
computers

Article

Distributed Management Systems for
Infocommunication Networks: A Model Based on TM
Forum Frameworx

Valery Mochalov *, Natalia Bratchenko, Gennady Linets and Sergey Yakovlev

Department of infocommunications, North Caucasus Federal University, Stavropol 355017, Russia;
nb20062@rambler.ru (N.B.); kbytw@mail.ru (G.L.); Yak0vlevSV@yandex.ru (S.Y.)
* Correspondence: mochalov.valery2015@yandex.ru

Received: 13 March 2019; Accepted: 1 May 2019; Published: 4 June 2019
����������
�������

Abstract: The existing management systems for networks and communication services do not fully
meet the demands of users in next-generation infocommunication services that are dictated by the
business processes of companies. Open digital architecture (ODA) is able to dramatically simplify
and automate main business processes using the logic of distributed computing and management,
which allows implementing services on a set of network nodes. The performance of a distributed
operational management system depends on the quality of solving several tasks as follows: the
distribution of program components among processor modules; the prioritization of business
processes with parallel execution; the elimination of dead states and interlocks during execution; and
the reduction of system cost to integrate separate components of business processes. The program
components can be distributed among processor modules by an iterative algorithm that calculates
the frequency of resource conflicts; this algorithm yields a rational distribution in a finite number
of iterations. The interlocks of parallel business processes can be eliminated using the classic file
sharing example with two processes and also the methodology of colored Petri nets. The system cost
of integration processes in a distributed management system is reduced through partitioning the
network into segments with several controllers that interact with each other and manage the network
in a coordinated way. This paper develops a model of a distributed operational management system
for next-generation infocommunication networks that assesses the efficiency of operational activities
for a communication company.

Keywords: Open digital architecture; OSS/BSS; Frameworx; business process framework; distributed
management system; program component; CPN Tools

1. Introduction

Unlimited growth of network traffic, processes of convergence of networks and network devices
and the need for new business models determine the growing importance of new methods of reducing
operating costs, making efficient use of network resources, and reducing risks in managing digital
businesses. However, the existing management systems for networks and communication services [1–5]
are able to render next-generation infocommunication services with the required level of flexibility,
management and cost-saving only in part.

The Tele Management Forum (TM Forum) [6], an international non-commercial association
of telecommunication companies and their suppliers, is directing its partners towards a successful
implementation of digital companies. TM Forum experts proposed the idea of open digital architecture
(ODA) [7], which is expected to replace traditional operation support systems/business support systems
(OSSs/BSSs) as well as to simplify dramatically and automate main business processes (BPs). ODA

Computers 2019, 8, 45; doi:10.3390/computers8020045 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://www.mdpi.com/2073-431X/8/2/45?type=check_update&version=1
http://dx.doi.org/10.3390/computers8020045
http://www.mdpi.com/journal/computers

Computers 2019, 8, 45 2 of 19

functionality is intended to execute business processes without any human interference using advanced
technologies, including artificial intelligence (Figure 1). As its key principle, the ODA involves the
component approach with the logic of microservices and open APIs (Application Programming
Interfaces). The main design concepts of such architectures, and also the new virtualization approaches
for the physical resources of next-generation infocommunication networks, were described in the
ITU-T Recommendations, see the Y.3000–Y.3499 series [8]. More specifically, services are formed
through the integration of program components represented by the elements of a distributed system;
services are abstracted from network resources and their arrangement, thereby implementing network
virtualization: multiple services–single network. The business processes implementing the main
services of a communication company are the integration base for program components (PCs). In
other words, management system design involves a set of interconnected PCs that are intended to
perform separate partial tasks for BP execution. The resulting adaptive management system can be
easily reconfigured to any BP. The set of PCs matches the Enhanced Telecom Operations Map (eTOM)
library modules: all necessary actions for creating a new service are implemented by the PCs connected
with each other through the corresponding business processes.

Computers 2019, 8, x FOR PEER REVIEW 2 of 20

interference using advanced technologies, including artificial intelligence (Figure 1). As its key
principle, the ODA involves the component approach with the logic of microservices and open APIs
(Application Programming Interfaces). The main design concepts of such architectures, and also the
new virtualization approaches for the physical resources of next-generation infocommunication
networks, were described in the ITU-T Recommendations, see the Y.3000–Y.3499 series [8]. More
specifically, services are formed through the integration of program components represented by the
elements of a distributed system; services are abstracted from network resources and their
arrangement, thereby implementing network virtualization: multiple services–single network. The
business processes implementing the main services of a communication company are the integration
base for program components (PCs). In other words, management system design involves a set of
interconnected PCs that are intended to perform separate partial tasks for BP execution. The
resulting adaptive management system can be easily reconfigured to any BP. The set of PCs matches
the Enhanced Telecom Operations Map (eTOM) library modules: all necessary actions for creating a
new service are implemented by the PCs connected with each other through the corresponding
business processes.

