
computers

Article

Parallel Computation of Rough Set Approximations
in Information Systems with Missing Decision Data

Thinh Cao 1,*, Koichi Yamada 1, Muneyuki Unehara 1, Izumi Suzuki 1 and Do Van Nguyen 2

1 Information Science and Control Engineering, Nagaoka University of Technology, Nagaoka 9402137, Japan;
yamada@kjs.nagaokaut.ac.jp (K.Y.); unehara@kjs.nagaokaut.ac.jp (M.U.); suzuki@kjs.nagaokaut.ac.jp (I.S.)

2 Human Machine Interaction Laboratory, UET, Vietnam National University, Hanoi 10000, Vietnam;
ngdovan@gmail.com

* Correspondence: caothinh@stn.nagaokaut.ac.jp; Tel.: +81-80-4148-0209

Received: 21 July 2018; Accepted: 16 August 2018; Published: 20 August 2018
����������
�������

Abstract: The paper discusses the use of parallel computation to obtain rough set approximations
from large-scale information systems where missing data exist in both condition and decision
attributes. To date, many studies have focused on missing condition data, but very few have
accounted for missing decision data, especially in enlarging datasets. One of the approaches for
dealing with missing data in condition attributes is named twofold rough approximations. The paper
aims to extend the approach to deal with missing data in the decision attribute. In addition,
computing twofold rough approximations is very intensive, thus the approach is not suitable when
input datasets are large. We propose parallel algorithms to compute twofold rough approximations
in large-scale datasets. Our method is based on MapReduce, a distributed programming model for
processing large-scale data. We introduce the original sequential algorithm first and then the parallel
version is introduced. Comparison between the two approaches through experiments shows that our
proposed parallel algorithms are suitable for and perform efficiently on large-scale datasets that have
missing data in condition and decision attributes.

Keywords: rough set; rough approximation; mapreduce; twofold rough approximation; missing
decision data; missing condition data

1. Introduction

Rough set theory (RST), first introduced by Pawlak [1,2], is a powerful mathematical tool to
deal with inconsistency in datasets. RST has become one of the crucial and effective methods for
feature selection [3–6], decision-making problems [7–11], pattern recognition [12,13], data mining and
knowledge acquisition [14–21].

Data analysis in RST starts from a data table named information system. Each row of the table
induces a decision rule, which specifies a decision (action, result, outcome, etc.) if some conditions are
satisfied. The original RST presupposes that all the condition and decision data in the information
system are complete. However, incomplete (i.e., missing) data is often seen in real applications due to
many reasons. It occurs not only in conditions but also in the decision attribute. For example, if an
information system contains data on symptoms and diseases of patients in a hospital, some decision
data may be missing when the patients stop seeking treatment, e.g., for financial reasons. Furthermore,
decision data may be blank owing to an inadvertent erasure or for reasons of privacy. A common
approach might be to remove such objects with missing decision data. However, in our previous
work [22,23], we gave evidence that removing such objects may lead to information loss. For example,
the removal may change the original data distribution, break relations between condition attributes,
or the induced knowledge after the removal would be different from the knowledge in the original

Computers 2018, 7, 44; doi:10.3390/computers7030044 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-9992-2974
http://www.mdpi.com/2073-431X/7/3/44?type=check_update&version=1
http://dx.doi.org/10.3390/computers7030044
http://www.mdpi.com/journal/computers

Computers 2018, 7, 44 2 of 21

information system where those objects are retained. Clearly, such objects with missing decision data
should not be removed or should be handled in an appropriate way.

Recently, with the emerging era of big data, new RST-based approaches have been studied
to deal with large-scale datasets [5,18,24–35]. This study is inspired by the introduction of
MapReduce framework [36] for processing intensive datasets, and the fact that most of algorithms
on small-scale datasets did not perform well on large-scale datasets. As we observed, all of the
above MapReduce-based studies aim for large-scale information systems with no missing data,
or with missing data only in condition attributes. To the best of our knowledge, there was no
study on large-scale information systems in which some of the data, both in conditions and the
decision, are missing. Inspired from this shortage, we propose a parallel method to compute rough
approximations in such massive, incomplete condition and decision information systems.

Our proposed method is motivated from the method twofold rough approximations, which was
introduced by Sakai et al. [37]. The method of twofold rough approximations was originally designed
for information systems which contain missing data only in condition attributes. In this paper,
we extend the method for information systems which contain missing data in both conditions
and decision attributes. In addition, using sequential algorithms to computing twofold rough
approximations in such information systems is time consuming, and even impossible. Hence,
we propose parallel algorithms to accelerate the computation in such massive, incomplete condition
and decision information systems.

The rest of the paper is organized as follows. Section 2 reviews some related studies in the
literature. Section 3 summarizes basic concepts of RST, MapReduce model and the usage of MapReduce
to accelerate rough set processing. Section 4 introduces the method of twofold rough approximations
and how to apply it to information systems with missing condition and decision data. Section 5
introduces the sequential algorithm and MapReduce-based parallel algorithms to compute twofold
rough approximations in large-scale information systems. Evaluation tests are presented at the end of
this section. The paper ends with conclusions in Section 6.

2. Literature Review

On small-scale datasets, problems on missing condition values have been studied extensively and
have achieved positive results [38–61]. Some authors attempted to transform an incomplete information
system to a complete information system by: removing objects with missing condition values;
treating them as special values; replacing them with average values, with most common values, or with
all possible values [42,44]. Others extended the concept of classical equivalence relation by relaxing
the requirements of reflexivity, symmetry, and transitivity. This created new binary relations such
as tolerance relation [50,51], valued tolerance relation [48], maximal consistent block [52], similarity
relation [47], difference relation [60], limited tolerance relation [59], characteristic relation [43,46], etc.
By considering the weaknesses of the tolerance and similarity relations, Sakai et al. [37] introduced the
method of possible worlds and twofold rough approximations. The latter proved its accuracy since it
gave the same rough approximations as the former while more computational efficiency. Not only
in conditions, missing data can appear in the decision attribute. To deal with the issue of missing
decision data, Medhat [62] suggested a method to restore missing decision data by measuring the
similarity distance between objects with and without missing decision data. However, his method
requires all the condition data to be complete, which is also rare in practice. A common approach
to deal with such objects with missing decision data is to remove them. In our previous studies,
however, we proved that removing such objects may lead to information loss [22,23]. Hence, instead of
removing such objects, we proposed a parameter-based method to induce knowledge from such
information system. Our proposed method offered a more generalized approach to handle missing
decision data without having to remove them, thus minimizing the threat of information loss.

Recently, with the emerging era of big data, new RST-based approaches have been studied to
deal with large-scale datasets [5,18,24–35]. Basically, two approaches are employed to speed up the

Computers 2018, 7, 44 3 of 21

process of knowledge acquisition in big datasets. Incremental approach is an effective mechanism
to discover knowledge from a gradually increasing dataset [5,18,24,31–35]. It uses different learning
techniques to avoid re-calculating approximation sets [18,24,31,32,34], reducts, or rules [5,33,35] from
scratch, thus reducing the computation time.

Parallel programming [25–30,63] is another approach to accelerate the process of knowledge
acquisition. Most of the methods in this approach are based on MapReduce. MapReduce, introduced
by Google (CA, US) [36], is a software framework to support processing large data on clusters of
computers. MapReduce framework has proved its efficiency since it has been widely used in data
mining [64,65], machine learning [66–69] and web indexing [70]. Based on MapReduce, Zhang [25]
proposed a parallel method to effectively compute set approximations. He also implemented
algorithms on different MapReduce runtime systems such as Hadoop, Phoenix, and Twister to
compare the knowledge extracted from these systems [26]. Li et al. [71] was one of the earliest authors
using MapReduce for attribute reduction. The proposed approach divided the original datasets into
many small data blocks, and used reduction algorithms for each block. Then, the dependency of
each reduction on testing data was computed in order to select the best reduction. Qian et al. [30]
proposed a hierarchical approach for attribute reduction. He designed the parallel computations of
equivalence classes and attribute significance, as a result, the reduction efficiency was significantly
improved. In [29], Qian et al. proposed three parallelization strategies for attribute reduction,
namely “Task-Parallelism”, “Data-Parallelism”, and “Data+Task-Parallelism”. El-Alfy et al. [63]
introduced a parallel genetic algorithm to approximate the minimum reduct and applied it to intrusion
detection in computer networks. Li and Chen [27,28] computed set approximations and reducts in
parallel using dominance-based neighborhood rough sets, which considers the orders of numerical
and categorical attribute values. Some authors studied rough sets in large-scale datasets with missing
condition data [72,73]. Zhang [72] designed a parallel matrix-based method to compute rough
approximations in large-scale information systems with some condition values being missing. Based on
complete tolerance class, Yuan [73] proposed an algorithm to fill the missing condition values of energy
big data.

3. Basic Concepts

In this section, we review basic concepts of rough sets [1,2] and MapReduce technique [36].

