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Abstract: In the era of Big data, there is still place for techniques which reduce the data size with
maintenance of its internal knowledge. This problem is the main subject of research of a family
of granulation techniques proposed by Polkowski. In our recent works, we have developed new,
really effective and simple techniques for decision approximation, homogenous granulation and
epsilon homogenous granulation. The real problem in this family of methods was the choice of an
effective parameter of approximation for any datasets. It was resolved by homogenous techniques.
There is no need to estimate the optimal parameters of approximation for these methods, because
those are set in a dynamic way according to the data internal indiscernibility level. In this work,
we have presented an extension of the work presented at ICIST 2018 conference. We present results
for homogenous and epsilon homogenous granulation with the comparison of its effectiveness.

Keywords: homogenous granulation; Rough Sets; decision systems; classification

1. Introduction

Granular rough computing is one of the techniques used for decision system approximation.
This method relies on knowledge granules which are formed from objects with selected, similar
features. The main goal is to reduce the amount of data being used for classification or regression,
maintaining internal knowledge of the decision system. In the era of processing large datasets these
techniques can play a significant role. Basic granulation methods were proposed by Polkowski [1,2].
In the works of Artiemjew [3,4], Polkowski [1,2,5–8], and Polkowski and Artiemjew [9–14] we have
presented standard granulation, concept dependent and layered granulation in the context of data
reduction, missing values absorbtion and usage in the classification process.

Our motivation to perform this research was an idea to determine effective indiscernibility ratio
of decision system approximation without its estimation. The ratio of approximation has influence
on the original data size reduction. In our previous methods. we had to estimate this parameter
reviewing the set of radii from 0 to 1. In the methods proposed in this work, we do not have to perform
this operation. The ratio, for particular central object, is chosen in an automatic way, by extending
it until the set of objects is homogenous in the sense of belonging to the decision class. Instead of
performing granulation several times, depending on the number of attributes of the object, this process
is performed only once, solving the problem of optimal radii search. Our results are showing reduction
of training dataset size by up to 50 percent maintaining the internal knowledge at a satisfying level
which was measured by efficiency of the classification process. The method is simple, has a square
time complexity, U2 main operations time the scalar |A|. U is the set of objects of decision system,
A the set of conditional attributes.
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In this work, we have described the results of our previous research, presented in detail in [15,16].
The results are prepared for nominal (Homogenous granulation) data and numerical data (Epsilon
homogenous granulation). It is worth to mention that our new methods were implemented in really
effective new ensemble model; see [17].

The paper has the following content. In Section 2 there is a theoretical background. In Sections 3
and 4 we present a description of a our granulation techniques. In Section 5 we present a description
of a classifier used in the experimental part. In Section 6 there are the results of our experiments and
the conclusion is presented in Section 7.

There are three basic steps of the granulation process. The granules are computed for each training
object, then, the training dataset is covered using the selected strategy and in the last step, majority
voting is being used to get granular reflection of the training system.

In the next section, we describe the first step of the mentioned procedure.

2. Granular Rough Inclusions

Some more theory about rough inclusions can be found in Polkowski [1,6,7,18,19], a detailed
discussion may be found in Polkowski [8].

For given objects u and v from training decision system U, A, d, where U is the universe of objects,
A the set of conditional attributes, and d is the decision attribute. The standard rough inclusion µ is
defined as

µ(v, u, r)⇔ |IND(u, v)|
|A| ≥ r (1)

where

IND(u, v) = {a ∈ A : a(u) = a(v)}, (2)

The parameter r is the granulation radius from the set {0, 1
|A| ,

2
|A| , ..., 1}.

2.1. ε–Modification of the Standard Rough Inclusion

Given a parameter ε valued in the unit interval [0, 1], we define the set

Indε(u, v) = {a ∈ A : dist(a(u), a(v)) ≤ ε}, (3)

and, we set

µε(v, u, r)⇔ |Indε(u, v)|
|A| ≥ r (4)

2.2. Covering of Universe of Training Objects

During the process of covering the objects of the training system are covered based on chosen
strategy. Simple random choice was used in this experiment, because it is the most effective method
among studied ones; see [14]).

The last step of the granulation process is shown in the next section.

