational demand.

• Highly constraint acoustic imaging applications have been developed on FPGAs in order to satisfy
real-time demands and high computational requirements. The real-time computation of tens
of microphones used for acoustic imaging applications demands a highly efficient performance
architecture to properly exploit and achieve the performance that FPGAs offer nowadays.

The state-of-the-art for each of these categories is described more into detail in the following sections.

4.1. FPGA-Based Audio Acquisition Systems

An example of an FPGA-based acquisition system is described in [48]. The authors present
a general-purpose acoustic array composed of 52 analogue MEMS microphones. Their acquisition
system, based on [49], includes an FPGA to provide real-time processing capabilities. The microphone
array is composed of analog MEMS microphones, each demanding a circuitry composed of a two-stage
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20 dB amplifiers and a decoupling capacitor. Additionally, to connect to the FPGA, each channel
requires an ADC with 12 bits of resolution and a maximum sampling rate of 5 Mbps. One application
of this acquisition system is the sound source separation using the Independent Component Analysis
(ICA) technique [48]. The same authors propose in [50] the use of beamforming, matched filtering,
spectral processing, and ICA for imaging, tracking and identification of objects. In both applications,
the main tasks of the FPGA are the formatting and transmission of the recovered audio streams to
a desktop Personal Computer (PC) through an Ethernet link.

There are more examples. Table 1 summarizes the main characteristics of the most relevant designs
using FPGAs to rearrange the data format of the data streams from microphone arrays. The operations
on the FPGA, however, are not significantly performance demanding since the embedded operations
basically involve decimation, filtering and data formatting.

Table 1. Summary of related work targeting audio signal arrangements on FPGAs.

Reference Application Year Type of MIC Model of MIC MICs Per Array FPGA Operations

[3] Acoustic Data
Acquisition System 2004 Analog ECM Panasonic WM-54BT 1020 Xilinx 3000E Data formatting

and transmission

[48,50] Acoustic Data
Acquisition System 2010 Analog MEMS Knowles Acoustics

SPM0208 52 Xilinx Virtex-4
XC4VFX12

Sampling,
formatting and

transmission

[51] Sound-Source
Location 2011 Analog MEMS Knowles Acoustics

SPM0208 52 Xilinx Virtex-4
XC4VFX12

Sampling,
formatting and

transmission

[52] Calibration for
Acoustic Imaging 2014 Digital MEMS Knowles Acoustics

SPM0405HD4 64 FPGA array
PXI-7854R Data Acquisition

[53] Evaluation of Stent
Effectiveness 2016 Digital MEMS Analog Devices

ADMP521 4 Unspecified
FPGA

Data acquisition
and transmission

4.2. FPGA-Based Sound Locators

Nowadays many applications need to determine the sound source locations with a different
degree of accuracy, timing demand and power efficiency. Several sound source location algorithms are
used to perform this task. These algorithms determine the Direction-of-Arrival (DoA) of the sound
wave and can be classified according to the method used [19,54]:

1. Time-Difference of Arrival (TDOA)
2. Steered Response Power (SRP)
3. High-Resolution Spectral Estimation (HRSE)

TDOA-based sound locators derive their source location from the calculation of the time-delay
estimation relative to pairs of spatially separated microphones, and the knowledge of the fixed position
of the microphones in the array. The second class refers to those sound locators whose estimation is
based on maximizing the SRP of a beamformer. The last category includes those methods relying on
an application of a signal correlation matrix.

4.2.1. FPGA-Based Designs of TDOA-Based Sound Locators

Relevant FPGA-based designs using TDOA for sound source localization are summarized in
Table 2. The authors in [55] are among the first ones to fully embed the operations required to
locate sound sources on an FPGA-based architecture. Their solution uses a general cross-correlation
(GCC)-based TDOA to locate the sound sources and it reaches up to 12 microphones processed
in parallel by placing multiple TDOA estimation modules. Moreover, the authors estimate that
a larger version including up to 100 microphones can be supported when operating at 100 MHz,
due to further readjustments and optimizations on their design. To overcome the high resource
consumption, the authors in [56] propose a less-resource demanding TDOA algorithm to locate the
sound sources. Instead of using GCC, which requires extensive multiplications, their architecture
implements a variation of TDOA based on the Average Magnitude Difference Function (AMDF), which
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only demands basic operations such as accumulations and subtractions. The authors also compare
their architecture against the state-of-the-art, such as [55], obtaining similar performance with a much
less complex and hardware demanding algorithm.

Table 2. Summary of FPGA-based microphone arrays related work using the TDOA estimation to
perform the sound source location.

Reference Application Year Type of MIC Model of MIC MICs Per
Array FPGA Source Location

Technique

[55] Sound-Source
Localization 2003 Not Specified Not Specified 2 Xilinx Virtex-II 2000 GCC-TDOA

[57,58] Countersniper
System 2005 Analog ECM Not Specified 3

Xilinx XC2S100
FPGA or

ADSP-218x DSP

Shockwave and
Muzzle Blast Detectors

[56] Sound-Source
Localization 2009 Analog Not Specified 2 Altera DE2-70

Cyclone-II AMDF-based TDOA

[59] Sound-Source
Localization 2010 Analog ECM Not Specified 8 Xilinx Spartan-3

XC3S200 MCALD

[60] Sound-Source
Localization 2015 Analog Not Specified 8 Xilinx Spartan-3E

XC3S400 SNN and TDOA

[61] Speech
Enhancement 2017 - MS Kinect

microphones 2 Xilinx Spartan-6
LX45 TDOA

[62] Sound-Sources
Localization 2017 Analog ECM Not Specified 4 Xilinx Zynq 7020 GCC-TDOA

