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Abstract: Due to their large sizes and/or dimensions, the classification of Big Data is a challenging
task using traditional machine learning, particularly if it is carried out using the well-known K-nearest
neighbors classifier (KNN) classifier, which is a slow and lazy classifier by its nature. In this paper,
we propose a new approach to Big Data classification using the KNN classifier, which is based on
inserting the training examples into a binary search tree to be used later for speeding up the searching
process for test examples. For this purpose, we used two methods to sort the training examples.
The first calculates the minimum/maximum scaled norm and rounds it to 0 or 1 for each example.
Examples with 0-norms are sorted in the left-child of a node, and those with 1-norms are sorted in
the right child of the same node; this process continues recursively until we obtain one example or a
small number of examples with the same norm in a leaf node. The second proposed method inserts
each example into the binary search tree based on its similarity to the examples of the minimum and
maximum Euclidean norms. The experimental results of classifying several machine learning big
datasets show that both methods are much faster than most of the state-of-the-art methods compared,
with competing accuracy rates obtained by the second method, which shows great potential for
further enhancements of both methods to be used in practice.
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1. Introduction

In the last decade, information technology has developed quickly in terms of quantity, quality
and low cost, providing almost everyone on earth with means of communication and data sharing.
The availability of many useful sensors, which are cheaper and easier to use than ever to collect data
and information along with the strong desire for information have allowed for the emergence of Big
Data [1].

Contemporary hardware and software have become somehow depleted for dealing with such an
unusual size of data efficiently. For example, a 3 GB file, which is considered as a relatively small Big
Data file, cannot be opened using the common Microsoft Excel® software.

Big Data files contain important information, which needs to be processed and analyzed to obtain
vital information, or to train an intelligent system based on a larger coverage of the population. Most
well-known machine learning algorithms take an unacceptable amount of time to be trained on such
Big Data files; for example, the K-nearest neighbors classifier (KNN) took weeks to classify one dataset
(Higgs) using advanced hardware. Therefore, Big Data require big thinking to overcome the data size
problem and allow our neat algorithms to work efficiently.

The KNN classifier is a slow classifier by its nature, and a lazy learner as it does not have a small
fixed-size training model to be used for testing; it utilizes all the training data to test any example.
Given a training set of n examples, in d-dimensional feature-space, the running cost to classify one
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example is O(nd) time, and since we have the curse of Big Data, where n and/or d are large values,
the KNN becomes useless, particularly if it is used for an online application.

The major contribution of this paper includes speeding up the slow KNN classifier, particularly
when classifying machine learning Big Data sets. This is achieved by proposing a new approach
based on inserting the training examples into a binary search tree (BST). To this end, we used two
methods. The first utilizes the scaled norm of each example, while the second inserts each example
into the binary search tree based on its similarity to the examples of the minimum and maximum
Euclidean norms.

The rest of this paper is organized as follows: Section 2 presents some related methods used for
speeding up the KNN classifier; Section 3 describes the proposed methods and the dataset used for
the experiments; Section 4 evaluates and compares the proposed methods to other state-of-the-art
methods; and Section 5 draws some conclusions, shows the limitations of the proposed methods and
gives directions for future research.

2. Related Work

Tremendous efforts have been made to increase the speed of the KNN classifier in general, and
recently to push for a robust KNN to Big Data. Thus, we will focus on the most recent achievements
dealing with Big Data, such as the work of Reference [2], who proposed a parallel implementation
based on mapping the training set examples followed by reducing the number of examples that are
related to a test sample. The latter method was called Map-Reduce-KNN (MR-kNN). The reported
results were similar to those of an exact KNN but much faster, i.e., about 16–149 times faster than the
sequential KNN when tested on one dataset of 1 million examples; the speed of the MR-kNN depends
mainly on the number of maps (which was in the range of 16–256) and the K-neighbors used. The
mapping phase consumes a considerable amount of time, particularly with large values of K. This
work is further improved by Reference [3], where they proposed a new KNN based on Spark (kNN-IS)
which is similar to the Mapping/Reducing technique but using multiple reducers to speed up the
process; the size of the dataset used went up to 11 million examples.