3.1. Rough Set

An information system (IS) in the rough set study is formally described as ξ = (U, AT ∪ {d}, V, f),
where U is a non-empty set of objects, AT is a non-empty set of condition attributes, d 6∈ AT denotes a
decision attribute, f is an information function f : U × AT ∪ {d} → V, V = ∪Vt for any t ∈ AT ∪ {d}.
f (x, a) and f (x, d), x ∈ U, a ∈ AT are represented by fa(x) and fd(x), respectively. Va and Vd denote
the domain of fa and fd, respectively. Any domain may contain special symbols “∗” to indicate a
missing value, i.e., the value of an object is unknown. Any value different from “∗” will be called
regular [52]. We use complete information system (CIS) to denote an IS with no missing values,
incomplete information system (IIS) to denote an IS where missing values are just only in the condition
attributes, and incomplete decision system (IDS) to denote an IS where missing values are both in
condition and decision attributes.

The RST is formed on the basic of equivalence relation. Two objects are equivalent on A ⊆ AT
if and only if their corresponding values are equal on every attribute in A, denoted by EQR(A).
Formally, EQR(A) = {(x, y) ∈ U × U|∀a ∈ A, fa(x) = fa(y) 6= ∗}. The equivalence relation is
reflexive, symmetric, and transitive. An equivalence relation divides U into a partition, given by
U/EQR(A) = {EA(x)|x ∈ U}. U/EQR(A) is normally denoted by U/A for simplicity. Let EA(x) =
{y ∈ U|(x, y) ∈ EQR(A)} be a set of objects equivalent to x w.r.t. A, and be called the equivalence
class of x w.r.t. A.

Computers 2018, 7, 44 4 of 21

Let X ⊆ U be a set of objects with regular decision values, called a target set. The lower
approximation of X w.r.t A is defined by RA(X) = {x ∈ U|EA(x) ⊆ X}. The upper approximation of
X w.r.t A is defined by RA(X) = {x ∈ U|EA(x) ∩ X 6= ∅}. If boundary region of X, i.e., BNDA(X) =

RA(X)− RA(X) is not empty, the pair (RA(X), RA(X)) is called a rough set.

3.2. MapReduce Model

MapReduce is a software framework to implement parallel algorithms [36]. It is designed to
handle large-scale datasets in a distributed environment. In MapReduce model, the computation is
divided into two phases: Map and Reduce. These phases are performed in order, i.e., the Map phase
is executed first and then the Reduce phase is executed. The output of Map phase is used as input
of the Reduce phase. We implement these phases through Map and Reduce functions, respectively.
Each function requires a pair key/value as input and another pair key/value as output. The Map and
Reduce functions are illustrated as follows:

Map :< K1, V1 >−→ [< K2, V2 >],
Reduce :< K2, [V2] >−→ [< K3, V3 >],

where Ki, Vi, i = {1, 2, 3} are user-defined data types and [..] denotes a set of the element in the
square bracket.

Map takes an input pair (< K1, V1 >) and produces a set of intermediate key/value pairs
([< K2, V2 >]). The MapReduce library groups all intermediate values associated with the intermediate
key K2, shuffles, sorts, and sends them to the Reduce function. Reduce accepts an intermediate key
(K2) and a set of values for that key ([V2]). It merges these values together to create a possibly smaller
set of values, and finally produces < K3, V3 > pairs as output.

One of the primary advantages of MapReduce framework is that it splits tasks so that their
execution can be done in parallel. Since these divided tasks are processed in parallel, this allows the
entire task to be executed in less time. In addition, MapReduce is easy to use because it hides many
system-level details from programmers such as parallelization, fault-tolerance, locality optimization,
and load balancing. In practice, to use the MapReduce model, what programmers need to do is to
design proper < key, value > pairs and implement Map/Reduce functions.

3.3. The Usage of MapReduce to Rough Set Processing

It is possible to use MapReduce to speed up Rough set processing. One of the earliest
implementation was done by Zhang [25]. Using MapReduce, he ran several steps in parallel such as
computing equivalence classes, decision classes and associations between equivalence classes and
decision classes. He proved that rough set approximations obtained by the parallel method are the
same as those obtained by the sequential method but the former takes less time than the latter.

Let’s examine how equivalence classes can be computed in parallel. Let ξ = (U, AT ∪ {d}, V, f)
be an CIS, and U/A = {E1

A, E2
A, .., Em

A}. In MapReduce platform, ξ is divided into k sub-CIS, e.g.,
ξ1, ξ2, ..., ξk, where ξ i = (Ui, AT ∪ {d}, V, f), i = {1, 2, .., k} s.t.

⋂
Ui = ∅. In Map step, we partition

each ξ i into equivalence classes, and then these equivalent classes are aggregated in a Reduce step.
Note that there will be k numbers of mappers running in parallel, and each mapper will execute Map
function to process corresponding ξ i:

Maps output:
Map 1: < E11

A , v11 >,< E12
A , v12 >, ..,< E1m

A , v1m >, where U1/A = {E11
A , E12

A , .., E1m
A }.

Map 2: < E21
A , v21 >,< E22

A , v22 >, ..,< E2m
A , v2m >, where U2/A = {E21

A , E22
A , .., E2m

A }.
Map k: < Ek1

A , vk1 >,< Ek2
A , vk2 >, ..,< Ekm

A , vkm >, where Uk/A = {Ek1
A , Ek2

A , .., Ekm
A }.

In the above, Ekm
A represents the mth equivalence class w.r.t. A on the sub-CIS Uk, and vkm

represents a set of objects that belong to Ekm
A .

Reducers output:
Reduce 1: < E1

A, v1 = v11 ∪ v21 ∪ ...∪ vk1 >,

Computers 2018, 7, 44 5 of 21

Reduce 2: < E2
A, v2 = v12 ∪ v22 ∪ ...∪ vk2 >,

Reduce m: < Em
A , vm = v1m ∪ v2m ∪ ...∪ vkm > .

As we observe, computing U/A = {E1
A, E2

A, .., Em
A} in sequence costs O(|U| ∗ |A|) time complexity

while doing the same in parallel costs just O(|U| ∗ |A|/k) time complexity. Clearly, computational
time is reduced using the MapReduce platform. This shows the strength of the MapReduce platform
in increasing performance of Rough set computation.

4. Twofold Rough Approximations for IDS

In this section, we discuss the usage of twofold rough approximations in the case of missing
condition and decision data.

Sakai et al. [37] introduced the method of twofold rough approximations to deal with missing data
in condition attributes. He pointed out that, when an IS contains incomplete information, we can not
derive unique rough approximations but can only derive lower and upper bounds of the actual rough
approximation. He refers to the lower and upper bounds as certain and possible rough approximations,
hence the name twofold rough approximations. The rough approximations obtained from this method
coincide with ones from the method of possible worlds.

The method is based on an idea of considering both aspects (discernibility and indiscernibility) of
every missing value. For example, let us assume an IIS with two objects x, y whose values on a ∈ A are
fa(x) and ∗, respectively. Since the missing value may equal fa(x) (or not), x may be indistinguishable
(or distinguishable) from y on a. Because we do not know the exact value of ∗, we should consider
these both cases. Thus, we should take {x}, {y} and {x, y} into account since they have the possibility
that each of them is the actual equivalence class w.r.t a. The set {{x}, {y}, {x, y}} is called possible
equivalence classes.

The same interpretation can also apply for missing value in the decision. Given object z with
fd(z) = ∗, the above interpretation suggests that fd(z) may be any value in the decision domain.
Since we do not know the exact value of fd(z), we need to consider all the possibilities. In the
following, we describe the usage of twofold rough approximations for IDS.

Let ξ = (U, AT ∪ {d}, V, f) be an IDS. For each a ∈ AT, we can divide the universe U into
two sets Ua=∗ and Ua 6=∗ representing objects whose values on attribute a are missing and regular
respectively. Let Ua 6=∗/a be a partition of Ua 6=∗ by a. We define Cer(U/a), Pos(U/a) as certain and
possible equivalence classes w.r.t a respectively. Formally,

Cer(U/a) = Ua 6=∗/a ∪ {∅},
Pos(U/a) = {e ∪Ua=∗|e ∈ Ua 6=∗/a} ∪ {Ua=∗}.