The sound source detection using distributed microphone arrays is usually demanded by military
applications such as sniper detection and localization, or man-wearable passive acoustic arrays to
detect gunshots [63]. Several counter-sniper systems have been proposed in [57,58,64] using FPGAs
to manipulate the incoming data from microphone arrays. The real-time source location is possible
due to fully embedding their TDOA system on the FPGA, consisting of a shockwave and a muzzle
blast detector [64]. Moreover, the Bluetooth communication between the distributed acoustic sensing
nodes is managed by a picoBlaze soft-core processor on the node’s FPGA. This distribution of the
computational tasks between the FPGA logic and the soft or hard-core processors reduces the overall
effort required to develop the HDL description of certain processes, such as the communication
management. The combination of FPGAs with hard-core processors can also be used for more
computational intensive tasks. For instance, the authors in [62] propose the use of a SoC FPGA,
which embed a hard-core processor, together with a microphone array composed of 4 elements
to locate sound sources. While the FPGA part computes the cross-correlations between pairs of
microphones to the GCC-TDOA, the hard-core processor estimates the 3D location of sound sources.
This system only needs 28 ms to compute the six TDOA, required to cross-correlate the 4 microphones.

Although simple TDOA-based approaches use FPGAs as part of the sound locator systems [59,61],
innovative designs like [60] consider the use of neural networks for acoustic applications. Their architecture
embeds on an FPGA a Spike Neural Network (SNN) whose first layer computes the TDOA for each pair
of microphones while the second layer evaluates the response for the beamed orientations.

4.2.2. FPGA-Based Designs of SRP-Based Sound Locators

Sound source locators based on SRP use spatial filtering techniques to perform their estimations.
Spatial filtering techniques, more-known as beamforming [38], enable the steering of the microphone
array response to beam particular directions. As previously discussed, some signals experience
constructive interferences while others experience destructive interference depending on the focused
direction. Nonetheless, the complexity of steered-beamformers leads to a higher computational
demand when compared to TDOA-based locators [39]. Table 3 summarizes the most relevant features
of the FPGA-based designs using SRP-based beamforming for sound source localization.

Conventional beamforming techniques are largely used in speech-array applications such as
speech enhancement in conference rooms, allowing the audio enhancement of the speaker’s speech
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while suppressing the surrounding noise. A real-time acoustic beamforming system, composed of
12 MEMS microphones, is proposed in [65] to improve speech intelligibility. The system uses an FPGA
to implement a real-time, high-throughput and modular Delay-and-Sum beamformer. The selection of
analogue MEMS microphones in their array demands the use of an ADC per microphone and a Serial
Peripheral Interface (SPI) to communicate with the FPGA. Digital MEMS microphones, instead, do not
only encapsulate the ADC circuitry but also have the potential to offer similar performance as
high-quality analogue microphones for some applications. A comparison between digital MEMS
microphones and analogue microphones is presented in [66]. This paper describes the design and
implementation of an eight-element digital MEMS microphone array for distant speech recognition,
which is compared to an analogue equivalent composed of eight high-quality analogue microphones.
While the analogue system records at 48 KHz, the digital array uses an FPGA to demodulate the
acquired audio signal. The beamforming stage consists of a Wiener filter, to remove the stationary noise
of the channels, followed by a Filter-and-Sum beamformer. Different recognition models are applied
to the recorded speeches in order to compare the response of both arrays. The results show that the
absolute difference in word-error-rate (WER) between both arrays is around 14% worse for the digital
array when a none recognition technique is applied. Despite recognition techniques decrease the WER
of both types of arrays, the digital array shows a better response to such techniques, reducing to 4.5%
the absolute difference in WER when compared to the analogue array.

Large microphone arrays especially benefit from using FPGAs to perform the beamforming
operations. The same authors of [67] present in [68] a large microphone array composed of 300 digital
MEMS microphones for indoor real-time speech acquisition. The array is decomposed in sub-arrays
where parallel Delay-and-Sum beamforming operations are performed in the time domain. The quality
of the captured speech meters cannot be, however, as good as with a hand-held microphone despite
the large number of microphones composing the array. The use of Delay-and-Sum beamforming is also
proposed in [34] for sound source location. The authors propose a FPGA-based implementation with
a different strategy to process the data stream from the 52 microphones of their array. Instead of
implementing individual filters for each microphone, the authors propose the execution of the
Delay-and-Sum beamforming algorithm directly over the digital output signals from the microphones.
This strategy has the potential benefit of drastically saving area and power consumption due to the
significant reduction of the number of filters needed.

An example of a fully embedded beamforming-based acoustic system for localization of the
dominant sound source is presented in [69,70]. Their FPGA-based system consists of a microphone
array composed of up to 33 MEMS microphones. The tasks embedded on the FPGA involve the audio
signal demodulation, the filtering, a Delay-and-Sum beamformer and a Root Mean Square (RMS)
detector. The FPGA implementation is done using the Xilinx System Generator tool, which incorporates
several libraries for the Matlab/Simulink tool enabling a high-level prototyping of FPGA designs.

Table 3. Summary of FPGA-based microphone arrays related work using SRP-based sound locators.