Based on clustering the training set using a K-means clustering algorithm, Reference [4] proposed
two methods to increase the speed of KNN: The first method used random clustering (RC-KNN(
while the second used landmark spectral clustering (LC-KNN). When finding the related cluster,
both methods utilized the sequential KNN to classify the test example with a smaller set of training
examples. Both algorithms were evaluated on nine big datasets showing reasonable approximations to
the sequential KNN; the reported accuracy of the results depended on the number of clusters used.

Another clustering approach was utilized recently by Reference [5], who proposed two clustering
methods to accelerate the speed of the KNN, called (cKNN) and (cKNN+). Both methods are similar,
however the latter uses a cluster augmentation process. The reported average accuracy of all the big
datasets used was in the range of 83%–90%, depending on the number of clusters and K-neighbors
used. However, these results improved significantly when they used Deep Neural Networks for
learning a suitable representation for the classification task.

Two recent and interesting approaches proposed by Reference [6] deal with the problem differently,
using random and Principal Component Analysis (PCA) techniques to divide the data to obtain
multivariate decision tree classifiers (MDT). Both methods (MDT1 and MDT2) were evaluated on
several big datasets, and the reported performance of the MDT2 was relatively better than that of the
MDT1, considering all the datasets used, showing that data partitioning using PCA is better than that
of the random technique in terms of accuracy.

Most of the proposed work in this domain is based on the divide and conquer approach; this
is a logical approach to use with big datasets, and therefore, most of these approaches are based
on clustering, splitting, or partitioning the data to turn and reduce their huge size to a manageable
one that can be targeted later by KNN. One major problem associated with such approaches is the
determination of the best number of clusters/parts, since more clusters means fewer data for each
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cluster, and therefore faster testing. However, fewer data for each cluster means less accuracy, as the
examples hosted by the cluster found might not be related to the tested example. On the contrary,
few clusters indicate a large number of examples for each, which increases the accuracy but slows
down the classification process. We can call this phenomenon the clusters-accuracy-time dilemma.

Another related problem is finding the best k for the KNN, which is beyond the scope of this paper;
for more on this, see Reference [7,8]. In this work, we will work on k = 1, i.e., the nearest neighbor.

Regardless of the high quality and quantity of the proposed methods in this domain, there is
still room for improvement in terms of accuracy and time consumed for both the training and the
testing stages.

In this paper, we avoid the clustering approach by proposing a new approach based on inserting
the training examples into a binary search tree, using the scaled norm of each example, or the minimum
and maximum Euclidean norms. The use of tree data structures to speed up the KNN classifiers is
not new, since there is extensive literature on tree structures such as Furthest-Pair-Based Binary
Search Tree [9], k-d trees [10], metric trees [11], cover trees [12], and other related work such as
Reference [13,14]. Our work is similar to these approaches in that it exploits a tree structure to speed
up the search process. However, our proposed methods are distinguished from the other approaches
by their simplicity, interpretability, ease of implementation, and high ability to process Big data.

3. Norm-Based Binary Search Trees

In this paper, we propose the use of the Euclidian norm as a signature for each feature vector, to
then be used by a binary search tree, which stores examples of the same norms based on their similarity.
The first method, which we call the norm-based binary tree (NBT), uses only norm information when
developing the binary tree, while the second one, which is an enhancement of the first, stores the
examples based on their similarity to the feature vector of the minimum norm and the feature vector
of the maximum norm; we call the latter method the Minimum/Maximum norms-based binary tree
(MNBT). The test phases of both methods use the same approaches to search their binary tree (BT) to
the leaf, and then the sequential KNN classifier is employed to classify the feature vectors found in the
searched leaf.

3.1. NBT

Given a training dataset with n feature vectors (FV) and d features, the NBT builds its binary
search tree by calculating the Euclidean norms (EN) for each FV and stores their indexes in the root of
a binary tree; the ENs are scaled to the range [0, 1] and then rounded to {0, 1}. The indexes of FVs with
EN rounded to (0) are stored in the left-child node, while those with the EN rounded to (1) are stored
in the right child. The NBT continues calculating and clustering the FVs recursively until it obtains
only one FV in a leaf node, or a number of FVs with the same EN. It is worth noting that for FVs that
are clustered to either 0 or 1, in the next iteration their scaled EN might be the opposite, and this is why
the NBT continues clustering recursively until it reaches a leaf-node hosting one FV or some FVs with
similar norms, i.e., this method assumes that each FV has a unique norm, or at least, the number of FVs
that share the same norm is relatively small. Algorithm 1 describes building the binary search tree for
the NBT. The time complexity of building the binary tree is O(n d + n log n), however if n >> d it can be
approximated to O(n log n). Obviously, the d extra running cost comes from calculating the Euclidian.