Figure 1. The Tele Management Forum TM Forum open digital architecture [7].

2. Results

Using the component approach, a model of distributed operational management systems for
next-generation communication networks was developed that assessed the efficiency of operational
activities of a communication company.

In particular, the results include the following.

• the formal design problem of distributed operational management systems for communication
companies and the main approaches to this problem;

• an iterative convergent algorithm for distributing program components among program
modules that implements a corresponding microservice or business component in the
Frameworx description;

• a service schedule of requests with the colored Petri nets formalization that minimizes the
number of delayed requests;

• an integration algorithm for program components that minimizes the system cost of their
interaction.

All these results contribute to an efficient design of distributed operational management
systems for next-generation telecommunication networks and also determine a flexible,

Figure 1. The Tele Management Forum TM Forum open digital architecture [7].

2. Results

Using the component approach, a model of distributed operational management systems for
next-generation communication networks was developed that assessed the efficiency of operational
activities of a communication company.

In particular, the results include the following.

• the formal design problem of distributed operational management systems for communication
companies and the main approaches to this problem;

• an iterative convergent algorithm for distributing program components among program
modules that implements a corresponding microservice or business component in the
Frameworx description;

• a service schedule of requests with the colored Petri nets formalization that minimizes the number
of delayed requests;

• an integration algorithm for program components that minimizes the system cost of
their interaction.

Computers 2019, 8, 45 3 of 19

All these results contribute to an efficient design of distributed operational management systems
for next-generation telecommunication networks and also determine a flexible, software-defined and
cost-saving architecture of management systems for infocommunication networks and services.

3. Methods

3.1. Frameworx TM Forum

The ODA project was implemented using the concept of Frameworx TM Forum, known earlier
as the New Generation Operations Systems and Software (NGOSS). This concept defines a modern
standardization approach for the business processes of a communication company [9]. Frameworx
gives an exact description of the components of BPs in terms of their functions, associated information
and other characteristics. Frameworx consists of the following frameworks (Figure 2).

1. The business process framework (formally the enhanced telecom operations map, or eTOM)
describes the structure of the business processes of telecommunication companies.

2. The information framework (formally the shared information/data model, or SID) defines
an approach to the description and usage of all data engaged in the business processes of a
communication company.

3. The application framework (formally the telecom applications map, or TAM) describes the typical
structure of the information framework components for communication companies.

4. The integration framework contains a set of standards that support the integration and
interoperability between applications defined in the applications framework, with a basic
element in the form of a standardized interface; a set of similar interfaces defines the service (API
service).

5. Business metrics are a standardized model of business indicators that unites over a
hundred of standard measurable indicators for assessing the different activities of an
infocommunications supplier.

6. Best practice includes practical recommendations and case studies based on the experience of
using Frameworx models in different activities of telecommunication companies.Computers 2019, 8, x FOR PEER REVIEW 4 of 20

Figure 2. Structure of Frameworx TM Forum [9].

The hierarchical decomposition principle is widely used for the structural description of BPs in
eTOM. Consider the decomposition procedure for BP 1.4.6.3 (Correct and Resolve Service Problem);
there are four decomposition levels here, as is illustrated in Figure 3.

Figure 3. Decomposition of business process (BP) 1.4.6.3 (Correct and Resolve Service Problem) [9].

The first decomposition level of eTOM includes eight large blocks as follows:

• Market/Sales Management Domain;
• Product Management Domain;

Figure 2. Structure of Frameworx TM Forum [9].

The hierarchical decomposition principle is widely used for the structural description of BPs in
eTOM. Consider the decomposition procedure for BP 1.4.6.3 (Correct and Resolve Service Problem);
there are four decomposition levels here, as is illustrated in Figure 3.

Computers 2019, 8, 45 4 of 19

Computers 2019, 8, x FOR PEER REVIEW 4 of 20

Figure 2. Structure of Frameworx TM Forum [9].

The hierarchical decomposition principle is widely used for the structural description of BPs in
eTOM. Consider the decomposition procedure for BP 1.4.6.3 (Correct and Resolve Service Problem);
there are four decomposition levels here, as is illustrated in Figure 3.