2.3. Granular Reflections

In this step the granular reflections of the original training system are formed based on the
granules from the found coverage. Each granule g ∈ COV(U, µ, r) from the coverage is finally
represented by a single object which attributes are chosen using the Majority Voting (MV) strategy.

{MV({a(u) : u ∈ g}) : a ∈ A ∪ {d}} (5)
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The granular reflection of the decision system D = (U, A, d) is the decision system COV(U, µ, r),
the set of objects formed from granules.

v ∈ gcd
r (u) if and only if µ(v, u, r) and (d(u) = d(v)) (6)

for a given rough (weak) inclusion µ.
Detailed information about our new method of granulation is presented in the next section.

3. Homogenous Granulation

In this section we have a formal definition of the homogenous granulation process. In plain words,
considering the set of samples from a decision system, we can try to lower the size of the system by
searching for groups of objects similar in a fixed ratio. Having those sets (the granules), we can cover
the original system searching for granules, which represent all the knowledge from original decision
systems. In this particular method, we form the group of objects, which belong to the same decision
class and have the lowest possible indiscernibility ratio. It means that the similarity of samples is
as low as possible until they are in the same class. The granule according to this assumption can be
defined as ghomogenous

ru ; see the equation below.
The granules are formed as follows,

ghomogenous
ru = {v ∈ U : |gcd

ru | − |gru | = 0, f or minimal ru f ul f ills the equation} (7)

where

gcd
ru = {v ∈ U :

IND(u, v)
|A| ≤ ru AND d(u) = d(v)}

and

gru = {v ∈ U :
IND(u, v)
|A| ≤ ru}

ru = { 0
|A| ,

1
|A| , ...,

|A|
|A| }

3.1. Simple Example of Homogenous Granulation

In the Table 1, we have exemplary training decision system, which we based on while computing
homogenous granules defined in previous section. The decision system (Utrn, B, d) is the set of resolved
problems, useful in modelling the automatic decision process. Utrn is the set of objects from u1 until
u24, B is the set of conditional attributes (description of samples) and contains values from b1 until
b13. d is a decision attribute, which contains the expert decision used for creating the model of the
classification. In our case two possible classes exist: d ∈ D = {1, 2}. Lets explain the process of
granules formation. For given object u1, which belongs to class 1 we are looking for the objects from
the same class starting from the identical objects (similar in degree 1) until the objects are indiscernible
in smallest possible degree (are the least similar to u1) and all of them are in class 1. In case we greatly
lower the indiscernibility ratio, the objects r-indiscernible will not point on the decision class in an
unambiguous way. In our example ratio 0.385 = 5

13 for granule g0.385(u1) means that the set contain
objects, which are identical with the central one (u1) at least on 5 positions. For instance, object u1

and u6 have the following common descriptors: a1 = 0, a6 = 0, a7 = 2, a7 = 2, a9 = 1 and a13 = 3.
In the covering part we are looking for the set of granules, which represent each object from Utrn at
least once.

Considering training decision system from Table 1.
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Table 1. Example of decision system (Utrn, B, d).