In the test phase, the NBT calculates the EN for each test FV, then scales and rounds these ENs
in the same way as in the training phase, and recursively searches the tree to the leaf to find one or
more FVs, which will be fed to the sequential KNN algorithm. Searching the tree costs O(log n) time
for each test example in all cases, and therefore the KNN time complexity becomes O(d) for each tested
FV if and only if there was only one FV in the leaf node found, which is very fast. However, when
there is m FVs in the leaf found, the time complexity grows depending on the size of m. In the worst
case, where all the FVs are of the same EN, the overall time complexity becomes even more than that
of the sequential KNN, which is O(nd) time, in addition to the time consumed by the searching process
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for each test example. Algorithm 2 shows the test phase of the NBT. We evaluated both methods
using several machine learning big datasets, and compared their performances with those of the
aforementioned state-of-the-art methods.
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3.2. MNBT

Similarly to the NBT, this method trains a binary search tree where each node stores a number of
training examples based on their similarity to two FVs stored in the parent node: the first FV is the
one with the minimum EN (FV1), and the other FV (FV2) is the one with the maximum EN from the
training data. To build the Binary search tree, the MNBT uses the Euclidian distance to find similar
FVs to the FV1, and stores them in the left node, and those similar to the FV2 are stored in the right
node of a parent node with the FV1 and FV2. Recursively, the MNBT continues to cluster all the FVs of
the training data in a binary search tree, until they become one point, which is stored in a leaf node.
However, if the minimum EN is equal to the Maximum EN, then all the FVs remain in the parent node,
which becomes a leaf node, as they cannot be further clustered.
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Ideally, building the tree using the MNBT takes O(n.d + n.d log n) time: the first (n.d) time is
consumed by the process of finding the ENs for each FV in the training data, and the second (n.d) time
is consumed by the similarity process, which uses the Euclidian distance along all the features (d).
Obviously this takes more time than the NBT because of the extra calculations, but we expect it to
perform better in terms of classification accuracy, as clustering is carried out based on the similarity to
the actual FVs rather than the EN information, which is sometimes misleading.

The testing stage is also similar to that of the NBT; given the trained binary search tree and a test
fv, the MNBT searches for this fv starting from the root node, comparing its similarity to the stored
FV1 and FV2 in each node, and then it finds its way left or right recursively, until it finds the leaf node.
This node is then inputted to the KNN with the test fv to predict the class of the test example.

Searching the MNBT tree costs O(2d log n) in all cases, which is relatively fast, but slower than that
of the NBT, particularly when d is very large, i.e., >1000; the extra (2d) time comes from the comparison
of the tested FV with the stored FV1 and FV2.

The worst-case scenario of the MNBT is similar to that of the NBT; principally, when the EN of all
the FVs is the same, then FV1 is more likely to be equal to FV2, which results in hosting all the FVs or
at least a large number of them in one leaf node, and the MNBT overall classification time then ends
with O(2d log n + n.d) time. Table 1 summarizes the time complexity for both of the proposed methods.

Building the tree of the MNBT can be described using Algorithm 1 if we replace the Minimum
norm (Node. Min) with the index of FV1, and the Maximum norm (Node. Max) with FV2, in addition
to replacing the lines of scaling and comparing (to 0 and 1) with calculating and comparing the
similarity of the tested FV with both FV1 and FV2. The same alteration applies to Algorithm 2 to
comply with the MNBT method.

Table 1. Summary of time complexity.

NBT MNBT

Building time complexity O(n.d + n log n) O(n.d + n.d log n)
search time complexity O(log n) O(2d log n)

Testing time complexity
(search time + KNN time)

O(m.d + log n) *
and in the worst case:

O(n.d + log n)

O(2d log n + m.d)
and in the worst case:

O(2d log n + n.d)

* where m is the number of examples found in a leaf node.