(1)

Let X be a target set. Unlike the original definition of target set, here we define X is a family of
equivalence classes w.r.t. the decision d included in Ud 6=∗, i.e., X = Ud 6=∗/d = {X1, X2, .., Xm}. X might
be called a family of certain equivalence classes w.r.t. the decision d, denoted as XCer. We also define
XPos as a family of the possible equivalence classes w.r.t. the decision d, each of which is a union of a
certain equivalence class and Ud=∗. Ud=∗ itself is also included in the family. Formally,

XCer ≡ X,

XPos = {e ∪Ud=∗|e ∈ X} ∪ {Ud=∗}.
(2)

Cer(U/A), Pos(U/A) are defined as the family of certain and possible equivalence classes w.r.t.
A ⊆ AT, respectively:

Cer(U/A) = {∩ieaij |eaij ∈ Cer(U/ai), ai ∈ A},

Pos(U/A) = {∩ieaij |eaij ∈ Pos(U/ai), ai ∈ A}.
(3)

Computers 2018, 7, 44 6 of 21

The certain lower and upper approximations of X w.r.t. A:

RCer
A (X) ={∪iei|ei ∈ rCer

A (x), x ∈ XCer},

RCer
A (X) ={∪iei|ei ∈ rCer

A (x), x ∈ XCer},
(4)

where
rCer

A (x) ={e|e ⊆ e′, e′ ⊆ x, e ∈ Cer(U/A), e′ ∈ Pos(U/A)},
rCer

A (x) ={e|e ∈ Cer(U/A), e ∩ x 6= ∅}.
(5)

The possible lower and upper approximations of X w.r.t. A:

RPos
A (X) ={∪iei|ei ∈ rPos

A (x), x ∈ XPos},

RPos
A (X) ={∪iei|ei ∈ rPos

A (x), x ∈ XPos},
(6)

where
rPos

A (x) ={e ∩ x|e′ ⊆ e, e′ ⊆ x, e ∈ Pos(U/A), e′ ∈ Cer(U/A)},
rPos

A (x) ={e|e ∈ Pos(U/A), e ∩ x 6= ∅}.
(7)

Example 1. Given an IDS as in Table 1, where a1, a2 ∈ A are condition attributes, d is the decision attribute.
Let X = Ud 6=∗/d = {{x1, x5, x7}, {x2}, {x3, x6}, {x8}}, and Ud=∗ = {x4}. Then, XCer = X, XPos =

{{x1, x4, x5, x7}, {x2, x4}, {x3, x4, x6}, {x4, x8}, {x4}}. Results are shown in Tables 2–4.

From Table 2: Cer(U/A) = {∅, {x5}, {x1, x4}, {x8}},
Pos(U/A) = {∅, {x2}, {x7}, {x2, x8}, {x3, x6}, {x2, x3, x6}, {x3, x6, x7}, {x2, x5}, {x1, x4, x7}}.

From Table 3: RCer
A (X) = ∅, RCer

A (X) = {{x8}, {x5}, {x1, x4}}.
From Table 4: RPos

A (X) = {{x2}, {x4}, {x5}, {x7}, {x8}, {x3, x6}, {x1, x4, x7}},
RPos

A (X) = {{x2}, {x7}, {x2, x5}, {x2, x8}, {x3, x6}, {x2, x3, x6}, {x3, x6, x7}, {x1, x4, x7}}.

Table 1. An example of IDS.

a1 a2 d

x1 1 2 0

x2 * 1 1

x3 2 * 2

x4 1 2 *

x5 1 1 0

x6 2 * 2

x7 * 2 0

x8 3 1 3

Table 2. Calculate Cer(U/a) and Pos(U/a).

a a1 a2

Ua 6=∗/a {x1, x4, x5}, {x3, x6}, {x8} {x2, x5, x8}, {x1, x4, x7}

Ua=∗ {x2, x7} {x3, x6}

Cer(U/a) {x1, x4, x5}, {x3, x6}, {x8}, ∅ {x2, x5, x8}, {x1, x4, x7}, ∅

Pos(U/a) {x2, x7}, {x1, x2, x4, x5, x7}, {x2, x3, x6, x7}, {x2, x7, x8} {x3, x6}, {x2, x3, x5, x6, x8}, {x1, x3, x4, x6, x7}

Computers 2018, 7, 44 7 of 21

Table 3. Calculate rCer
A (x) and rCer

A (x).

x ∈ XCer rCer
A (x) rCer

A (x)

{x1, x5, x7} ∅ {x5}, {x1, x4}

{x2} ∅ ∅

{x3, x6} ∅ ∅

{x8} ∅ {x8}

Table 4. Calculate rPos
A (x) and rPos

A (x).

x ∈ XPos rPos
A (x) rPos

A (x)

{x1, x4, x5, x7} {x5}, {x7}, {x1, x4, x7} {x7}, {x2, x5}, {x3, x6, x7}, {x1, x4, x7}

{x2, x4} {x2}, {x4} {x2}, {x2, x8}, {x2, x5}, {x2, x3, x6}, {x1, x4, x7}

{x3, x4, x6} {x3, x6}, {x4} {x3, x6}, {x2, x3, x6}, {x3, x6, x7}, {x1, x4, x7}

{x4, x8} {x8}, {x4} {x2, x8}, {x1, x4, x7}

{x4} {x4} {x1, x4, x7}

5. Computing Rough Approximations in IDS

In this section, we give the sequential algorithm and MapReduce-based parallel algorithm to
compute twofold rough approximations in IDS.

5.1. Sequential Algorithm

Algorithm 1 describes the sequential algorithm to compute twofold rough approximations.
The algorithm consists of four steps. For each a ∈ A, we calculate a partition Ua 6=∗/a, then certain and
possible equivalence classes on a, i.e., Cer(U/a) and Pos(U/a) (Step 1). These Cer(U/a) and Pos(U/a)
are then aggregated together to form Cer(U/A) and Pos(U/A) (Step 2). Next, we compute XCer, XPos
where X represents the target set (Step 3). Lastly, we calculate twofold rough approximations (Step 4).

Algorithm 1 Sequential algorithm to calculate twofold rough approximations
Input : ξ = (U, AT ∪ {d}, V, f), A, X

Output : RCer
A (X), RCer

A (X), RPos
A (X), RPos

A (X)

Begin
Step 1:
foreach a ∈ A do

Compute Ua 6=∗/a
Compute Cer(U/a), Pos(U/a)

end
Step 2: Compute Cer(U/A), Pos(U/A)
Step 3: Compute XCer, XPos

Step 4: Compute RCer
A (X), RCer

A (X), RPos
A (X), RPos

A (X)
End

Let us analyze the computational complexity of Algorithm 1. Let n be the number of objects
in U, and m be the number of attributes, i.e., n = |U|, m = |A|. If we assume that the number of
partition equals the number of objects in the worst case, the order of computation of U/a is O(n),
thus Step 1 costs O(n ∗ m). In Step 2, we compute Cer(U/A) and Pos(U/A), which is required to
compute the Cartesian product between Cer(U/a) and Pos(U/a). Since Cer(U/a) or Pos(U/a) costs
O(n), Step 2 costs O(nm) in total. We compute XCer and XPoss in Step 3, whose time complexity is O(n).

Computers 2018, 7, 44 8 of 21

In Step 4, the computation order of RPos
A (X), RCer

A (X) is O(n3) while the one of RPos
A (X), RCer

A (X) is
O(n2). Thus, Step 4 costs O(n3) at worst. In total, the overall complexity of Algorithm 1 is dominated
by Step 2, which is O(nm). This overall complexity is intensive for large datasets where n and m
are large. For a more efficient computation, we introduce an approach to process Step 2 in parallel.
In addition, other computation-intensive steps are also performed in parallel in order to reduce the
whole computation time.

5.2. MapReduce Based Algorithms

The sequential approach may take a lot of time to compute rough approximations, especially
when input data are large. Using MapReduce, we speed up the computation by implementing the
parallel algorithm for all the above steps. The flow of the parallel algorithm is illustrated in Figure 1.

Figure 1. MapReduce-based parallel computation.

We divide into four sub-algorithms: computing equivalence classes (EC), computing possible
and certain equivalence classes (PEC), computing aggregation of possible and certain equivalence
classes (AP), and computing twofold rough approximations (RA). We examine each algorithm in
the following.

5.2.1. Computing Equivalence Classes in Parallel (EC)

Let ξ = (U, AT ∪ {d}, V, f) be an IDS, A ⊆ AT. Let ξ =
⋃k

i=1 ξ i, ξ i = (Ui, AT ∪ {d}, V, f) where
∩Ui = ∅ and U =

⋃k
i=1 Ui. It means the original IDS is divided into k sub-IDS. Assume that domain

of a ∈ A is the same between these IDS, i.e., Vi
a = Va , i ∈ {1, 2, ..k}.

Proposition 1. For ∀a ∈ A, let Xi
a(v) = {xi ∈ Ui| fa(xi) = v, v ∈ Vi

a} and Xa(v) = {x ∈ U| fa(x) =

v, v ∈ Va}. Then, Xa(v) =
⋃

Xi
a(v).

Proof. =⇒ Suppose y ∈ Xa(v) = {x ∈ U| fa(x) = v, v ∈ Va}. Because U =
⋃k

i=1 Ui, ∃Ui s.t.
y ∈ Ui, fa(y) = v, v ∈ Vi

a , i.e., y ∈ Xi
a(v).⇐= Suppose y ∈ ⋃

Xi
a(v), i.e., ∃Xi

a(v) such that y ∈ {xi ∈
Ui| fa(xi) = v, v ∈ Vi

a}. Since Ui ⊆ U and Vi
a = Va, y ∈ {xi ∈ U| fa(xi) = v, v ∈ Va} = Xa(v)

Example 2. Let us divide the data in Table 1 into two sub-IDS ξ1, ξ2 (Table 5). Suppose Va1 = V1
a1
= V2

a1
=

{1, 2, 3}.
From ξ1 : X1

a1
(1) = {x1, x4}, X1

a1
(2) = {x3}, X1

a1
(3) = ∅, X1

a1
(∗) = {x2},

From ξ2 : X2
a1
(1) = {x5}, X2

a1
(2) = {x6}, X2

a1
(3) = {x8}, X2

a1
(∗) = {x7},

From Table 1: Xa1(1) = {x1, x4, x5}, Xa1(2) = {x3, x6}, Xa1(3) = {x8}, Xa1(∗) = {x2, x7}.