Reference Application Year Type of MIC Model of MIC MICs Per Array FPGA Source Location
Technique

[66] Distant Speech
Recognition 2010 Digital MEMS Knowles Acoustics

SPM0205HD4 8 Xilinx Spartan-3A Adaptive
Filter-and-Sum

[68] Speech Acquisition 2012 Digital MEMS Not Specified 300 Multiple
unspecified FPGAs

Time Domain
Delay-and-Sum

[65] Sound-Source
Localization 2013 Analog MEMS Not Specified 12 Xilinx Spartan-3E

1200
Time Domain

Delay-and-Sum

[34] Sound-Source
Localization 2014 Digital MEMS Analog Devices

ADMP521 52 MicroSemi Igloo Time Domain
Delay-and-Sum

[69,70] Sound-Source
Localization 2015 Digital MEMS Analog Devices

ADMP621 33 Xilinx Spartan-6
LX25

Time Domain
Delay-and-Sum

[71] Deforestation
Detection 2015 Digital MEMS ST Microlectronics

MP34DT01 8 MicroSemi Igloo 2 Time Domain
Delay-and-Sum

[72] Deforestation
Detection 2016 Digital MEMS ST Microlectronics

MP32DB01 4, 8 or 16 Xilinx Spartan 6
FPGA

Time Domain
Delay-and-Sum
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Table 3. Cont.

Reference Application Year Type of MIC Model of MIC MICs Per Array FPGA Source Location
Technique

[73] Enhancement of
Audio Signals 2016 Digital MEMS AKUSTIC AKU242 7 Xilinx Zynq 7020 MVDR

[74,75] Sound-Sources
Localization 2016 Analog MEMS InvenSense

INMP504 48 Intel/Altera’s
DE1-SoC board

Adaptive
Filter-and-Sum

[76] Sound-Source
Localization 2017 Digital MEMS Analog Devices

ADMP521 4, 8, 16 or 52 Xilinx Zynq 7020 Time Filter-Domain
Delay-and-Sum

[77] Hearing Aid System 2017 Analog MEMS Analog Devices
ADMP401 2 Xilinx Artix-7 A100 Adaptive

Null-forming

[32] Sound-Source
Localization 2017 Digital MEMS Analog Devices

ADMP521 4, 8, 16 or 52 Xilinx Zynq 7020 Time Domain
Filter-Delay-and-Sum

[78] Hearing Aid System 2018 Digital MEMS Knowles Acoustics
SPM0405HD4H 48 Intel/Altera

EP4CE15F17C8N
Time Domain

Delay-and-Sum

[79] Sound-Sources
Localization 2018 Digital MEMS InvenSense

ICS-41350 4, 8, 16 or 52
Microsemi

SmartFusion2
M2S050

Time Domain
Delay-and-Sum

The authors in [71] also fully embed a beamforming-based acoustic system composed of digital
MEMS microphone arrays acting as node of a Wi-Fi-based Wireless Sensor Network (WSN) for
deforestation detection. The power consumption, however, is a critical parameter for WSN-related
applications. Their architecture uses an extremely low-power Flash-based FPGA, which allows to
only consume 21.8 mW per node in the network, to compute their 8-elements microphone array.
A larger version of this microphone array, composed of 16 microphones, is proposed by the same
authors in [72]. Because of the additional computational operations, their architecture migrates to
a Xilinx Spartan6 FPGA, leading to 61.71 mW of power consumption. Low-power architectures
for WSN nodes to perform sound source localization are, however, not an exception. The authors
in [79] propose a multi-mode architecture implemented on a extremely low power Flash-based FPGA,
achieving a power consumption as low as 34 mW for a 52-elements microphone array. The proposed
multi-mode architecture has been also exploited by the same authors in [76], where their architecture
dynamically adapts the quality of the sound source location by adjusting the angular resolution of the
beamed orientations. Their architecture also decomposes the microphone array in subarrays in order
to modify in runtime the number of active microphones. This architecture is further accelerated in [32],
where a performance analysis is discussed to perform sound localization in real-time.

The use of SoC FPGAs, like the Xilinx Zynq serie [47], for microphone arrays provides additional
capabilities and facilitates the embedding of certain signal processing operations which otherwise
would demand a higher effort to be embedded on a standalone FPGA. For instance, the authors in [73]
use a microphone array for real-time speech enhancement by embedding on a SoC FPGA all the
operations to reduce the noise and interference. While the FPGA part manages the demodulation
and filtering operations needed to retrieve the original audio signal, the hard-core processor performs
the post-processing operations composed of the sound-source localization using SRP-PHAT and the
speech enhancements using the Minimum Variance Distortionless Response (MVDR) beamformer to
guarantee that the desired sound remains undistorted. Similarly, the work presented in [74,75] uses
SoC FPGA architecture to locate sound sources by using a microphone array composed of 48 MEMS
microphones. The system performs a Filter-and-Sum beamforming technique at the FPGA side while
the hard-core processor is only used for communication.

More applications embed beamforming operations on FPGAs to perform sound localization.
For instance, an FPGA-based hearing aid system using a microphone array is presented in [77].
The authors propose an adaptive beamforming algorithm [80] to introduce nulls in particular directions
to cancel noise. Similarly, an FPGA-based hat-type hearing aid system composed of 48 MEMS
microphones is presented in [78]. Their system provides a flexible sound directivity by allowing the
user to emphasize the audio signals coming from several directions.
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4.2.3. FPGA-Based Designs of HRSE-Based Sound Locators

The HRSE-based type of sound locators (Table 4) include adapted beamforming methods from
the field of high-resolution spectral analysis such as Minimum Variance Spectral Estimation (MVSE)
or the popular MUltiple SIgnal Classification (MUSIC) algorithm based on eigenanalysis techniques.
Despite this type of sound locators provide high-resolution results, typically consisting of sharp peaks,
they also present limitations under certain acoustic conditions such as reverberations, which limits
their adoption for speech-source location applications.