3.3. Implementation Example

In this section, we implement the proposed methods to create two binary search trees: the first uses
the NBT and the second uses the MNBT. To this end, we used small synthesized data for illustration
purposes. The synthesized dataset used consists of two hypothetical features (X1 and X2) and two
classes (0 and 1) with 20 examples, as shown in Table 2 and illustrated in Figure 1.
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Table 2. A small synthesized dataset for illustration purposes.

#Example X1 X2 Class Euclidean Norms

0 4 3 0 5.0
1 2 5 0 5.4
2 2 4 0 4.5
3 4 4 0 5.7
4 3 6 0 6.7
5 1 0 0 1.0
6 1 3 0 3.2
7 3 1 0 3.2
8 3 2 0 3.6
9 4 6 0 7.2
10 4 5 1 6.4
11 3 7 1 7.6
12 8 6 1 10.0
13 9 7 1 11.4
14 3 4 1 5.0
15 5 7 1 8.6
16 8 3 1 8.5
17 3 5 1 5.8
18 4 8 1 8.9
19 8 8 1 11.3
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Figure 1. Illustration of the synthesized dataset from Table 2.

If we apply the NBT to the synthesized dataset we get the BT illustrated in Figure 2, and when
applying the MNBT to the same dataset we get the BT illustrated in Figure 3.

Computers 2018, 7, x FOR PEER REVIEW  7 of 14 

 190 

 191 

Figure 1. Illustration of the synthesized dataset from Table 2. 192 

If we apply the NBT to the synthesized dataset we get the BT illustrated in Figure 2, and when 193 
applying the MNBT to the same dataset we get the BT illustrated in Figure 3. 194 

 195 

Figure 2. Illustration of the binary search tree (BST), which is created by the norm-based binary tree 196 
(NBT) using the synthesized dataset from Table 2: the number outside the brackets indicates the 197 
number of examples hosted by each node, and those inside the brackets indicate the index(es) of the 198 
example(s) in a leaf node, or the integers of the minimum and maximum norms of the hosted 199 
examples. 200 

It is noteworthy that the norms shown in the BT inside the brackets in Figure 2 are the integers 201 
of the minimum and maximum norms; we used this integer format to make the size of the BT 202 
compact. Both Figures 2 and 3 summarize the proposed methods. For example, the root node in 203 
Figure 2 shows that the minimum norm of all examples is 1 and the maximum norm is 11.3. It is 204 
important to keep track of these values to be used in the test phase, as they are essential to scale the 205 
test norm to 0 or 1, so that the algorithm will be able to direct the search process; if the scaled norm is 206 
0 it goes to the left node, otherwise it goes to the right node, until it reaches a leaf node. At the end, 207 
the KNN is applied to the hosted examples there. 208 

It is interesting to note the second leaf node in Figure 2 {2(6,7)}: despite being a leaf node, it 209 
hosts two examples (6 and 7), as can be seen from Table 2. Both examples share the same norm (3.2), 210 
and are therefore stored together in a leaf node. Having a large number of examples that share the 211 
same norm is problematic for the NBT, as these examples might be completely different, and the test 212 
example will be directed to use these examples with the KNN, which might yield undesired results. 213 
The same remark applies to examples (0, and 14) sharing the same norm (5). However, this is not 214 
always the case, as there are many leaf nodes in both Figures with only one example, which makes 215 
the testing phase very fast for both of the proposed methods. 216 

In terms of classification accuracy, if we have a dataset with a limited number of similar norms 217 
(like the one in Table 2), we can see that from the first split of the resultant BST, all of the similar 218 

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

X2

X1

Class 0

Class 1

Figure 2. Illustration of the binary search tree (BST), which is created by the norm-based binary tree
(NBT) using the synthesized dataset from Table 2: the number outside the brackets indicates the
number of examples hosted by each node, and those inside the brackets indicate the index(es) of the
example(s) in a leaf node, or the integers of the minimum and maximum norms of the hosted examples.
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It is noteworthy that the norms shown in the BT inside the brackets in Figure 2 are the integers of
the minimum and maximum norms; we used this integer format to make the size of the BT compact.
Both Figures 2 and 3 summarize the proposed methods. For example, the root node in Figure 2 shows
that the minimum norm of all examples is 1 and the maximum norm is 11.3. It is important to keep
track of these values to be used in the test phase, as they are essential to scale the test norm to 0 or 1,
so that the algorithm will be able to direct the search process; if the scaled norm is 0 it goes to the left
node, otherwise it goes to the right node, until it reaches a leaf node. At the end, the KNN is applied to
the hosted examples there.