Computers 2018, 7, 44 9 of 21

We have Xa1(1) = X1
a1
(1) ∪ X2

a1
(1), Xa1(2) = X1

a1
(2) ∪ X2

a1
(2), Xa1(3) = X1

a1
(3) ∪ X2

a1
(3), Xa1(∗) =

X1
a1
(∗) ∪ X2

a1
(∗).

Table 5. Sub-IDS.

U1 a1 a2 d U2 a1 a2 d

x1 1 2 0 x5 1 1 0

x2 * 1 1 x6 2 * 2

x3 2 * 2 x7 * 2 1

x4 1 2 * x8 3 1 3

Note that Ua 6=∗/a = {Xa(v)|v ∈ Va} = {Ea(x)|x ∈ U, fa(x) = v ∈ Va}. Hence, the above
proposition implies that equivalence classes on each attribute a ∈ A can be computed in parallel.
We design the EC Map and EC Reduce functions as follows.

Algorithm 2 function EC Map
Input :
< ∅, ξ i = (Ui, AT ∪ {d}, V, f) >

Output :
[< (a, vi

a), xi >]
Begin

foreach a ∈ A do
foreach xi ∈ Ui do

key′ = (a, vi
a = fa(xi))

value′= xi

output(key′, value′)
end

end

End

Algorithm 3 function EC Reduce
Input :
< (a, vi

a), [xi] >
Output :
[< (a, vi

a), Xa(v) >]
Begin

key′ = key
value′= ∅
foreach xi ∈ [xi] do

value′= value′ ∪ xi

end
output(key′, value′)

End

The input of the EC Map is a data split ξ i. For each attribute a, and each object xi ∈ Ui, we output
intermediate pairs < key′, value′ > where key′ is a tuple (a, fa(xi)) and value′ is the object xi itself.
The MapReduce framework copies objects xi with the same key′ from different mapper nodes to
corresponding reducer nodes. The EC Reduce accepts (a, fa(xi)) as input key, and a list of xi as input
values. We aggregate this list of xi to form Xa(v).

Computers 2018, 7, 44 10 of 21

Example 3. (Example 2 continued) The output of EC Map: Map1: < (a1, 1), x1 >,
< (a2, 2), x1 >, < (a1, ∗), x2 >, < (a2, 1), x2 >, < (a1, 2), x3 >, < (a2, ∗), x3 >, < (a1, 1), x4 >,
< (a2, 2), x4 >.

Map2: < (a1, 1), x5 >, < (a2, 1), x5 >, < (a1, 2), x6 >, < (a2, ∗), x6 >, < (a1, ∗), x7 >,
< (a2, 2), x7 >, < (a1, 3), x8 >, < (a2, 1), x8 >.

The output of EC Reduce: < (a1, ∗), (x2, x7) >, < (a1, 1), (x1, x4, x5) >, < (a1, 2), (x3, x6) >,
< (a1, 3), x8 >, < (a2, ∗), (x3, x6) >, < (a2, 1), (x2, x5, x8) >, < (a2, 2), (x1, x4, x7) >.

5.2.2. Computing Possible and Certain Equivalence Classes in Parallel (PEC)

In this part, we compute possible and certain equivalence classes on each attribute a ∈ A following
Equation (1).

Proposition 2. For a ∈ A, Cer(U/a) =
⋃

Cer(Ui/a) and Pos(U/a) =
⋃

Pos(Ui/a).

Proof. Cer(U/a) =
⋃

Cer(Ui/a) is directly from Proposition 1 and Equation (1). For Pos(U/a),
Pos(U/a) = {e ∪Ua=∗|e ∈ Ua 6=∗/a} ∪ {Ua=∗} =

⋃{e ∪Ui
a=∗|e ∈ Ui

a 6=∗/a} ∪ {⋃ Ui
a=∗} =

⋃{{e ∪
Ui

a=∗|e ∈ Ua 6=∗/a} ∪ {Ui
a=∗}} =

⋃
Pos(Ui/a)

The proposition proves that the certain and possible equivalence classes on each attribute can be
computed in parallel. The PEC Map and PEC Reduce functions are designed as follows:

Algorithm 4 function PEC Map
Input :
< (a, vi

a), Xa(v) >
Output :
[< a, (vi

a, Xa(v)) >]
Begin

foreach input do
key′= key[0]
value′ = (key[1], value)
output(key′, value′)

end

End

This step is executed right after the previous step, so it uses the direct output of EC Reduce
as input. An input key of PEC Map is in the form (a, vi

a). We extract the first element of the input
key to be our intermediate key. The second element of the input key combined with the input value
creates our intermediate values. The MapReduce platform groups all intermediate values w.r.t an
intermediate key (i.e., an attribute) and sends them to corresponding reducers.

The PEC Reducer accepts the intermediate pairs and loop over the intermediate values. cmissing is
used to represent objects whose values are missing while cregular is a set of subsets, each subset contains
objects whose values are regular. Then, we calculate certain equivalence classes ccer and possible
equivalence classes cpos according to Formula (1). When cmissing is empty, both ccer and cpos are equal
cregular. The output is < key′, (ccer, cpos) >, where key′ represents an attribute, ccer, cpos represent certain
and possible equivalence classes on the attribute, respectively.

Computers 2018, 7, 44 11 of 21

Algorithm 5 function PEC Reduce
Input :
< a, [(vi

a, Xa(v))] >
Output :
[< a, (ccer, cpos) >]
Begin

cmissing = ∅, cregular = ∅, cpos = ∅, ccer = ∅
foreach (vi

a, Xa(v)) ∈ [(vi
a, Xa(v))] do

if vi
a==* then cmissing.add(Xa(v))

else cregular.add(Xa(v))
end
ccer = cregular
if cmissing = ∅ then cpos = cregular
else

foreach c ∈ cregular do
cpos.add(c ∩ cmissing)

end
cpos.add(cmissing)

end
key′= key
value′=(ccer, cpos)
output(key′, value′)

End

Example 4. (Example 3 continued) The output of PEC Map:
< a1, (∗, {x2, x7}) >,< a1, (1, {x1, x4, x5}) >,< a1, (2, {x3, x6}) >,< a1, (3, {x8}) >,
< a2, (∗, {x3, x6}) >,< a2, (1, {x2, x5, x8}) >,< a2, (2, {x1, x4, x7}) >.
The output of PEC Reduce:
< a1, (ccer, cpos) >, where ccer = {∅, {x1, x4, x5}, {x3, x6}, {x8}}, cpos = {∅, {x2, x7}, {x2, x7, x8},
{x1, x2, x4, x5, x7}, {x2, x3, x6, x7}}.
< a2, (ccer, cpos) >, where ccer = {∅, {x2, x5, x8}, {x1, x4, x7}}, cpos = {∅, {x3, x6}, {x2, x3, x5, x6, x8},
{x1, x3, x4, x6, x7}}.

5.2.3. Aggregating Possible and Certain Equivalence Classes in Parallel (AP)

In this part, we aggregate in parallel the certain and possible equivalence classes on a set of
attributes A ⊆ AT, following Equation (3).

Let us divide A into smaller subsets At where ∩At = ∅ and A =
⋃

t At. The following
propositions hold:

Proposition 3. For At ⊆ A, let Cer(U/At) = {∩ieaij |eaij ∈ Cer(U/ai), ai ∈ At} and Cer(U/A) =

{∩ieaij |eaij ∈ Cer(U/ai), ai ∈ A}. Then, Cer(U/A) =
⋃

Cer(U/At).

Proof: e ∈ Cer(U/A) ⇐⇒ e ∈ {∩ieaij |eaij ∈ Cer(U/ai), ai ∈
⋃

t At} ⇐⇒ e ∈ ⋃
t{∩ieaij |eaij ∈

Cer(U/ai), ai ∈ At} ⇐⇒ e ∈ ⋃
Cer(U/At).

Proposition 4. For At ⊆ A, let Pos(U/At) = {∩ieaij |eaij ∈ Pos(U/ai), ai ∈ At} and Pos(U/A) =

{∩ieaij |eaij ∈ Pos(U/ai), ai ∈ A}. Then, Pos(U/A) =
⋃

Pos(U/At).

Proof. Similar to proof of Proposition 3.

The above propositions prove that the aggregation of certain and possible equivalence classes can
also be executed in parallel. To avoid memory overhead, we separate the process of aggregating certain

Computers 2018, 7, 44 12 of 21

equivalence classes from the process of aggregating possible equivalence classes. For aggregating
certain equivalence classes, we extract only ccer from the output of PEC Reduce and vice versa.
Algorithms 6 and 7 illustrate the process of aggregating certain equivalence classes.