The authors in [67] evaluated the potential use of an acoustic sensor composed of a microphone
array and an FPGA as part of a runway incursion avoidance system. The HRSE Capon beamformer,
also known as MVSE, is preferred instead of the mostly-adopted Delay-and-Sum beamformer to obtain
a higher resolution as result due to dynamically adapting the weights of the Capon beamformer to best
fit the acoustic environment. The FPGA-based system samples, filters and transmits the data acquired
by the microphone array composed of 105 MEMS microphones to a computer, where the beamforming
operations and the additional tracking operations are performed.

Combinations of sound localization techniques are also possible when targeting distributed
networks. The authors in [81–83] propose a distributed network of FPGA-based microphone array
nodes for sound source localization and separation. The architecture includes a voice activity detector
(VAD), the MUSIC algorithm for the sound-source location and the Delay-and-Sum beamforming
technique for the sound sources separations at the network level. Each node is composed of
a 16-element microphone array and a SoC FPGA, which uses the hard-core processor for the network
communication. Moreover, the node’s power consumption is reduced due to the VAD, which wakes
up the system only when human voice is detected.

Table 4. Summary of FPGA-based microphone arrays related work using HRSE-based sound locators.

Reference Application Year Type of MIC Model of MIC MICs Per Array FPGA Source Location
Technique

[81–83]
Sound-Source

Localization and
Separation

2010 Analog ECM Sony ECM-C10 16 Xilinx Virtex-4 FX
(SZ410 Suzaku board)

MUSIC and
Delay-and-Sum

[67] Detection and
Tracking of Aircrafts 2010 Digital MEMS Not Specified 105 Unspecified FPGA Capon

4.3. FPGA-Based Acoustic Imaging

Acoustic cameras are devices able to visually represent the sound waves due to the combination
of multiple acquisition channels and beamforming techniques. The high computational needs of
acoustic cameras, where the multiple incoming audio signals from the microphone array are processed
for a high number of beamed directions need an independent computation, making FPGAs the most
suitable technology to build real-time acoustic imaging systems. The implementation of FPGA-based
acoustic cameras have only be possible in recent years due to the increment of the computational
power of current FPGAs.

A relatively high-resolution FPGA-based acoustic camera is proposed in [84], where all the
operations needed to generate acoustic heatmaps are embedded in a Xilinx Spartan 3E FPGA.
Despite their architecture achieves up to 10 frames-per-second (FPS) for acoustic image resolutions
of 320 × 240 pixels, their architecture includes no filter beyond the inner filtering during the ADC
conversion of the incoming data from their analogue ECMs. Furthermore, the acoustic images include
ultrasound acoustic information since the frequency response reaches up to 42 kHz due to a missed
high-pass filtering stage.

Another example is presented in [85], where the authors use an FPGA to implement a real-time
acoustic camera. The authors justify the use of digital MEMS microphones in order to eliminate the
analogue front-end and the use of ADCs. Moreover, their architecture uses a customized filter together
with Delay-and-Sum beamforming operations in the FPGA. Nevertheless, the authors do not provide
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further information about the power consumption, the timing or FPS neither the output resolution,
which is assumed to be 128 × 96 as is mentioned in [86].

The performance achieved with FPGA-based acoustic imaging systems has resulted in commercial
products, as detailed in [87]. The authors describe a beamforming-based device (SM Instruments’
Model SeeSV-S200 and SeeSV-S205) to detect squeak and rattle sources. The proposed devices are
mainly composed of digital MEMS microphones arrays and an FPGA. Moreover, the authors affirm
that, due to offering a good performance in high frequency range, beamforming techniques perform
well detecting squeak and rattle noise since this kind of noise mainly consists of high frequency
components. The FPGA implements the beamforming stage, supporting up to 96 microphones and
generating sound representations up to 25 FPS with an unspecified resolution.

Digital MEMS microphones are combined with FPGAs for robot-based applications in [88].
The authors firstly propose an automated microphone array shape calibration in order to accurately
estimate the array elements facing the noisy and reverberant environments of the real-world robotic
operations. Such calibration is based on TDOA of moving noise sources. Despite up to 128 digital MEMS
microphones can be managed due to the high I/O available in the chosen FPGA, only 44 microphones
are used for their calibration example. The authors extend their audio acquisition system to perform
acoustic imaging by performing a generalized inverse beamforming [89] on a standard laptop. Their
system reaches up to 60 FPS with an unspecified resolution, thanks to the multi-thread computation of
the Fast-Fourier Transforms (FFTs) required for the beamforming operations.

Instead of beamforming in the frequency domain, the authors in [90] present a time-domain
Linearly Constrained Minimum Variance (LCMV) beamformer [91] embedded on an FPGA. The aim of
the system is to visually track auto vehicles and to characterize the acoustic environment in real-time.
The microphone array is composed of 80 MEMS microphones, whose positions are determined by
a multi-objective genetic algorithm [92]. The filter’s coefficients required for their beamformer are
generated and stored in the host-PC and loaded to the FPGA when needed. The FPGA is in charge
of the filtering and the Filter-and-Sum beamforming operations. It is interesting to notice that the
authors decided to use a HLS tool called Xilinx Vivado HLS [40] as part of the tool flow to implement
the FPGA design.

A heterogeneous system is proposed in [93]. This system combines an FPGA, an embedded
hard-processor, a Graphics Processing Unit (GPU) and a computer desktop to generate acoustic images
using a planar MEMS microphone array composed of 64 digital MEMS microphones. Their modular
approach allows to distribute the computational operations between the different devices by using
LabVIEW from National Instruments [94]. In the full embedded mode, the Xilinx Zynq 7010 performs
the signal demodulation and filtering on the FPGA part while computing the beamforming operations
on the embedded hard-processor. This acoustic imaging system is used to estimate the real position of
the fan inside a fan matrix [95] and to create virtual microphone arrays for higher resolution acoustic
images in [96].