It is interesting to note the second leaf node in Figure 2 {2(6,7)}: despite being a leaf node, it hosts
two examples (6 and 7), as can be seen from Table 2. Both examples share the same norm (3.2), and are
therefore stored together in a leaf node. Having a large number of examples that share the same norm
is problematic for the NBT, as these examples might be completely different, and the test example
will be directed to use these examples with the KNN, which might yield undesired results. The same
remark applies to examples (0, and 14) sharing the same norm (5). However, this is not always the
case, as there are many leaf nodes in both Figures with only one example, which makes the testing
phase very fast for both of the proposed methods.

In terms of classification accuracy, if we have a dataset with a limited number of similar norms
(like the one in Table 2), we can see that from the first split of the resultant BST, all of the similar
examples with relatively small norms are stored to the left of the BST, namely, {0, 1, 2, 3, 5, 6, 7, 8, 14,
17}, see the upper side of Figure 2, and all of the similar examples with relatively large norms are
stored to the right of the BST, namely, {4, 9, 10, 11, 12, 13, 15, 16, 18, 19}, see the lower side of Figure 2.
Ideally, if we have a perfect sorting of the training examples (i.e., training examples from the same
class are stored together) the classification accuracy should be improved.

It is also interesting to note that some examples from class 0 are sorted unexpectedly on the right
side, and some examples from class 1 are sorted unexpectedly on the left side. This is due to the large
and small norms of both examples, where they should have small and large norms to match other
examples from their own classes. However, this should not be problematic, as each example has its
own class, and at the end of the process we use the KNN to decide the new class of the test example
regardless of the place inside the created BT.

On the other hand, the MNBT illustrated in Figure 3 stores the indexes of the examples with the
minimum and maximum norms, as seen in the root node, where these examples are 5 and 13. The first
example (5) has the minimum norm 1, and the second example (13) has the maximum norm 11.4.
These examples (5 and 13) will be used in the test phase of the MNBT by measuring their similarities to
a test example; if it is similar to example 5, the search process is directed to the left node, and otherwise
it is directed to the right node. The same process is executed at each point, exploiting the stored
indexes; the search process is directed left/right until it reaches a leaf node, and only then is the KNN
applied to the hosted examples found in that particular leaf node.

It is interesting to note from Figure 3 that the starting examples (5 and 13) were used effectively to
sort the rest of the examples (including their own) in the created BT, in a way that facilitates future
searches; as we can see from the first split, most of the similar examples from class 0 are stored to
the left {0, 1, 2, 3, 5, 6, 7, 8}, with exceptions {4, 9}. And most of the similar examples from class 1 are
stored to the right {10, 11, 12, 13, 15, 16, 18, 19}, with exceptions {14, 17}, as can be seen from Figure 3.
However, this should not make a big difference in the test phase, as each example has its own class,
and at the end of the process we use the KNN to decide the new class of the test example regardless of
the place inside the created BT.
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Figure 3. Illustration of the binary search tree (BST), which is created by the Minimum/Maximum
norms-based binary tree (MNBT) using the synthesized dataset from Table 2: the number outside the
brackets indicates the number of examples hosted by each node, and those inside the brackets indicate
the index(es) of the example(s) in a leaf node, or the indexes of the examples of the minimum and
maximum norms of the hosted examples.

3.4. Data

To evaluate and compare our methods, we used well-known machine learning datasets, which
were obtained from the Machine Learning Repository [15] and the support vector machine library
datasets (LIBSVM) [16]. These datasets are normally used for evaluating machine learning methods,
and are therefore reused here for comparison purposes. We used intermediate and large numerical
datasets, with different dimensions and sizes. The numerical data include Boolean (B), Integers (I),
negative (N), and Real numbers (R). Table 3 shows the description of the datasets used.

Table 3. Datasets used and their description.