Algorithm 6 function AP Map
Input :
A list (Lt) of input, each input has an attribute as key, and the certain equivalence classes w.r.t. the

attribute as value
Output :
[< ∅, cpre >]
Begin

cpre = ∅, ccurrent = ∅, cresult = ∅
foreach cinput ∈ Lt do

if cinput is the first element of Lt then cpre = cinput
else

ccurrent = cinput
foreach pre ∈ cpre do

foreach curr ∈ ccurrent do
cresult.add(pre ∩ curr)

end
cpre = cresult
cresult= ∅ //clear cresult

end
end

end
key′ = ∅
value′ = cpre
output(key′, value′)

End

Both algorithms are identical: they receive a list of certain equivalence classes and produce the
intersection between these certain equivalence classes. Given a list of certain equivalence classes Lt,
the intersections of elements of Lt can be computed sequentially. That is, intersections between the
first and second elements of Lt will be computed first; then, the result is used to find intersections with
the third element of Lt. The process repeats until the last element of Lt. We denote cpre as a variable to
contain the intersections of previous elements, ccurrent to contain current element, and cresult to contain
the intersections between cpre and ccurrent. In the end, cpre contains the intersections of all elements
in Lt. In AP Reducer, we collect all cpre from different nodes, and repeat the above process to compute
the intersections between them. The final outputs are the intersections of certain equivalence classes of
all attributes.

Since the process of aggregating possible equivalence classes is identical to the process of
aggregating certain equivalence classes, the above AP Map and AP Reduce functions can also be used.
The difference is the input of AP Map: instead of certain equivalence classes of each attribute (ccer),
we use possible equivalence classes (cpos).

To avoid computation overhead, this AP step can be divided into multiple MapReduce jobs.
However, in order to get the final intersection, we need to set the number of reducers of the last
MapReduce job as 1.

Computers 2018, 7, 44 13 of 21

Algorithm 7 function AP Reduce
Input :
< ∅, L = [ccer] >, L is a list of ccer
Output :
< ∅, cpre >
Begin

cpre = ∅, ccurrent = ∅, cresult=∅
foreach ccer ∈ L do

if ccer is the first element of L then cpre= ccer
else

ccurrent=ccer
foreach pre ∈ cpre do

foreach curr ∈ ccurrent do
cresult.add(pre ∩ curr)

end
cpre = cresult
cresult= ∅ //clear cresult

end
end

end
key′ = ∅
value′ = cpre
output(key′, value′)

End

Example 5. (Example 4 continued) To aggregate certain equivalence classes:
AP Map outputs: < ∅, cpre = {∅, {x1, x4, x5}, {x3, x6}, {x8}} >,< ∅, cpre = {∅, {x2, x5, x8},
{x1, x4, x7}} >,
AP Reduce outputs: < ∅, cpre = {∅, {x5}, {x1, x4}, {x8}} >.
To aggregate possible equivalence classes:
AP Map outputs: < ∅, cpre = {{x2, x7}, {x1, x2, x4, x5, x7}, {x2, x3, x6, x7}, {x2, x7, x8}} >,
< ∅, cpre = {{x3, x6}, {x2, x3, x5, x6, x8}, {x1, x3, x4, x6, x7}} >,
AP Reduce outputs: < ∅, cpre = {∅, {x2}, {x7}, {x2, x5}, {x2, x8}, {x3, x6}, {x2, x3, x6}, {x3, x6, x7},
{x1, x4, x7}} >.

5.2.4. Computing Rough Approximations in Parallel (RA)

In this part, we compute twofold (certain and possible) rough approximations of a given target
set X, following the Equations (4) and (6). Let X = Ud 6=∗/d = {X1, X2, ...Xm} be the target set.
The following preposition holds:

Proposition 5. RCer
A (X) =

⋃m
i=1 RCer

A (Xi), RCer
A (X) =

⋃m
i=1 RCer

A (Xi), RPos
A (X) =

⋃m
i=1 RPos

A (Xi),

RPos
A (X) =

⋃m
i=1 RPos

A (Xi).

Proof. Let us take RCer
A (X). RCer

A (X) = {∪iei|ei ∈ rCer
A (Xi), Xi ∈ XCer} = {e1|e1 ∈ rCer

A (X1)} ∪
{e2|e2 ∈ rCer

A (X2)}∪ ...∪{em|em ∈ rCer
A (Xm)} = RCer

A (X1)∪ RCer
A (X2)∪ ...∪ RCer

A (Xm) =
⋃m

i=1 RCer
A (Xi).

The proof for others are similar.

The above proposition shows that we can compute the rough approximations of X in parallel.
Since X is formed by a set of Xi, we design mappers and reducers so that each mapper computes
rough approximations of one or several Xi, and then reducers aggregate these rough approximations.
The RA Map and Reduce functions are designed as follows:

Computers 2018, 7, 44 14 of 21

Algorithm 8 function RA Map
Input :< ∅, Xi ∈ X >, Cer(U/A), Pos(U/A), Ud=∗
Output :< CL, rCer

A (Xi) >,< CU, rCer
A (Xi) >,< PL, rPos

A (Xi) >,< PU, rPos
A (Xi) >

Begin
rCer

A (Xi) = ∅, rCer
A (Xi) = ∅, rPos

A (Xi) = ∅, rPos
A (Xi) = ∅

XCer = Xi
XPos = Xi ∪Ud=∗
// computing certain rough approximations of x
foreach e ∈ Cer(U/A) do

foreach e’ ∈ Pos(U/A) do
if e ⊇ e’ and e’ ⊆ XCer then rCer

A (Xi).add(e)
end
if e ∩XCer 6= ∅ then rCer

A (Xi).add(e)
end
// computing possible rough approximations of x
foreach e ∈ Pos(U/A) do

foreach e’ ∈ Cer(U/A) do
if e’ ⊆ e and e’ ⊆ XPos then rPos

A (Xi).add(e ∩XPos)
end
if e ∩XPos 6= ∅ then rPos

A (Xi).add(e)
end
output(CL, rCer

A (Xi)), output(CU, rCer
A (Xi)), output(PL, rPos

A (Xi)), output(PU, rPos
A (Xi))

End

Algorithm 9 function RA Reduce
Input :
< CL, [rCer

A (Xi)] >,< CU, [rCer
A (Xi)] >,< PL, [rPos

A (Xi)] >,< PU, [rPos
A (Xi)] >

Output :
< CL, RCer

A (X) >,< CU, RCer
A (X) >,< PL, RPos

A (X) >,< PU, RPos
A (X) >

Begin
key′ = key
value′= ∅
foreach r ∈ [rA(X)] do

value′= value′ ∪ r
end
output(key′, value′)

End

For each Xi ∈ X, we first compute XCer = Xi, and XPos = Xi ∪Ud=∗ following Equation (2).
We then use XCer to compute rCer

A (Xi), rCer
A (Xi) following Equation (4), and use XPos to rPos

A (Xi), rPos
A (Xi)

following Equation (6). Note that Cer(U/A) and Pos(U/A) are results from the AP step. Our output
keys are CL, CU, PL, PU, which stands for certain lower, certain upper, possible lower, and possible
upper approximations, respectively. In reducers, we iterate over the list of rough approximations of Xi,
and aggregate them. The final result is the rough approximations of X. Note that, in our RA Reduce,
we use the denotation rA(X) to represent rPos

A (Xi), rPos
A (Xi), rCer

A (Xi), and rCer
A (Xi).

Example 6. (Example 5 continued) Let X = Ud 6=∗/d = {{x1, x5, x7}, {x2}, {x3, x6}, {x8}}, and Ud=∗ =

{x4}. The output of RA Map:
Map1: (Xi = XCer = {x1, x5, x7}, XPos = {x1, x4, x5, x7})
< CL, rCer

A (Xi) = ∅ >,< CU, rCer
A (Xi) = {{x5}, {x1, x4}} >,< PL, rPos

A (Xi) = {{x5}, {x7},
{x1, x4, x7}} >,< PU, rPos

A (Xi) = {{x7}, {x2, x5}, {x3, x6, x7}, {x1, x4, x7}} > .
Map2: (Xi = XCer = {x2}, XPos = {x2, x4})

Computers 2018, 7, 44 15 of 21

< CL, rCer
A (Xi) = ∅ >,< CU, rCer

A (Xi) = ∅ >,< PL, rPos
A (Xi) = {{x2}, {x4}} >,

< PU, rPos
A (Xi) = {{x2}, {x2, x8}, {x2, x5}, {x2, x3, x6}, {x1, x4, x7}} > .