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 d

u1 74.0 0.0 2.0 120.0 269.0 0.0 2.0 121.0 1.0 0.2 1.0 1.0 3.0 1
u2 65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 1.0 0.0 7.0 1
u3 59.0 1.0 4.0 135.0 234.0 0.0 0.0 161.0 0.0 0.5 2.0 0.0 7.0 1
u4 53.0 1.0 4.0 142.0 226.0 0.0 2.0 111.0 1.0 0.0 1.0 0.0 7.0 1
u5 43.0 1.0 4.0 115.0 303.0 0.0 0.0 181.0 0.0 1.2 2.0 0.0 3.0 1
u6 46.0 0.0 4.0 138.0 243.0 0.0 2.0 152.0 1.0 0.0 2.0 0.0 3.0 1
u7 60.0 1.0 4.0 140.0 293.0 0.0 2.0 170.0 0.0 1.2 2.0 2.0 7.0 2
u8 63.0 0.0 4.0 150.0 407.0 0.0 2.0 154.0 0.0 4.0 2.0 3.0 7.0 2
u9 40.0 1.0 1.0 140.0 199.0 0.0 0.0 178.0 1.0 1.4 1.0 0.0 7.0 1
u10 48.0 1.0 2.0 130.0 245.0 0.0 2.0 180.0 0.0 0.2 2.0 0.0 3.0 1
u11 54.0 0.0 2.0 132.0 288.0 1.0 2.0 159.0 1.0 0.0 1.0 1.0 3.0 1
u12 71.0 0.0 3.0 110.0 265.0 1.0 2.0 130.0 0.0 0.0 1.0 1.0 3.0 1
u13 70.0 1.0 4.0 130.0 322.0 0.0 2.0 109.0 0.0 2.4 2.0 3.0 3.0 2
u14 56.0 1.0 3.0 130.0 256.0 1.0 2.0 142.0 1.0 0.6 2.0 1.0 6.0 2
u15 59.0 1.0 4.0 110.0 239.0 0.0 2.0 142.0 1.0 1.2 2.0 1.0 7.0 2
u16 64.0 1.0 1.0 110.0 211.0 0.0 2.0 144.0 1.0 1.8 2.0 0.0 3.0 1
u17 67.0 1.0 4.0 120.0 229.0 0.0 2.0 129.0 1.0 2.6 2.0 2.0 7.0 2
u18 51.0 0.0 3.0 120.0 295.0 0.0 2.0 157.0 0.0 0.6 1.0 0.0 3.0 1
u19 64.0 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1
u20 57.0 0.0 4.0 128.0 303.0 0.0 2.0 159.0 0.0 0.0 1.0 1.0 3.0 1
u21 71.0 0.0 4.0 112.0 149.0 0.0 0.0 125.0 0.0 1.6 2.0 0.0 3.0 1
u22 53.0 1.0 4.0 140.0 203.0 1.0 2.0 155.0 1.0 3.1 3.0 0.0 7.0 2
u23 47.0 1.0 4.0 112.0 204.0 0.0 0.0 143.0 0.0 0.1 1.0 0.0 3.0 1
u24 58.0 1.0 3.0 112.0 230.0 0.0 2.0 165.0 0.0 2.5 2.0 1.0 7.0 2

Homogenous granules are formed as follows:

g0.385(u1) = (u1, u6, u10, u11, u12, u18, u20),
g0.462(u2) = (u2, u3, u4, u5, u9, u23),
g0.539(u3) = (u2, u3, u5),
g0.615(u4) = (u4),
g0.539(u5) = (u3, u5, u21, u23),
g0.462(u6) = (u4, u6, u16, u20, u21),
g0.539(u7) = (u7, u15, u17),
g0.462(u8) = (u7, u8, u13),
g0.462(u9) = (u2, u4, u9),
g0.615(u10) = (u10),
g0.385(u11) = (u1, u6, u11, u12, u20),
g0.385(u12) = (u1, u11, u12, u18, u20),
g0.615(u13) = (u13),
g0.385(u14) = (u14, u15, u24),
g0.615(u15) = (u15),
g0.539(u16) = (u16),
g0.539(u17) = (u7, u15, u17),
g0.389(u18) = (u1, u2, u6, u10, u12, u18, u20, u21, u23),
g0.615(u19) = (u19),
g0.462(u20) = (u1, u6, u11, u12, u18, u20),
g0.462(u21) = (u3, u5, u6, u21, u23),
g0.615(u22) = (u22),
g0.462(u23) = (u2, u3, u5, u21, u23),
g0.462(u24) = (u7, u15, u24),
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We cover the universe of objects by random choice:

g0.462(u2) = (u2, u3, u4, u5, u9, u23),
g0.539(u3) = (u2, u3, u5),
g0.462(u6) = (u4, u6, u16, u20, u21),
g0.462(u8) = (u7, u8, u13),
g0.385(u12) = (u1, u11, u12, u18, u20),
g0.385(u14) = (u14, u15, u24),
g0.539(u17) = (u7, u15, u17),
g0.385(u18) = (u1, u2, u6, u10, u12, u18, u20, u21, u23),
g0.615(u19) = (u19),
g0.462(u21) = (u3, u5, u6, u21, u23),
g0.615(u22) = (u22),

Final granular system is in Table 2.