Dataset Size Dimensions Type

Homus 15199 1600 I
Nist 44951 1024 I

Satimage 6435 36 R
Usps 9298 256 R

Pendigits 10,992 16 I
Gisette 13,500 5000 I
Letter 20,000 16 R

Connect4 67,557 42 I
Mnist 70,000 784 I

Covtype 581,012 54 I
Poker 1,025,010 11 I
Susy 5,000,000 18 R

Higgs 11,000,000 28 R

4. Results and Discussions

We conducted several experiments to evaluate the proposed methods after programming both
NBT and MNBT using C++ to classify the datasets described in Table 3. To make a valid comparison
with other methods, and since different researchers used different evaluation schemes and different
datasets, each of our experiments followed the experimental settings of the compared method. The
hardware used was the Azure high-performance computing virtual machine with 16 Intel® CPUs @
2.3 GHz with 32 GB RAM, and no computer cluster was used. However, the proposed algorithms had
not benefited from the Multi CPUs available, because they were single-threaded, and the machine
used could not run a single thread on multiple CPUs simultaneously. However, this allowed for more
experiments to run at the same time, as each experiment ran on a dedicated single CPU. Since each
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of the previous methods used different hardware with a different computation power, we opted to
measure the speed-up of the algorithm similarly to [2] by comparing the time consumed with that of
the sequential KNN algorithm on the same machine as follows:

Speedup =
re f erence time
algorithm time

(1)

where “reference time” is the runtime consumed by the sequential KNN, and “algorithm time” is the
runtime consumed by other algorithms that we want to compute their speed-up factor.

To compare our results with the MR-KNN and KNN-IS, we evaluated our methods on the same
datasets used, namely Poker and Susy, with the same 5-fold cross-validation (CV); the results are
shown in Tables 4 and 5.

The accuracy results recorded in Table 4 look the same for both methods of MR-KNN and KNN-IS,
because these algorithms are parallel-exact algorithms. Despite being approximate, the proposed
MNBT outperformed both methods compared in terms of accuracy and speed on both datasets, as
can be seen from Tables 4 and 5, where the MNBT is found to be much faster than both MR-KNN and
KNN-IS, and more accurate as well. With reasonable results, we also can see that the proposed NBT
is much faster than all the methods mentioned in Table 5; the reason for this significant high speed
is the use of the norm without the need for using the Euclidian distance (ED) (which relies on the
dimensions of the dataset) as in the MNBT.

To compare our results with the RC-KNN and LC-KNN methods we evaluated our methods on
the same datasets used, with the same 10-fold-CV, as shown in Tables 6 and 7.

Table 4. Classification accuracy comparison of MR-KNN and KNN-IS, with 5-fold-CV.

Method Dataset Accuracy AvgRunTime (ms)

MR-KNN
Poker 0.502 804,456
Susy 0.694 12,367,966

KNN-IS
Poker 0.502 102,938
Susy 0.694 1,900,039

NBT
Poker 0.519 296,639
Susy 0.594 68,227

MNBT
Poker 0.530 43,345
Susy 0.710 395,464

KNN
Poker 0.502 105,475,006
Susy 0.694 3,258,848,811

Table 5. Speed-up comparison of MR-KNN and KNN-IS, with 5-fold-CV.

Method Poker Susy

MR-KNN 131 263
KNN-IS 1025 1715

NBT 356 47,765
MNBT 2433 8241

Table 6. Classification accuracy comparison of RC-KNN and LC-KNN, with 10-fold-CV.

Dataset RC-KNN LC-KNN KNN NBT MNBT Our KNN

Usps 0.903 0.936 0.95 0.336 0.864 0.97
Mnist 0.722 0.839 0.86 0.190 0.858 0.97

Gisette 0.931 0.953 0.97 0.616 0.884 0.96
Letter 0.789 0.950 0.95 0.327 0.802 0.96

Pendigits 0.945 0.972 0.98 0.254 0.966 0.99
Satimage 0.860 0.888 0.91 0.400 0.875 0.90

Average 0.858 0.923 0.936 0.354 0.875 0.961
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Table 7. Speed-up comparison of RC-KNN and LC-KNN, with 10-fold-CV.

Dataset RC-KNN LC-KNN NBT MNBT

Usps 9.2 8.7 1035 203
Mnist 8.2 6.8 9130 368

Gisette 9.3 7.6 2479 68
Letter 6.1 6.0 111 91

Pendigits 3.1 3.0 79 55
Satimage 2.8 2.7 64 35

As can be seen from Tables 5 and 6, the accuracy achieved by the proposed NBT was very low
for these datasets; this is due to the nature of the data contained in these datasets, which either
contain negative and positive numbers, or a large number of zeros. Both situations yield a similar EN
for different examples, and therefore, the NBT inserts these examples in the wrong locations in the
binary search tree. However, its speed-ups are much higher than those of all methods, as expected,
while the MNBT outperforms the RC-KNN with competing results compared to the LC-KNN, with
much higher speed-ups.