Map3: (Xi = XCer = {x3, x6}, XPos = {x3, x4, x6})
< CL, rCer

A (Xi) = ∅ >,< CU, rCer
A (Xi) = ∅ >,< PL, rPos

A (Xi) = {{x3, x6}, {x4}} >,
< PU, rPos

A (Xi) = {{x3, x6}, {x2, x3, x6}, {x3, x6, x7}, {x1, x4, x7}} > .
Map4: (Xi = XCer = {x8}, XPos = {x4, x8})
< CL, rCer

A (Xi) = ∅ >,< CU, rCer
A (Xi) = {x8} >,< PL, rPos

A (Xi) = {{x8}, {x4}} >,
< PU, rPos

A (Xi) = {{x2, x8}, {x1, x4, x7}} > .
Map5: (XPos = {x4}) < PL, rPos

A (Xi) = {x4} >,< PU, rPos
A (Xi) = {x1, x4, x7} >.

The output of RS-Reduce:
< CL, RCer

A (X) = ∅ >,< CU, RCer
A (X) = {{x8}, {x5}, {x1, x4}} >,

< PL, RPos
A (X) = {{x2}, {x5}, {x7}, {x8}, {x3, x6}, {x1, x4, x7}} >,

< PU, RPos
A (X) = {{x2}, {x7}, {x2, x5}, {x2, x8}, {x3, x6}, {x2, x3, x6}, {x3, x6, x7}, {x1, x4, x7}} >.

These results coincide with those in Example 1.

Proposition 6. The twofold rough approximations of the target set X produced by the sequential and parallel
algorithms are the same.

Proof. From Propositions 1–5, we see that our proposed parallel algorithms generate the same results
at each corresponding step of the sequentiaL Algorithm 1. This ensures that our proposed algorithms
give the final rough approximations as those from the sequential algorithm.

Proposition 6 verifies the correctness of our proposed parallel approach since it produces the same
results as the sequential approach. Our approach can generalize well not only for IDS but also for IIS.
Since IIS is the special case of IDS when the decision attribute has no missing data, Algorithm 8 can
change a little to be adapted for IIS. In the case of IIS, Ud=∗ is empty, so XCer coincides with XPos. Other
algorithms can be used in IIS without modification. Thus, our proposed approach can be used as a
validation tool for other current approaches that deal with just the missing data in condition attributes
of big datasets.

5.3. Evaluation Test

In this part, we will evaluate the performance of sequential and parallel algorithms on different
databases. The sequential algorithm is run on a computer with Intel Core i7 7700K (eight cores,
each core has a clock frequency of 4.2 Ghz), and 16 GB main memory. We run the parallel algorithm on
a cluster with five nodes, one is a master, and four slaves, each slave runs Intel Core i5 650 (four cores,
each has a clock frequency of 3.2 Ghz) and has 8 GB main memory. We do experiments in Ubuntu
17.10, JDK 9.0.1, and Hadoop 2.9.0 environments. We only evaluate the efficiency of the algorithms
in terms of execution time, not its accuracy since our parallel algorithm produces the same results as
those of the sequential algorithm.

We conduct experiments on commonly used machine learning datasets, KDDCup99 from the UCI
Machine Learning repository [74]. The dataset has approximately 5 million records, and each record
consists of one decision attribute and 41 condition attributes. Since our parallel algorithms deal with
categorical attributes, all 35 numeric attributes are discretized first. Furthermore, we create missing
data on both condition and decision attributes at the one percent rate and the dataset is renamed
Kdd100. To test efficiency of the proposed method with different sizes of datasets, we divide the
Kdd100 dataset into smaller datasets. Datasets are named based on the percentage, e.g., Kdd10 stands
for 10 percent of original dataset, and so on (Table 6).

Computers 2018, 7, 44 16 of 21

Table 6. A description of datasets.

Records Size (MB)

Kdd10 489,844 44

Kdd50 2,449,217 219

Kdd10 4,898,431 402

Figure 2 shows the comparison of execution time between the sequential and parallel algorithms.
We compare execution time by each step of the Algorithm 1 and the corresponding step of the parallel
algorithms. When performing Step 2 of the sequential algorithm, we met the insufficient memory error
if we aggregated more than eight condition attributes. Hence, we decided to aggregate only 8 out of 41
condition attributes to be able to measure its execution time. Our data and source code can be found
here [75]. From the results of our experiments, we can draw some conclusions:

• Execution time increases when the volume of data increases in both sequential and
parallel algorithms.

• The most intensive step is RA step, and the least intensive step is EC, PEC step. The AP step takes
less time than the RA step in our experiments because we aggregate very few condition attributes.
The more attributes we aggregate, the more time the AP step will take.

• In AP and RA steps, the parallel algorithms outperform the sequential algorithm. To the dataset
Kdd100, the former performs 25 times faster than the latter at the AP step, and four times faster at
the RA step, respectively. This is important since these are the most intensive computational steps.
For the EC, PEC step, the parallel algorithm costs more time. This is because we divide this step
into two separate MapReduce jobs: EC and PEC. Since each job requires a certain time to start
up its mappers and reducers, the time consumed by both jobs becomes larger than the one of
the sequential algorithm, especially when the input data is small. Notice that the time difference
becomes smaller when the input data is larger (63 s in case of Kdd50, and 32 s in case of Kdd100).
It is intuitive that the parallel algorithm is more efficient if we input larger datasets. In addition,
since this step costs the least amount of time, it will not impact the total execution time of both
algorithms.

• As the size of the input data increases, the parallel algorithm outperforms the sequential algorithm.
We can verify this through the total execution time. The parallel algorithm is around four times
less than the sequential algorithm in datasets Kdd50 and Kdd100. This proves the efficiency of our
proposed parallel algorithm.

As we can observe, our proposed parallel is more efficient in terms of computation time than
the sequential method. It is worth mentioning that the sequential algorithm was implemented on
a machine with a faster CPU with more memory while our parallel algorithm was implemented
on a cluster of less powerful machines. We could have gotten better results if we implemented the
sequential algorithm on the same configuration used for the parallel algorithm. However, we could
not due to the insufficient memory error during the implementation of the sequential method.

With the limit on the number of machines available, we could not arrange a bigger cluster with
more nodes so that more rigorous experiments and larger datasets can be tested. We aim to do this
in the future. In addition, more optimization settings such as compressed types, data blocksizes,
etc should be more carefully considered. Changing these settings may affect the performance of our
parallel algorithm.

Computers 2018, 7, 44 17 of 21

(a) EC,PEC (b) AP

(c) RA (d) Total

Figure 2. Compare execution time of each step between sequential and parallel algorithms: (a) Step 1
of the sequential algorithm and EC, PEC steps of the parallel algorithm, (b) Step 2 of the sequential
algorithm and AP step of the parallel algorithm, (c) Steps 3,4 of the sequential algorithm and RA step
of the parallel algorithm, and (d) total steps of the sequential and parallel algorithms.

6. Conclusions

In this emerging era of big data, a large-scale information system with both conditions missing and
decision values are normally seen in practice. Such information systems are difficult to cope with, not
only because of the incomplete information they contain, but also because they are large in size. In this
paper, we have successfully extended the method of twofold rough approximations for such massive,
incomplete information systems. In addition, computing rough approximations by the sequential
approach is very slow; thus, different MapReduce-based parallel algorithms are proposed to accelerate
the computation. Experimental results demonstrate that our proposed parallel methods outperform
the sequential method. Since computing rough approximations plays a key role in rule extraction and
features reduction when utilizing rough set-based methods, our future work is to further investigate
rules extraction and features reduction from such massive, incomplete information systems based on
rough sets.

Author Contributions: Conceptualization, K.Y.; Formal analysis, M.U.; Methodology, T.C. and D.V.N.; Resources,
T.C. and I.S.; Software, T.C. and I.S.; Supervision, K.Y. and D.V.N.; Writing-Review and Editing, T.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Computers 2018, 7, 44 18 of 21

References

1. Pawlak, Z. Rough sets. In International Journal of Computer and Information Sciences; Kluwer Acad.:
South Holland, The Netherlands, 1982; Volume 11, pp. 341–356.

2. Pawlak, Z. Rough Sets. In Theoretical Aspects of Reasoning Data; Kluwer Acad.: South Holland,
The Netherlands, 1991.

3. Zhao, H.; Wang, P.; Hu, Q. Cost-sensitive feature selection based on adaptive neighborhood granularity
with multi-level confidence. Inf. Sci. 2016, 366, 134–149. [CrossRef]

4. Ju, H.; Li, H.; Yang, X.; Zhou, X.; Huang, B. Cost-sensitive rough set: A multi-granulation approach.
Knowl. Based Syst. 2017, 123, 137–153. [CrossRef]

5. Liang, J.; Wang, F.; Dang, C.; Qian, Y. A Group Incremental Approach to Feature Selection Applying Rough
Set Technique. IEEE Trans. Knowl. Data Eng. 2014, 26, 294–308. [CrossRef]

6. Yao, Y.; Zhang, X. Class-specific attribute reducts in rough set theory. Inf. Sci. 2017, 418–419, 601–618.
[CrossRef]

7. Roy, J.; Adhikary, K.; Kar, S.; Pamucar, D. A rough strength relational DEMATEL model for analysing the
key success factors of hospital service quality. In Decision Making: Applications in Management and Engineering;
Electrocore: Bernards Township, NJ, USA, 2018.