FPGAs can be also combined with desktop PCs to perform 3D impulsive sound-source localization
method, as in [97,98]. The proposed system computes the Delay-and-Sum beamforming operation
on the PC while the FPGA filters the acquired audio signals and displays through VGA the acoustic
heatmap generated on the PC.

Table 5 summarizes the most relevant features of the FPGA-based acoustic cameras. Parameters
like the FPS or the acoustic image resolution, which determine the number of beamed directions,
reflect the performance and the image quality of the FPGA-based architectures respectively. Most of
the architectures summarized in Table 5 do not only use an FPGA for the acoustic imaging operations.
They usually combine FPGAs with other hardware accelerators like GPUs [93] or with multi-core
processors [98] to compute the beamforming operations, the filter’s coefficients or to generate the
visualization. Nevertheless, there is not a clear answer why recent FPGA-based acoustic cameras are
not fully embedded, as in [84].



Computers 2018, 7, 41 15 of 29

Table 5. Summary of FPGA-based microphone arrays related work targeting acoustic imaging applications.

Reference Application Year Type of MIC Model of MIC MICs Per Array Device Beamforming Algorithm Resolution Real-Time Power

[84] Acoustic Imaging 2010 Analog ECM Ekulit EMY-63M/P 32 Xilinx Spartan-3E XC3S500E Time-Domain
Delay-and-Sum 320 × 240 10 FPS Not Specified

[88] Robotic
Applications 2012 Digital MEMS Not Specified 44 Xilinx Spartan-6 LX45 Frequency-Domain

Generalized Inverse Not Specified 60 FPS Not Specified

[85] Acoustic Imaging 2014 Digital MEMS Not Specified 32 Xilinx Spartan-6 XC6SLX16 Time-Domain
Delay-and-Sum 128 × 96 Not Specified Not Specified

[87] Detection squeak
and rattle sources 2014 Digital MEMS Analog Devices

ADMP 441 30 or 96 National Instruments sbRIO or
FlexRIO (Xilinx Zynq 7020)

Time-Domain Unspecified
Beamforming Not Specified 25 FPS Not Specified

[90] Acoustic Imaging 2015 Analog MEMS InvenSense ICS
40720 80 Xilinx Virtex-7 VC707 Linearly Constrained

Minimum Variance 61 × 61 31 FPS 75 W

[93,95,96] Acoustic Imaging 2016 Digital MEMS ST Microlectronics
MP34DT01 64 National Instruments myRIO

(Xilinx Zynq 7010)
Frequency-Domain

Wideband 40 × 40
33.4 ms to
257.3 ms Not Specified

[97,98] Acoustic Imaging 2017 Analog MEMS ST Microlectronics
MP33AB01 25 Xilinx Artix-7 XC7A100T Time-Domain

Delay-and-Sum Not Specified Not Specified Not Specified

[99] Acoustic Imaging 2018 Digital MEMS Knowles Acoustics
SPH0641LU4H 16 Xilinx Zynq 7020 Time-Domain

Delay-and-Sum 160 × 120 up to 640 × 480 32.5 FPS Not Specified
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5. FPGA-Based Architectures for Acoustic Beamforming

Applications related to sound source location or acoustic imaging are constrained and
high-performance demanding. Such applications are capable to fully exploit many of the FPGA’s
features. An analysis of the existing FPGA-based architectures not only provides an idea about the
most demanding features but also provides an inspiration on how FPGAs can be further exploited
to satisfy future sound-related applications. Here, a detailed overview of the most performance
demanding FPGA-based architectures which integrate acoustic beamforming in the embedded tasks
is presented.

5.1. FPGA-Based Audio Signal Demodulators for Acoustic Beamforming

The architectures summarized in Tables 1–5 exemplify how FPGAs can perform many different
operations required for sound-related applications using microphone arrays. These tasks change based
on the number of microphones of the array, the type of microphone, the beamforming technique and
the application. For instance, many architectures present similar audio signal demodulation strategies
due to the selection of analog or digital microphones to compose their sensor array. The demodulation
of the acquired acoustic signal is one type of operation where FPGAs have been replacing DSPs for
signal processing applications in the recent past. The acquired data from the microphones demands
certain signal processing operations to retrieve the original audio signal, which are ideally embedded
on FPGAs. Figure 6 depicts the operations performed on the FPGAs when using analog microphones.
Such type of microphones requires a signal conditioning circuitry and ADCs before interfacing the
FPGA. Unlike digital microphones, the input data is already audio signal and does not need any
demodulation. This fact facilitates the embedding of the beamforming operations since FPGA’s
resources are not consumed for implementing these demodulation operations. Filtering is required in
order to remove noise from the audio signal. One may notice how the implementation of the filtering
is introduced after the beamforming operation in order to reduce the noise and the signals at undesired
frequencies. Due to the relatively low resource consumption of Cascaded Integrator-Comb (CIC)
filters [100] and serial FIR filters, they are both embedded together with the beamformer. Thus, the
architectures (a), (b) and (c) in Figure 6, correspond to the designs presented in [65,84,90] respectively,
are able to fully embed the filtering and the beamforming operations on the FPGA. For instance,
the filter operations in [65] are done in a two-stage filtering process composed of one CIC and one
low-pass FIR filter. One of the advantages of filtering after the Delay-and-Sum beamforming algorithm
is the reduction of the consumed area. The overall number of filters is no longer associated to the
number of microphones of the array, because the incoming audio signals are delayed and summed
before the filtering operations. As a consequence, the area consumption is significantly reduced.
The available resources of the target FPGA and the unnecessary audio demodulation thanks to using
analog microphones determine the embedding of the operations further than the type of application.
An exception is the architecture (d) in Figure 6, presented in [98], where the authors prefer to compute
the beamforming operations in a PC.