Table 2. Granular decision system formed from Covering granules.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 d

g0.462(u2) 65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 1.0 0.0 7.0 1
g0.539(u3) 65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 2.0 0.0 7.0 1
g0.462(u6) 53.0 0.0 4.0 142.0 226.0 0.0 2.0 111.0 1.0 0.0 2.0 0.0 3.0 1
g0.462(u8) 60.0 1.0 4.0 140.0 293.0 0.0 2.0 170.0 0.0 1.2 2.0 3.0 7.0 2
g0.385(u12) 74.0 0.0 2.0 120.0 269.0 0.0 2.0 159.0 0.0 0.0 1.0 1.0 3.0 1
g0.385(u14) 56.0 1.0 3.0 130.0 256.0 0.0 2.0 142.0 1.0 0.6 2.0 1.0 7.0 2
g0.539(u17) 60.0 1.0 4.0 140.0 293.0 0.0 2.0 170.0 1.0 1.2 2.0 2.0 7.0 2
g0.385(u18) 71.0 0.0 4.0 120.0 269.0 0.0 2.0 121.0 0.0 0.0 1.0 0.0 3.0 1
g0.615(u19) 64.0 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1
g0.462(u21) 59.0 1.0 4.0 112.0 234.0 0.0 0.0 161.0 0.0 0.5 2.0 0.0 3.0 1
g0.615(u22) 53.0 1.0 4.0 140.0 203.0 1.0 2.0 155.0 1.0 3.1 3.0 0.0 7.0 2

Exemplary visualization of granulation process is presented in Figure 1.
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Figure 1. Simple demonstration of granulation for objects represented by the pairs of attributes.
In the picture we have objects of two classes, circles and triangles. Granulating the decision system
in homogenous way we can obtain g0.5(ob1) = {ob1, ob5}, g1(ob2) = {ob2}, g0.5(ob3) = {ob3},
g1(ob4) = {ob4}, g0.5(ob1) = {ob5, ob1}. The set of possible radii is { 0

2 , 1
2 , 2

2}.

4. Epsilon Variant of Homogenous Granulation

The only difference according to homogenous granulation described in Section 3.1 is the addition
of the parameter ε, which allows us to use a floating point value in the process of granulation. The rest
of the techniques are similar.

The method is defined in the following way,

gε,homogenous
ru = {v ∈ U : |gε−cd

ru | − |gε
ru | = 0, f or minimal ru f ul f ills the equation} (8)

where

gε,cd
ru (u) = {v ∈ U :

INDε(u, v)
|A| ≤ ru AND d(u) = d(v)}

and

gε
ru(u) = {v ∈ U :

INDε(u, v)
|A| ≤ ru}

ru = { 0
|A| ,

1
|A| , ...,

|A|
|A| }

INDε(u, v) = {a ∈ A :
|a(u)− a(v)|
maxa −mina

≤ ε}

where maxa, mina are the maximal and minimal attribute values for a ∈ A in the original dataset.
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The metrics for epsilon granulation and classification are defined in Equations (9) and (10)
respectively. The Hamming metric for symbolic data is placed in Equation (9). ε-normalized Hamming
metric as modification for numerical values, for given ε is in Equation (10).

dH(u, v) = |{a ∈ A : a(u) 6= a(v)}|. (9)

dH,ε(u, v) = |{a ∈ A :
|a(u)− a(v)|
maxa −mina

> ε}|. (10)

Considering training decision system from Table 3 the hand example of ε homogenous granulation
is as follows.

Table 3. Training data system (Utrn, A, d), (a sample from australian credit dataset), for ε = 0.05.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 d