8. Tay, F.E.; Shen, L. Economic and financial prediction using rough sets model. Eur. J. Oper. Res. 2002,
141, 641–659. [CrossRef]

9. Goh, C.; Law, R. Incorporating the rough sets theory into travel demand analysis. Tour. Manag. 2003,
24, 511–517. [CrossRef]

10. Ma, T.; Zhou, J.; Tang, M.; Tian, Y.; Al-Dhelaan, A.; Al-Rodhaan, M.; Lee, S. Social network and tag
sources based augmenting collaborative recommender system. IEICE Trans. Inf. Syst. 2015, E98D, 902–910.
[CrossRef]

11. Karavidic, Z.; Projovic, D. A multi-criteria decision-making (MCDM) model in the security forces operations
based on rough sets. In Decision Making: Applications in Management and Engineering; Electrocore: Bernards
Township, NJ, USA, 2018; Volume 1, pp. 97–120.

12. Swiniarski, R.; Skowron, A. Rough set methods in feature selection and recognition. Pattern Recognit. Lett.
2003, 24, 833–849. [CrossRef]

13. Wei, J.M.; Wang, S.Q.; Yuan, X.J. Ensemble rough hypercuboid approach for classifying cancers. IEEE Trans.
Knowl. Data Eng. 2010, 22, 381–391. [CrossRef]

14. Yao, Y.; Zhou, B. Two Bayesian approaches to rough sets. Eur. J. Oper. Res. 2016, 251, 904–917. [CrossRef]
15. Yao, Y. Three-Way Decisions and Cognitive Computing. Cognit. Comput. 2016, 8, 543–554. [CrossRef]
16. Yao, Y. The two sides of the theory of rough sets. Knowl. Based Syst. 2015, 80, 67–77. [CrossRef]
17. Liu, D.; Li, T.; Liang, D. Incorporating logistic regression to decision-theoretic rough sets for classifications.

Int. J. Approx. Reason. 2014, 55, 197–210. [CrossRef]
18. Xu, J.; Miao, D.; Zhang, Y.; Zhang, Z. A three-way decisions model with probabilistic rough sets for

stream computing. Int. J. Approx. Reason. 2017, 88, 1–22. [CrossRef]
19. Li, H.; Li, D.; Zhai, Y.; Wang, S.; Zhang, J. A novel attribute reduction approach for multi-label data based on

rough set theory. Inf. Sci. 2016, 367, 827–847. [CrossRef]
20. Zheng, Y.; Jeon, B.; Xu, D.; Wu, Q.J.; Zhang, H. Image Segmentation by Generalized Hierarchical Fuzzy

C-means Algorithm. J. Intell. Fuzzy Syst. 2015, 28, 961–973.
21. Lin, T. Data mining and machine oriented modeling: A granular computing approach. Appl. Intell. 2000,

13, 113–124. [CrossRef]
22. Cao, T.; Yamada, K.; Unehara, M.; Suzuki, I.; Nguyen, D.V. Semi-supervised based rough set to handle

missing decision data. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE, Vancouver, BC, Canada, 24–29 July 2016; pp. 1948–1954.

23. Cao, T.; Yamada, K.; Unehara, M.; Suzuki, I.; Nguyen, D.V. Rough Set Model in Incomplete Decision Systems.
J. Adv. Comput. Intell. Intell. Inform. 2017, 21, 1221–1231. [CrossRef]

24. Li, Y.; Jin, Y.; Sun, X. Incremental method of updating approximations in DRSA under variations of
multiple objects. Int. J. Mach. Learn. Cybern. 2018, 9, 295–308. [CrossRef]

25. Zhang, J.; Li, T.; Ruan, D.; Gao, Z.; Zhao, C. A parallel method for computing rough set approximations.
Inf. Sci. 2012, 194, 209–223. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2016.05.025
http://dx.doi.org/10.1016/j.knosys.2017.02.019
http://dx.doi.org/10.1109/TKDE.2012.146
http://dx.doi.org/10.1016/j.ins.2017.08.038
http://dx.doi.org/10.1016/S0377-2217(01)00259-4
http://dx.doi.org/10.1016/S0261-5177(03)00009-8
http://dx.doi.org/10.1587/transinf.2014EDP7283
http://dx.doi.org/10.1016/S0167-8655(02)00196-4
http://dx.doi.org/10.1109/TKDE.2009.114
http://dx.doi.org/10.1016/j.ejor.2015.08.053
http://dx.doi.org/10.1007/s12559-016-9397-5
http://dx.doi.org/10.1016/j.knosys.2015.01.004
http://dx.doi.org/10.1016/j.ijar.2013.02.013
http://dx.doi.org/10.1016/j.ijar.2017.05.001
http://dx.doi.org/10.1016/j.ins.2016.07.008
http://dx.doi.org/10.1023/A:1008384328214
http://dx.doi.org/10.20965/jaciii.2017.p1221
http://dx.doi.org/10.1007/s13042-015-0477-8
http://dx.doi.org/10.1016/j.ins.2011.12.036

Computers 2018, 7, 44 19 of 21

26. Zhang, J.; Wong, J.S.; Li, T.; Pan, Y. A comparison of parallel large-scale knowledge acquisition using rough
set theory on different MapReduce runtime systems. Int. J. Approx. Reason. 2014, 55, 896–907. [CrossRef]

27. Chen, H.; Li, T.; Cai, Y.; Luo, C.; Fujita, H. Parallel attribute reduction in dominance-based neighborhood
rough set. Inf. Sci. 2016, 373, 351–368. [CrossRef]

28. Li, S.; Li, T.; Zhang, Z.; Chen, H.; Zhang, J. Parallel computing of approximations in dominance-based rough
sets approach. Knowl. Based Syst. 2015, 87, 102–111. [CrossRef]

29. Qian, J.; Miao, D.; Zhang, Z.; Yue, X. Parallel attribute reduction algorithms using MapReduce. Inf. Sci. 2014,
279, 671–690. [CrossRef]

30. Qian, J.; Lv, P.; Yue, X.; Liu, C.; Jing, Z. Hierarchical attribute reduction algorithms for big data using
MapReduce. Knowl. Based Syst. 2015, 73, 18–31. [CrossRef]

31. Li, S.; Li, T. Incremental update of approximations in dominance-based rough sets approach under the
variation of attribute values. Inf. Sci. 2015, 294, 348–361. [CrossRef]

32. Liu, D.; Li, T.; Zhang, J. A rough set-based incremental approach for learning knowledge in dynamic
incomplete information systems. Int. J. Approx. Reason. 2014, 55, 1764–1786. [CrossRef]

33. Shu, W.; Shen, H. Incremental feature selection based on rough set in dynamic incomplete data.
Pattern Recognit. 2014, 47, 3890–3906. [CrossRef]

34. Hu, J.; Li, T.; Luo, C.; Li, S. Incremental fuzzy probabilistic rough sets over dual universes. In Proceedings of
the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015;
pp. 1–8.

35. Jin, Y.; Li, Y.; He, Q. A fast positive-region reduction method based on dominance-equivalence relations.
In Proceedings of the 2016 International Conference on Machine Learning and Cybernetics (ICMLC),
Jeju Island, South Korea, 10–13 July 2016; Volume 1, pp. 152–157.

36. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the
6th conference on Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA,
6–8 December 2004.

37. Nakata, M.; Sakai, H. Twofold rough approximations under incomplete information. Int. J. Gen. Syst. 2013,
42, 546–571. [CrossRef]

38. Slezak, D.; Ziarko, W. Bayesian rough set model. In Proceedings of the International Workshop on
Foundation of Data Mining (FDM2002), Maebashi, Japan, 9 December 2002; pp. 131–135.

39. Van Nguyen, D.; Yamada, K.; Unehara, M. Extended tolerance relation to define a new rough set model in
incomplete information systems. Adv. Fuzzy Syst. 2013, 2013, 372091. [CrossRef]

40. Van Nguyen, D.; Yamada, K.; Unehara, M. Rough set approach with imperfect data based on
Dempster-Shafer theory. J. Adv. Comput. Intell. Intell. Inform. 2014, 18, 280–288. [CrossRef]

41. Grzymala-Busse, J.W. On the unknown attribute values in learning from examples. In Methodologies for
Intelligent Systems; Ras, Z., Zemankova, M., Eds.; Springer: Berlin, Germany, 1991; Volume 542, pp. 368–377.

42. Grzymala-Busse, J.; Hu, M. A comparison of several approaches to missing attribute values in data mining.
In Rough Sets and Current Trends in Computing; Ziarko, W., Yao, Y., Eds.; Springer: Berlin, Germany, 2001;
Volume 2005, pp. 378–385.

43. Grzymala-Busse, J. Characteristic relations for incomplete data: A generalization of the
indiscernibility relation. In Proceedings of the Third International Conference on Rough Sets and Current
Trends in Computing, Uppsala, Sweden, 1–5 June 2004; pp. 244–253.