To compare our results with the cKNN and cKNN+, we evaluated our methods on the same
datasets used, with the same 5-fold-CV, as shown in Table 8. It is worth mentioning that there was
no reported consumed time for both the cKNN and the cKNN+, instead Reference [5] reported the
number of distances used, and the authors also reported the average accuracy on all the datasets used,
which was almost the same for both the cKNN and the cKNN+ in the range of 83%–90% depending on
the number of clusters and neighbors (K) used.

Table 8. Classification accuracy comparison of NBT and MNBT, with 5-fold-CV.

Database NBT MNBT KNN

Gisette 0.609 0.888 0.960
Letter 0.313 0.799 0.957

Homus 0.120 0.555 0.647
Satimage 0.400 0.868 0.904
Pendigits 0.262 0.963 0.994

Mnist 0.190 0.854 0.972
Usps 0.336 0.860 0.973
Nist 0.088 0.536 0.797

Average 0.290 0.790 0.901

Again, we can see the poor performance of our norm-based method (NBT) particularly on the
Nist dataset, where the dataset contains many repetitions of 0s and 255s, while the MNBT performs
much better than the NBT and, in some datasets, outperforms the maximum average accuracy of both
cKNN and cKNN+.

To compare our results with the MDT1 and MDT2, we evaluated our methods on the same
available datasets used, with the same test ratios used, which was in the range of 19–97% depending
on the dataset used, as shown in Tables 9 and 10.

Table 9. Classification accuracy of NBT and MNBT compared to MDT1 and MDT2, with different
test ratios.

Dataset MDT1 MDT2 1NN NBT MNBT Our1NN

Poker 0.5073 0.543 51.07 0.4637 0.4848 0.5106
Susy 0.7289 0.7491 - 0.5941 0.7102 0.7192

Covtype 85.76 90.1 - 0.4635 0.9322 0.9645
Letter 61.6 80.52 95.68 0.3083 0.7887 0.9539

Pendigits 85.09 93.71 97.74 0.2575 0.9611 0.9937
Satimage 78.82 85.55 89.5 0.401 0.8605 0.8935
Connect4 65.96 67.6 65.67 0.6109 0.6109 0.6109

Usps 66.05 85.85 95.07 0.3154 0.8505 0.9766
Gisette 61.7 90.1 95.8 0.6046 0.8829 0.951
Higgs 58.08 60.02 - 0.5287 0.5897 -
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Table 10. Time (ms) consumed by NBT and MNBT compared to that of MDT1 and MDT2, with different
test ratios.

Dataset MDT1 MDT2 1NN NBT MNBT Our1NN

Poker 12,100 10,900 10,100,000 229,624 170,782 11,963,039
Susy 567,000 345,000 >2 days 157,615 330,117 3,978,950,504

Covtype 1,560,000 1,120,000 >8 h 157,780 165,255 73,878,335
Letter 2990 544 40,600 47 278 70,913

Pendigits 406 3780 10,800 575 676 24,028
Satimage 391 706 4950 307 495 18,868
Connect4 188 8560 2,020,000 745,576 757,386 724,509

Usps 766 1460 38,300 383 1329 210,577
Gisette 2380 27,100 435,000 465 10,912 910,162
Higgs 12,100 10,900 - 345,090 1,215,761 >6 weeks

As can be noted from Table 10, the time consumed by the proposed methods was very short
compared to that of the pure 1NN (our implementation in the last column). For example, the NBT took
about 5.75 minutes, and the MNBT took about 20 minutes on the Higgs dataset, while our implantation
of the 1NN took more than 6 weeks on the same datasets. It is noteworthy that the time consumed by
the MDT1 and MDT2 cannot be compared to the time consumed by the proposed methods because
both algorithms were tested on a different machine, which is why we used the speed-up factor shown
in Table 11, which is generated from Table 10 using Equation (1) for this experiment.