u1 1 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 159 1
u2 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1
u3 1 58.58 2.71 2 8 4 2.415 0 0 0 1 2 320 1 0
u4 1 29.58 4.5 2 9 4 7.5 1 1 2 1 2 330 1 1
u5 0 19.17 0.58 1 6 4 0.585 1 0 0 1 2 160 1 0
u6 1 23.08 2.5 2 8 4 1.085 1 1 11 1 2 60 2185 1
u7 0 21.67 11.5 1 5 3 0 1 1 11 1 2 0 1 1
u8 1 27.83 1 1 2 8 3 0 0 0 0 2 176 538 0
u9 1 41.17 1.33 2 2 4 0.165 0 0 0 0 2 168 1 0
u10 1 41.58 1.75 2 4 4 0.21 1 0 0 0 2 160 1 0
u11 1 22.5 0.12 1 4 4 0.125 0 0 0 0 2 200 71 0
u12 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1
u13 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0
u14 0 58.67 4.46 2 11 8 3.04 1 1 6 0 2 43 561 1
u15 1 33.5 1.75 2 14 8 4.5 1 1 4 1 2 253 858 1
u16 0 18.92 9 2 6 4 0.75 1 1 2 0 2 88 592 1
u17 1 20 1.25 1 4 4 0.125 0 0 0 0 2 140 5 0
u18 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0
u19 0 22.67 3.8 2 8 4 0.165 0 0 0 0 2 160 1 0
u20 1 17.42 6.5 2 3 4 0.125 0 0 0 0 2 60 101 0
u21 1 41.42 5 2 11 8 5 1 1 6 1 2 470 1 1
u22 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0
u23 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1
u24 0 28.17 0.58 2 6 4 0.04 0 0 0 0 2 260 1005 0

The granules are computed below:

g0.571429(u1) = (u1),
g0.5(u2) = (u2, u4, u15, u21),
g0.571429(u3) = (u3, u9, u19, u20),
g0.5(u4) = (u1, u2, u4, u6, u21),
g0.5(u5) = (u5, u10, u19, u24),
g0.5(u6) = (u1, u4, u6),
g0.5(u7) = (u7),
g0.5(u8) = (u8, u9, u11, u17),
g0.642857(u9) = (u9, u10, u11, u17, u19, u20),
g0.642857(u10) = (u9, u10, u19),
g0.642857(u11) = (u9, u11, u17, u19, u20),
g0.642857(u12) = (u12),
g0.571429(u13) = (u13),
g0.428571(u14) = (u2, u14, u16, u21),



Computers 2019, 8, 36 8 of 13

g0.5(u15) = (u2, u12, u15, u21),
g0.5(u16) = (u1, u14, u16),
g0.642857(u17) = (u9, u11, u17, u20),
g0.642857(u18) = (u18),
g0.571429(u19) = (u3, u9, u10, u11, u17, u19, u20, u24),
g0.642857(u20) = (u9, u11, u17, u19, u20),
g0.5(u21) = (u2, u4, u14, u15, u21),
g0.642857(u22) = (u22),
g0.642857(u23) = (u23),
g0.642857(u24) = (u24),

Granules covering training system by random choice:

Covering granules: g0.5(u2) = (u2, u4, u15, u21),
g0.571429(u3) = (u3, u9, u19, u20),
g0.5(u5) = (u5, u10, u19, u24),
g0.5(u6) = (u1, u4, u6),
g0.5(u7) = (u7),
g0.5(u8) = (u8, u9, u11, u17),
g0.642857(u12) = (u12),
g0.571429(u13) = (u13),
g0.5(u16) = (u1, u14, u16),
g0.642857(u18) = (u18),
g0.642857(u20) = (u9, u11, u17, u19, u20),
g0.5(u21) = (u2, u4, u14, u15, u21),
g0.642857(u22) = (u22),
g0.642857(u23) = (u23),

Final approximation of training decision system is in Table 4:

Table 4. Granular decision system formed from Covering granules.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 d

g0.5(u2) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1
g0.571429(u3) 1 58.58 2.71 2 8 4 0.165 0 0 0 0 2 320 1 0

g0.5(u5) 0 19.17 0.58 2 6 4 0.21 1 0 0 0 2 160 1 0
g0.5(u6) 1 20.17 8.17 2 6 4 1.96 1 1 14 1 2 60 159 1
g0.5(u7) 0 21.67 11.5 1 5 3 0 1 1 11 1 2 0 1 1
g0.5(u8) 1 27.83 1.33 1 2 4 0.165 0 0 0 0 2 176 1 0

g0.642857(u12) 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1
g0.571429(u13) 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0

g0.5(u16) 0 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 561 1
g0.642857(u18) 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0
g0.642857(u20) 1 22.5 1.33 2 4 4 0.165 0 0 0 0 2 168 1 0

g0.5(u21) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1
g0.642857(u22) 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0
g0.642857(u23) 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1

In the Figure 2 there is a simple visualization of granulation process.
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Figure 2. Exemplary toy demonstration for objects represented as pairs of attributes. We have two
decision concepts: circles and rectangles. Epsilon homogenous granules can be gε

0.5(ob1) = {ob1, ob5},
gε

1(ob2) = {ob2}, gε
0.5(ob3) = {ob3}, gε

1(ob4) = {ob4}, gε
0.5(ob1) = {ob5, ob1}. The set of possible

radii is { 0
2 , 1

2 , 2
2}. The descriptors can be shifted in the range determined by ε and still were treated

as indiscernible.