5.2. Partially Embedded FPGA-Based Acoustic Beamformers

The PDM demodulation starts with a PDM to PCM conversion by using a CIC filter (also known
as SINC filters) [100] at the first stage of decimation to reduce the sampling frequency. This component
is followed by a couple of half-band low-pass decimation filters and a low-pass FIR filter to further
reduce the sampling frequency and to remove the high-frequency noise introduced by the sigma-delta
converter which is integrated in the digital MEMS microphones. The described PDM demodulation is
applied in [66,88] as shown in architectures (a) and (b) in Figure 7 respectively.
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Figure 6. FPGA-Based architectures for analog microphone arrays. The framed operations are
performed on the FPGA. The architectures depicted in (a–d) are proposed in [65,84,90,98] respectively.
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Figure 7. FPGA-Based architectures for acoustic beamforming in time domain using digital
MEMS microphones. The framed operations are performed on the FPGA. The architectures depicted in
(a–d) are proposed in [66,68,73,88] respectively.

The cost of embedding the PDM demodulation on the FPGA is directly determined by the number
of microphones in the array since the PDM demodulation proposed in [100] demands several cascaded
filters per digital MEMS microphone. Optionally, the number of cascaded filters can be reduced when
the input signals are Time-Division Multiplexed (TDM). The cost, however, are additional clock cycles
to reset the filters, to operate at a different clock domain or to use extra internal memory to preserve
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the filter’s intermediate operations per input signal. The architectures (c) and (d), proposed in [68,73]
respectively, present simplified demodulations where the cascaded half-band filters are replaced by
a higher-order low-pass FIR filter or simply removed. For instance, the architecture in [68] drastically
reduces the number of filters by removing the half-band low-pass filters and reducing the number of
low-pass FIR filters to correspond to the number of subarrays. Although the resource consumption
is significantly reduced thanks to simplifying the PDM demodulation, the beamforming operations
are, in contrast, not embedded on the FPGA. This fact is independent of the time or frequency
domain of the beamforming technique, as shown in Figure 8 where several architectures performing
beamforming techniques in the frequency domain are depicted. Furthermore, the architectures (a) and
(b) in Figure 8, corresponding to the architectures presented in [67,93] respectively, do not even embed
the FFT operations due to their high resource consumption, even considering that FPGAs support
high-performance FFT implementations [101].

HW/SW 

Demodulation + Frequency Domain Beamforming 

Digital MEMS 

Microphones

Sampling 

and 

Transmission

PDM 

Demux
FFT

Signal Arrangement Frequency 

Domain

Capon

Beamformer

hafizovic2010design

Digital MEMS 

Microphones

Low-Pass 

Decimator 

FIR FIlter

PDM 

Demux

Beamformer

Frequency Domain 

Wideband 

Beamforming

Noise Reduction

Izquierdo2016design, 

del2017using, 

izquierdo2017implementation
FFT

Frequency 

Domain

Display

Visualization

Figure 8. FPGA-Based architectures for acoustic beamforming in frequency domain using digital
MEMS microphones. The framed operations are performed on the FPGA. The architectures depicted in
(a) and (b) are proposed in [67,93] respectively.

5.3. Embedded FPGA-Based Acoustic Beamformers

Fully-embedded architectures are, unexpectedly, rare. Figure 9 depicts a few examples of FPGA-
based architectures where the PDM demodulation and the beamforming operations are embedded.
The available resources and the achievable performance that current FPGAs provide, facilitate the
signal processing operations demanded by the PDM demodulation and the beamforming techniques.
The authors in [69] propose the architecture (a) depicted in Figure 9, which fully embeds the PDM
demodulation detailed in [30] together with a Delay-and-Sum beamformer. The sound-source
localization is performed through the RMS calculation. The architecture (b) depicted in Figure 9
includes a novel PDM demodulation based on Cascaded Recursive-Running Sum (CRRS) filters to
build their acoustic camera in [85]. Different authors in [34,72] use the architecture (c) depicted in
Figure 9. Instead of implementing individual PDM demodulators for each microphone, the authors
propose the execution of the Delay-and-Sum beamforming algorithm over the PDM signals. The output
of the Delay-and-Sum, which is no longer a 1-bit PDM signal, is filtered by windowing and processed
at the frequency domain. This strategy has the potential benefit of saving area and power consumption
due to the drastic reduction of the number of filters needed as shown in [79]. The architecture (e)
in Figure 9 also performs the Delay-and-Sum beamforming algorithm over the PDM signals but
does not calculate the SRP in the frequency domain. Similarly, the architecture (d) in Figure 9 also
calculates the beamforming algorithm and the SRP in the time domain. The architecture (d) depicted
in Figure 9 is a generalization of the different versions of a Filter-Delay-and-Sum beamformer initially
presented in [76], accelerated in [32] and improved in [99]. Nevertheless, they all have in common
a filtering stage composed of several cascaded filters before performing a Delay-and-Sum beamfomer.
While architectures like (e) present a lower resource consumption, they are not as fast as architectures
of the form (d), which due to their specific characteristics, can be further accelerated [32].
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Figure 9. FPGA-Based architectures fully embedding all the operations to satisfy real-time
application demands. The framed operations are performed on the FPGA. The architectures depicted
in (a–d) are proposed in [30,32,34,79,85] respectively.