It is interesting to note from Tables 9 and 11 (row 8) that the accuracies of both of the NBT and
the MNBT are the same as the KNN (with k = 1); this is because of the nature of the data contained in
the Connect4 datasets, since the Connect4 data is nothing but a combination of (x, o and b), which are
replaced by (1, 2, 3), respectively, to comply with the KNN as being a numeric classifier. Furthermore,
the speed-up of both of the proposed algorithms is 1, meaning that they consume almost the same
time as the KNN; the reason for that is the similar norms of all the examples, which makes it possible
to insert all the examples in one leaf node in the binary search tree. However, we can observe a good
performance in terms of accuracy achieved by the MNBT, which outperforms the MDT1 in most
datasets, and rivals the MDT2 results. We could not calculate the speed-up of both Susy and Higgs in
this experiment because they both consume an unacceptable amount of time.

Table 11. Speed-up comparison of MDT1 and MDT2, with different test ratios.

Dataset MDT1 MDT2 NBT MNBT

Poker 835 927 52 70
Susy - - 25,245 12,053

Covtype - - 468 447
Letter 14 75 1509 255

Pendigits 27 3 42 36
Satimage 13 7 61 38
Connect4 10,745 236 1 1

Usps 50 26 550 158
Gisette 183 16 1957 83
Higgs - - - -

In summary, the previous presentation and discussion of the proposed NBT and MNBT results
show that these methods are very fast compared to other methods when classifying Big Data using the
KNN approach, with expected humble accuracy rates of the NBT, and relatively significant enhanced
accuracy rates of the MNBT, which means it is possible to build on these methods to further enhance
the accuracy rates exploiting the speed characteristics of both. As can be seen from the previous results,
most are data-dependent, i.e., the proposed method perform well with some datasets and poorly with
others. This is because both of the proposed methods depend on the norm of the FVs, particularly
the NBT, which is more dependent on the norm. The data contained in these datasets are of different
nature, i.e. some of them contain negative and positive numbers, or a large number of zeros, in such
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situations, calculating the EN yields similar norms for different examples belonging to different classes.
Therefore, the building algorithms of the proposed MNBT and NBT sorts these examples in wrong
locations within their binary search trees, which makes finding the nearest ones to a test example a
difficult task for the search algorithms; and this is the major limitation of both the proposed algorithms.

5. Conclusions

In this paper, we proposed a new approach based on inserting training examples into a binary
search tree. We used two methods: The first utilizes the scaled norm of each example and called
the NBT, the second is based on inserting each example depending on its similarity to the examples
of the minimum and maximum norms and called the MNBT. The experimental results on different
intermediate and big datasets show the high classification speed of both methods; however, the results
were data-dependent, particularly when using the NBT, i.e., the greater the uniqueness of the EN of the
data examples, the higher the accuracy results will be. However, if this constraint is extremely violated,
poor results are to be expected from both methods, particularly the NBT, which is more dependent on
the EN calculation. Ideally, this constraint is violated when we have data with negative and positive
numbers, permutations of some numbers, and many zeros or permutations of the same number, as all
these situations yield similar norms from different examples. This is to be expected from the beginning;
however, the reason for proposing the NBT is its outstanding speed (log n) compared to all the methods
evaluated. This strong characteristic can be used to hybridize and further enhance the proposed
methods to obtain fast and more accurate algorithms, which is what we have done when we proposed
the MNBT, which is much faster than most of the algorithms compared, with competing accuracy.

It is possible to increase the accuracy of the proposed methods by considering more points from
the higher levels of the binary search tree, and not only those found in a leaf-node, but this will also
increase the number of examples that are fed to the KNN classifier. Consequently, this will increase
the running cost. However, since both the proposed algorithms are extremely fast compared to other
methods, we may not worry much about the running cost, particularly if the number of examples
increased is controlled to a specific value, say log n for instance. Such a modification will be left
for future work, along with other enhancements such as using random points if the minimum and
maximum norms are equal, in addition to trying other norms and distance metrics such as the Hassanat
distance [17,18] to address the major limitation (accuracy) of the proposed methods. It is also possible
to increase the accuracy of the classification using different methods to store data points in the BST,
such as the furthest-pair of points [19]; such a method might increase the accuracy but this would be at
the expense of the classification speed, as shown in Reference [9].

Supplementary Materials: The datasets used in this paper are available online: http://archive.ics.uci.edu/ml
and https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
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