5. Description of Classifier Used for Evaluation of the Granulation

A kNN classifier has been used in the experiments to verify the effectiveness of approximation.
The procedure is as follows.

Step 1. The training granular decision system (Gtrn
rgran , A, d) and the test decision system (Utst, A, d)

are given, where A is a set of conditional attributes, d is the decision attribute, and rgran a
granulation radius.

Step 2. Classification of test objects, by means of granules of training objects, is performed as follows.

For all conditional attributes a ∈ A, training objects v ∈ Gtrn, and test objects u ∈ Utst, we compute
weights w(u, v) based on the Hamming metric.

In the voting procedure of the kNN classifier, we use optimal k estimated by CV5, details of the
procedure are highlighted in the next section.

If the cardinality of the smallest training decision class is less than k, we apply the value for
k = |the smallest training decision class|.

The test object u is classified by means of weights computed for all training objects v. Weights are
sorted in ascending order as,

wc1
1 (u, vc1

1 ) ≤ wc1
2 (u, vc1

2 ) ≤ . . . ≤ wc1
|C1|

(u, vc1
|C1|

);
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wc2
1 (u, vc2

1 ) ≤ wc2
2 (u, vc2

2 ) ≤ . . . ≤ wc2
|C2|

(u, vc2
|C2|

);

. . .

wcm
1 (u, vcm

1 ) ≤ wcm
2 (u, vcm

2 ) ≤ . . . ≤ wcm
|Cm |(u, vcm

|Cm |),

where C1, C2, ..., Cm are all decision classes in the training set.
Based on computed and sorted weights, training decision classes vote by means of the following

parameter, where c runs over decision classes in the training set,

Concept_weightc(u) =
k

∑
i=1

wc
i (u, vc

i ). (11)

Finally, the test object u is classified into the class c with a minimal value of Concept_weightc(u).
After all test objects u are classified, the quality parameter of accuracy (acc) is computed, according

to the formula
acc =

number o f correctly classi f ied objects
number o f classi f ied objects

. (12)

Parameter Estimation in kNN Classifier

In our experiments, we use the classical version of kNN classifier based on the Hamming metric.
In the first step, we estimate the optimal k based on 5× CV5 cross-validation on the part of dataset.
In the next step, we use the estimated value of k in order to find k nearest objects for each decision
class and then voting is performed to select the decision. If the value of k is larger than the smallest
training decision class cardinality then k value is equal to cardinality of this class.

In Table 5 we can see the estimated values of k for all tested datasets. These values were chosen
as optimal based on the experiments with various values of k and results estimated by multiple
CV5 operations.

Table 5. Estimated parameters for kNN based on 5× CV5 cross–validation, data from UCI Repository [20].

Name Optimal k

Australian-credit 5
Car Evaluation 8

Diabetes 3
German-credit 18
Heartdisease 19

Hepatitis 3
Nursery 4

SPECTF Heart 14

6. The Results of Experiments

To show the effectiveness of the new method, we have carried out a series of experiments with
real data from University of Irvine Repository (see [20]). The reference classifier is kNN with Cross
Validation 5 model. Data for experiments are listed in Table 6. The k parameter was evaluated in
our previous works [14]. The list of optimal parameters of k is shown in Table 5. The single test
consists of splitting the data into training and test set, where the training samples are granulated using
our homogenous method. The results of the experiments are presented in Table 7. We have shown
the comparable effectiveness of this new method in comparison with our best concept dependent
granulation method; see Table 8. The new technique is significantly different from existing methods.
Dynamic tuning of radius during granulation results with granules directed on decisions of their
central objects. The radius is selected in automatic way during granulation process so there is
no need to estimate optimal radius of granulation. The approximation level depends on objects
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indiscernibility ratio in the particular decision classes. Epsilon variant; see Table 9 is fully comparable
to the homogenous method and works more precisely for numerical data.