44. Grzymala-Busse, J. Three approaches to missing attribute values: A rough set perspective. In Data Mining:
Foundations and Practice; Lin, T., Xie, Y., Wasilewska, A., Liau, C.J., Eds.; Springer: Berlin, Germany, 2008;
Volume 118, pp. 139–152.

45. Grzymala-Busse, J.W.; Rzasa, W. Definability and other properties of approximations for generalized
indiscernibility relations. In Transactions on Rough Sets XI; Peters, J., Skowron, A., Eds.; Springer: Berlin,
Germany, 2010; Volume 5946, pp. 14–39.

46. Guan, L.; Wang, G. Generalized approximations defined by non-equivalence relations. Inf. Sci. 2012,
193, 163–179. [CrossRef]

47. Stefanowski, J.; Tsoukias, A. On the extension of rough sets under incomplete information. In Proceedings
of the New directions in rough sets, data mining and granular-soft computing, Yamaguchi, Japan,
11–19 November 1999; pp. 73–82.

http://dx.doi.org/10.1016/j.ijar.2013.08.003
http://dx.doi.org/10.1016/j.ins.2016.09.012
http://dx.doi.org/10.1016/j.knosys.2015.05.003
http://dx.doi.org/10.1016/j.ins.2014.04.019
http://dx.doi.org/10.1016/j.knosys.2014.09.001
http://dx.doi.org/10.1016/j.ins.2014.09.056
http://dx.doi.org/10.1016/j.ijar.2014.05.009
http://dx.doi.org/10.1016/j.patcog.2014.06.002
http://dx.doi.org/10.1080/17451000.2013.798898
http://dx.doi.org/10.1155/2013/372091
http://dx.doi.org/10.20965/jaciii.2014.p0280
http://dx.doi.org/10.1016/j.ins.2012.01.009

Computers 2018, 7, 44 20 of 21

48. Stefanowski, J.; Tsoukias, A. Incomplete information tables and rough classication. Comput. Intell. 2001,
17, 545–566. [CrossRef]

49. Katzberg, J.D.; Ziarko, W. Variable precision rough sets with asymmetric bounds. In Proceedings of the
International Workshop on Rough Sets and Knowledge Discovery: Rough Sets, Fuzzy Sets and Knowledge
Discovery, Banff, AB, Canada, 12–15 October 1993; Springer: London, UK, 1994; pp. 167–177.

50. Kryszkiewicz, M. Rough set approach to incomplete information systems. Inf. Sci. 1998, 112, 39–49.
[CrossRef]

51. Kryszkiewicz, M. Rules in incomplete information systems. Inf. Sci. 1999, 113, 271–292. [CrossRef]
52. Leung, Y.; Li, D. Maximal consistent block technique for rule acquisition in incomplete information systems.

Inf. Sci. 2003, 153, 85–106. [CrossRef]
53. Leung, Y.; Wu, W.Z.; Zhang, W.X. Knowledge acquisition in incomplete information systems: A rough set

approach. Eur. J. Oper. Res. 2006, 168, 164–180. [CrossRef]
54. Nakata, M.; Sakai, H. Handling missing values in terms of rough sets. In Proceedings of the 23rd Fuzzy

System Symposium, Nayoga, Japan, 29–31 August 2007.
55. Miao, D.; Zhao, Y.; Yao, Y.; Li, H.; Xu, F. Relative reducts in consistent and inconsistent decision tables of the

Pawlak rough set model. Inf. Sci. 2009, 179, 4140–4150. [CrossRef]
56. Slezak, D.; Ziarko, W. Variable precision bayesian rough set model. Lect. Notes Comput. Sci. 2003,

2639, 312–315.
57. Slezak, D.; Ziarko, W. Attribute reduction in the Bayesian version of variable precision rough set model.

Electron. Notes Theor. Comput. Sci. 2003, 82, 263–273.
58. Slezak, D.; Ziarko, W. The investigation of the Bayesian rough set model. Int. J. Approx. Reason. 2005,

40, 81–91. [CrossRef]
59. Wang, G. Extension of rough set under incomplete information systems. In Proceedings of the 2002 IEEE

International Conference on Fuzzy Systems, FUZZ-IEEE’02, Honolulu, Hawaii, 12–17 May 2002; Volume 2,
pp. 1098–1103.

60. Yang, X.; Yu, D.; Yang, J.; Song, X. Difference relation-based rough set and negative rules in incomplete
information system. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 2009, 17, 649–665. [CrossRef]

61. Yang, X.; Yang, J. Incomplete Information System and Rough Set Theory, 1st ed.; Springer: Berlin, Germany, 2012.
62. Medhat, T. Prediction of missing values for decision attribute. J. Inform. Technol. Comput. Sci. 2012, 4, 58–66.

[CrossRef]
63. El-Alfy, E.S.M.; Alshammari, M.A. Towards scalable rough set based attribute subset selection for intrusion

detection using parallel genetic algorithm in MapReduce. Simul. Model. Pract. Theory 2016, 64, 18–29.
[CrossRef]

64. Verma, A.; Llora, X.; Goldberg, D.E.; Campbell, R.H. Scaling Genetic Algorithms Using MapReduce.
In Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications,
Pisa, Italy, 30 November–2 December 2009; pp. 13–18.

65. Han, L.; Liew, C.; Van Hemert, J.; Atkinson, M. A generic parallel processing model for facilitating data
mining and integration. Parallel Comput. 2011, 37, 157–171. [CrossRef]

66. McNabb, A.W.; Monson, C.K.; Seppi, K.D. Parallel PSO using MapReduce. In Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 7–14.

67. Chu, C.T.; Kim, S.K.; Lin, Y.A.; Yu, Y.; Bradski, G.; Ng, A.Y.; Olukotun, K. Map-reduce for Machine Learning
on Multicore. In Proceedings of the 19th International Conference on Neural Information Processing Systems,
Doha, Qatar, 12–15 November 2012; MIT Press: Cambridge, MA, USA, 2006; pp. 281–288.

68. Srinivasan, A.; Faruquie, T.A.; Joshi, S. Data and task parallelism in ILP using MapReduce. Mach. Learn.
2012, 86, 141–168. [CrossRef]

69. Zhao, W.; Ma, H.; He, Q. Parallel K-Means Clustering Based on MapReduce. In Cloud Computing;
Jaatun, M.G., Zhao, G., Rong, C., Eds.; Springer: Berlin, Germany, 2009; pp. 674–679.

70. Zinn, D.; Bowers, S.; Kohler, S.; Ludascher, B. Parallelizing XML data-streaming workflows via MapReduce.
J. Comput. Syst. Sci. 2010, 76, 447–463. [CrossRef]

71. Li, P.; Wu, J.; Shang, L. Fast approximate attribute reduction with MapReduce. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin, Germany, 2013; pp. 271–278.

http://dx.doi.org/10.1111/0824-7935.00162
http://dx.doi.org/10.1016/S0020-0255(98)10019-1
http://dx.doi.org/10.1016/S0020-0255(98)10065-8
http://dx.doi.org/10.1016/S0020-0255(03)00061-6
http://dx.doi.org/10.1016/j.ejor.2004.03.032
http://dx.doi.org/10.1016/j.ins.2009.08.020
http://dx.doi.org/10.1016/j.ijar.2004.11.004
http://dx.doi.org/10.1142/S0218488509006194
http://dx.doi.org/10.5815/ijitcs.2012.11.08
http://dx.doi.org/10.1016/j.simpat.2016.01.010
http://dx.doi.org/10.1016/j.parco.2011.02.006
http://dx.doi.org/10.1007/s10994-011-5245-8
http://dx.doi.org/10.1016/j.jcss.2009.11.006

Computers 2018, 7, 44 21 of 21

72. Zhang, J.; Wong, J.S.; Pan, Y.; Li, T. A Parallel Matrix-Based Method for Computing Approximations in
Incomplete Information Systems. IEEE Trans. Knowl. Data Eng. 2015, 27, 326–339. [CrossRef]

73. Yuan, J.; Chen, M.; Jiang, T.; Li, T. Complete tolerance relation based parallel filling for incomplete energy
big data. Knowl. Based Syst. 2017, 132, 215–225. [CrossRef]

74. Data, K.C. KDD Cup 1999 Data. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html (accessed on 18 August 2018).

75. Sourcecode. Available online: https://github.com/KennyThinh/ParallelComputationTwoFoldRS
(accessed on 18 August 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TKDE.2014.2330821
http://dx.doi.org/10.1016/j.knosys.2017.06.027
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/KennyThinh/ParallelComputationTwoFoldRS
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Basic Concepts
	Rough Set
	MapReduce Model
	The Usage of MapReduce to Rough Set Processing

	Twofold Rough Approximations for IDS
	Computing Rough Approximations in IDS
	Sequential Algorithm
	MapReduce Based Algorithms
	Computing Equivalence Classes in Parallel (EC)
	Computing Possible and Certain Equivalence Classes in Parallel (PEC)
	Aggregating Possible and Certain Equivalence Classes in Parallel (AP)
	Computing Rough Approximations in Parallel (RA)

	Evaluation Test

	Conclusions
	References