The type of microphones determines what operations must be embedded on the FPGA.
For instance, analog microphones demand external circuitry for the ADC conversion before interfacing
the FPGA while digital PDM microphones require cascaded filters for the signal demodulation.
Nowadays FPGAs provide enough resources to perform in real time complex beamforming algorithms
involving tens of microphones. Nevertheless, the choice of the architecture is strongly linked to the
characteristics and constraints of the target application.

6. Trends

The high level of parallelism achievable on FPGAs well-suits not only for multiple customized
data path processes, such as audio signal demodulation (Table 1) but also to perform complex audio
beamforming operations (Sections 4.2.2, 4.2.3 and 4.3). The embedding of such computational-demanding
signal processing operations on FPGAs has only been possible in the recent past due to several factors.
Figure 10 depicts the categorization of the presented related work. The evolution of the number of
microphones in the array over the last years reflects some interesting facts of how FPGAs are used.
Notice, however, that some designs like [68] are not included since their FPGA-based system is composed
of multiple FPGAs. In the early 2000s, the first uses of FPGAs to compute microphone arrays signals
were to mainly embed simple applications for sound-source location applying TDOA [55,57]. Such
applications require a minimum number of microphones since the traditional GCC used for TDOA
grows exponential with the number of microphones. FPGAs started to be seriously considered in the
following decade, being involved in a broader type of applications such as in [72,78,84,98]. Several
factors might justify the increasing adoption of the FPGAs’ technology:
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1. Cheaper, smaller and fully integrated microphones, like digital MEMS microphones [102],
facilitate the construction of larger arrays, increasing the computational demands beyond of what
microprocessors or DSPs can deliver.

2. FPGAs have also benefited from the Moore’s law [103], and due to a higher transistor integration
in the same die, FPGAs offer larger reconfigurable resources.

3. Advances in the FPGAs’ design tool chain, like the HLS tools [40,104], have reduced the overall
effort to develop and to accelerate new and existing applications on FPGAs.

Cheaper and smaller microphones facilitate the construction of larger arrays. The MEMS technology
to build microphones has been available since the early 2000s [22], but only introduced in commercial
devices in 2006 after Apple introduced a 3-microphone array in their iPhone 6. The replacement of ECMs
by MEMS microphones to build microphone arrays only started around 2010, when Knowles Acoustics
lost the monopoly of the MEMS microphones commercialization [105]. As a result, several acoustic
applications, mostly related to sound source location, have been implemented on FPGA (Figure 10).

In the early 2000s, FPGAs were only considered for audio signal demodulation of the incoming
data stream from microphone arrays composed of tens to hundreds of microphones [3] or as sound
source locators for 2-microphone arrays [55]. Over the last years, applications demanding a relatively
large number of microphones have also used FPGAs to embed the most computational demanding
operations. The trend is to embed more complex applications on the FPGA. Despite some FPGA-based
architectures still allocate on the FPGA’s resources the audio demodulation operations, over the last
years FPGAs are no longer used exclusively for audio demodulation but also to embed complex
applications. Current FPGAs provide a larger amount of resources, including DSPs and internal blocks
of memory (BRAM), allowing the implementation of more complex architectures targeting real-time
signal processing applications. For instance, SoC FPGAs such as Xilinx Virtex-II FPGAs used in [55]
have been replaced by larger SoC FPGA such as Xilinx Zynq SoC FPGA-based board for acoustic
imaging, as in [93].
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Figure 10. Categorization of the FPGA-based microphone arrays publications.

New HLS tools such as Xilinx Vivado HLS [40], LabVIEW from National Instruments [94],
Xilinx System Generator [104] or HDL Coder for Matlab/Simulink [106], reduce significantly the
overall development cost. For instance, Xilinx System Generator [104] incorporates several libraries in
Matlab/Simulink tool which allows a high-level prototyping of FPGA designs. HLS tools have been
helpful to develop complex designs, as in [66,69,90,93]. The reduction of the overall effort to develop
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complex designs on FPGAs is one of the advantages of such tools. Moreover, the distribution of the
computational tasks in heterogeneous systems, such as SoC FPGAs or including GPUs, as in [93],
is simplified due to design at a higher level.

Although the spatial resolution increases with a large number of microphones per array [107],
the additional benefit of incrementing the number of microphones decreases when considering the
increment of the computational demand. It comes from the fact that the added value of increasing
the number of microphones starts to decrease after certain amount. For instance, the number of
microphones per FPGA not only did not increase over the last two years, but even decreased.
Moreover, the integration of a large number of microphones in a planar array becomes extremely
challenging without increasing the microphone spacing, leading to microphone arrays of several
meters long [87].

The decrement of the number of microphones per array also occurs for applications related to
acoustic imaging. Acoustic cameras are extremely performance demanding, specially when targeting
real-time. The fact is that the computation in parallel of tens to hundreds of incoming signals from
microphones can simply consume the FPGA’s available resources. Moreover, acoustic cameras need
to steer to hundreds of thousands orientations in order to provide acceptable image resolutions [85].
Therefore, the trend of FPGA-based acoustic cameras is to converge to a balance between the FPGA’s
resource consumption, the target performance and the desired acoustic image resolution.