Table 6. Basic information about datasets-[20].

Name Attr Type Attr no. Obj no. Class no.

Australian-credit categorical, integer, real 15 690 2
Car Evaluation categorical 7 1728 4

Diabetes categorical, integer 9 768 2
German-credit categorical, integer 21 1000 2
Heartdisease categorical, real 14 270 2

Hepatitis categorical, integer, real 20 155 2
Nursery categorical 9 12,960 5

SPECTF Heart integer 45 267 2

Table 7. The result for dynamic granulation; 5 × CV5 method with kNN classifier; acc_5CV5 =

average accuracy, GS_size = granular decision system size, TRN_size = training set size,
TRN_reduction = reduction in object number in training size, radii_range = spectrum o f radii.

Name acc GS_size TRN_size TRN_reduction radii_range

Australian-credit 0.835 286.52 552 48.1% ru ≥ 0.5
Car Evaluation 0.797 728.5 1382 47.3% ru ≥ 0.667

Diabetes 0.653 488.9 614 20.4% ru ≥ 0.25
German-credit 0.725 513.3 800 35.8% ru ≥ 0.6
Heartdisease 0.833 120.5 216 44.2% ru ≥ 0.461

Hepatitis 0.88 46.16 124 62.8% ru ≥ 0.579
Nursery 0.607 9009.1 10368 13.1% ru ≥ 0.875

SPECTF Heart 0.763 138.75 214 35.2% ru ≥ 0.068

Table 8. Summary of results for kNN Classifier, granular and non granular case, acc = accuracy of
classification, red = percentage reduction in object number, r = granulation radius, method = variant of
Naive Bayes classifier, nil.acc = non granular case.

Name acc, red, r nil.acc

Australian-credit 0.851, 71.86, 0.571 0.855
Car Evaluation 0.865, 73.23, 0.833 0.944

Diabetes 0.616, 74.74, 0.25 0.631
German-credit 0.724, 59.85, 0.65 0.73
Heartdisease 0.83, 67.69, 0.538 0.837

Hepatitis 0.884, 60, 0.632 0.89
Nursery 0.696, 77.09, 0.875 0.578

SPECTF Heart 0.802, 60.3, 0.114 0.779



Computers 2019, 8, 36 12 of 13

Table 9. The result for homogenous granulation (HG) and for epsilon homogenous granulation
(ε − HGS); 5 × CV5; HG_acc = average accuracy for HG, ε − HG_acc average accuracy for
ε − HGS, HGS_size = HG decision system size, ε − HGS_size = ε − HGS decision system size,
TRN_size = training set size, HGT RN_red =reduction in object number in training set for HG,
ε− HGS_size = reduction in object number in training set for ε− HGS, HG_r_range = spectrum of
radii for HG, ε− HG_r_range = spectrum of radii for ε− HGS, data1 = Australian-credit, data2 =
German-credit, data3 = Heartdisease, data4 = Hepatitis.

Data1 Data2 Data3 Data4

HG_acc 0.835 0.725 0.833 0.88
ε− HG_acc 0.842 0.725 0.831 0.87
HGS_size 286.52 513.3 120.5 46.16

ε− HGS_size 274.52 503 109.4 46.2
TRN_size 552 800 216 124

HGT RN_red 48.1% 35.8% 44.2% 62.8%
εHGT RN_red 50.3% 37.1% 49.4% 62.7%
HG_r_range ru ≥ 0.5 ru ≥ 0.6 ru ≥ 0.461 ru ≥ 0.579

ε− HG_r_range ru ≥ 0.571 ru ≥ 0.65 ru ≥ 0.615 ru ≥ 0.579

7. Conclusions

In this work, we have the results of experiments for our new granulation techniques; homogenous
and epsilon homogenous granulation. The main advantage of this methods is that there is no need
of parameter estimation during approximation. The parameters are tuned in an automatic way
by lowering the indiscernibility ratio until the granule contains objects from the same decision class.
The reduction of the size of the original decision systems is up to 50 percent. In future works, we plan to
check the best classification methods for our new approximation algorithms. Additionally, we wonder
if tolerating a fixed percentage of objects from other classes in the granule could improve the quality
of classification.
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