A trend of FPGA-based architectures for microphone arrays is to embed more complex acoustic
applications while reducing the number of microphones of the array. FPGAs are no longer only
considered for audio signal demodulation but also as a platform on which computational demanding
acoustic applications such as acoustic imaging applications can be embedded. Constraints, such as
a real-time response or power efficiency, become more relevant when targeting new acoustic
applications like acoustic imaging applications or WSNs-based applications. Modern FPGAs not
only provide a higher number of resources where to embed complex applications, but also integrate
CPUs and even GPUs in the same die [108] or become extremely power efficient when considering the
Flash-based FPGAs [109].

The FPGA technology, however, is far of being exploited. Nowadays FPGAs present interesting
features which have not been already explored such as dynamic partial reconfiguration. Therefore, it is
expected that the incoming FPGA-based acoustic applications not only fully embed their operations
on the FPGAs but also exploit some of the unique features that this technology offers.

7. Challenges and Research Opportunities

The current state-of-the-art of FPGA-based acoustic applications have been summarized in Tables 1–5.
Although the characteristics of these FPGA-based designs have been discussed in the previous sections,
important features, such as achievable performance or the power efficiency have not been analyzed. Their
relevance for the nowadays acoustic applications is, however, critical when choosing technology.

Performance

FPGA’s technology offers unique features which could satisfy the most performance demanding
acoustic applications. The low latency usually required by acoustic applications such as speech
enhancement is achievable on FPGAs when fully embedding the signal processing operations. Most of
the current FPGA-based designs still perform the computational-hungry operations on general purpose
processors, demanding high-bandwidth I/O connection in order to satisfy the low latency required
for real-time applications. Besides such constraints, only a few designs fully embed all computations
on the FPGA [34,65,69,72,84]. Furthermore, several architectures, such as those found in [62,73,74,93],
have already considered SoC FPGAs to distribute the tasks between the different technologies. These
heterogeneous platforms present new opportunities to combine acoustic applications with other types
of applications. For instance, the use of different types of sensors (e.g. Infrared cameras) can be
combined with acoustic microphone arrays for smart surveillance. Acoustic cameras already combine
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traditional RGB cameras by overlapping images. Many applications could exploit such combination
by using SoC FPGAs to process in real-time the sensing information from each device.

Dynamism

Despite real-life environments present dynamic acoustic responses, most of the FPGA-based
architectures cannot adapt their response to different acoustic contexts. Despite certain solutions
like [66,74,77] consider adaptive beamforming techniques, the overall response of the system varies in
a short range. Many applications need to change their behaviors based on the acoustic context [110],
such as applications targeting specific sound sources [111], where a simple adaptation of the filters
is not enough and a different feature extraction is needed. Adjustments on the number of active
microphones, the acquisition time or the target sound source demand the implementation of complex
context-switch controllers. FPGAs provide a unique feature which allows to partially reconfigure
parts of the embedded functionality in runtime. FPGA’s dynamic partial reconfiguration [112,113]
provides the context-switch capability which is not present in other technologies. An example of the
potential benefit of using partial reconfiguration is shown in [76], where the proposed architecture
uses a low-level reconfiguration to dynamically adjust the angular resolution of their sound locator.
For instance, the authors in [114] present a SoC FPGA implementation of a Frost’s beamformer. Despite
the authors do not target microphone arrays, the architecture seems to be compatible and the principles
of their approach are applicable for different types of sensor arrays. Their architecture presents two
interesting approaches. Firstly, the distribution of the computations between the ARM Cortex-A9
hard-core Processor System (PS) and the Programmable Logic (PL), and secondly, the use of partial
reconfiguration to adjust the Frost’s beamformer.

Power Efficiency

The dynamism required by advanced acoustic applications also leads to power efficiency. FPGAs
are well-known by their power efficiency, offering a higher Operations-per-Watt than general purpose
processors [115] and different hardware accelerators, such as GPUs [116,117]. WSN-related applications
are very sensitive to power efficiency since the network is often built on battery-based nodes. The use
of microphone arrays as sensing nodes of WSN applications demand power efficient solutions.
FPGA-based solutions have already shown how the power efficiency of microphone arrays can
be increased. For instance, the power consumption per microphone has decreased from 400 mW using
DSP in [2] to only 77 mW per microphone in [55], and more recently, to only 27.14 mW for the overall
system in [72].

One can conclude that FPGA’s characteristics have not been fully exploited and many
acoustic-related applications can benefit from this technology. Recent heterogeneous FPGA SoCs
provide enough resources to not only embed acoustic applications but also extend functionalities by
combining with different types of applications while satisfying the performance and the power
efficiency demands. Acoustic applications involving machine learning, such as acoustic scene
recognition [118,119] or learning situations in home environments [120], can directly benefit from
FPGA’s features. Further than FPGA SoCs, FPGAs standalone offer a unique feature, such as partial
reconfiguration, which can certainly provide the flexibility that many multi-modal applications such
as human-robot iteration [121] or multimodal acoustic imaging demand [122]. FPGAs still have much
to offer to acoustic applications using microphone arrays.

8. Conclusions

In this paper, we have not only shown how FPGAs are used for many different acoustic
applications, with a clear trend in the complexity of the embedded operations, but also the pending
challenges that FPGA-based designs must face in the incoming years. Nevertheless, FPGAs have
demonstrated to be an ideal platform where to embed the most demanding acoustic applications.
Despite the variety of demands that multiple embedded algorithms used for similar acoustic
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applications present, FPGAs have proven to be flexible platforms able to satisfy performance and power
demands. Moreover, the detailed FPGA-based architectures have shown that acoustic beamforming is
no longer used only for sound localization but it has been extended for acoustic imaging applications.
Dynamism, performance and power efficiency are, however, still challenges to be faced.
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