Figure 3. Decomposition of business process (BP) 1.4.6.3 (Correct and Resolve Service Problem) [9].

The first decomposition level of eTOM includes eight large blocks as follows:

• Market/Sales Management Domain;
• Product Management Domain;

Figure 3. Decomposition of business process (BP) 1.4.6.3 (Correct and Resolve Service Problem) [9].

The first decomposition level of eTOM includes eight large blocks as follows:

• Market/Sales Management Domain;
• Product Management Domain;
• Customer Management Domain;
• Service Management Domain (is shown in Figure 3);
• Resource Management Domain;
• Engaged Party Domain;
• Enterprise Domain;
• Common Process Patterns Domain.

The second decomposition level separates the groups of processes that represent large stages of
end-to-end business processes in eTOM. For example, block 1.4 (Service Management Domain) at the
second level is divided into eight groups; see Figure 3. In particular, it includes block 1.4.6 (Service
Problem Management).

The described levels are logical because the resulting specification does not yield a sequence of
actions. The third and lower decomposition levels are physical, since their elements correspond to
specific actions that can be combined in flows.

The processes of the third decomposition level can be used to construct ideal models considering
no possible failures during execution and other specifics. Block 1.4.6 (Service Problem Management) at
the third level is divided into seven groups; see Figure 3. In particular, it includes block 1.4.6.3 (Correct
and Resolve Service Problem).

Block 1.4.6.3 (Correct and Resolve Service Problem) at the fourth level is divided into seven
processes as follows (Figure 3):

Computers 2019, 8, 45 5 of 19

• 1.4.6.3.1 Reassign/Reconfigure Failed Service;
• 1.4.6.3.2 Manage Service Restoration;
• 1.4.6.3.3 Implement Service Problem Work Arounds;
• 1.4.6.3.4 Invoke Support Service Problem Management Processes;
• 1.4.6.3.5 Review Major Service Problem;
• 1.4.6.3.6 Monitor Service Alarms Events;
• 1.4.6.3.7 Categorize Service Alarm Event.

The specification elements obtained at the fourth level can be used to construct a detailed model
of a business process for further automation of operational management; see Figure 4.

Computers 2019, 8, x FOR PEER REVIEW 5 of 20

• Customer Management Domain;
• Service Management Domain (is shown in Figure 3);
• Resource Management Domain;
• Engaged Party Domain;
• Enterprise Domain;
• Common Process Patterns Domain.

The second decomposition level separates the groups of processes that represent large stages of
end-to-end business processes in eTOM. For example, block 1.4 (Service Management Domain) at
the second level is divided into eight groups; see Figure 3. In particular, it includes block 1.4.6
(Service Problem Management).

The described levels are logical because the resulting specification does not yield a sequence of
actions. The third and lower decomposition levels are physical, since their elements correspond to
specific actions that can be combined in flows.

The processes of the third decomposition level can be used to construct ideal models
considering no possible failures during execution and other specifics. Block 1.4.6 (Service Problem
Management) at the third level is divided into seven groups; see Figure 3. In particular, it includes
block 1.4.6.3 (Correct and Resolve Service Problem).

Block 1.4.6.3 (Correct and Resolve Service Problem) at the fourth level is divided into seven
processes as follows (Figure 3):

• 1.4.6.3.1 Reassign/Reconfigure Failed Service;
• 1.4.6.3.2 Manage Service Restoration;
• 1.4.6.3.3 Implement Service Problem Work Arounds;
• 1.4.6.3.4 Invoke Support Service Problem Management Processes;
• 1.4.6.3.5 Review Major Service Problem;
• 1.4.6.3.6 Monitor Service Alarms Events;
• 1.4.6.3.7 Categorize Service Alarm Event.

The specification elements obtained at the fourth level can be used to construct a detailed model
of a business process for further automation of operational management; see Figure 4.

Figure 4. Flowchart for BP 1.4.6.3 (Correct and Resolve Service Problem) [9].

The described management system design with a set of modules can be implemented using the
microservice architecture principles, which are used to create program systems composed of
numerous multiple services interacting with each other. These modular components are intended
for independent development, testing and deployment, which facilitates the creation of new services
or a deep update of the existing ones if necessary. Other advantages of such modules are cost
reduction, speed increase and customer service improvement. The microservice architecture
guarantees independent scalability, a faster market entry for new services and also a higher
efficiency of management.

Figure 4. Flowchart for BP 1.4.6.3 (Correct and Resolve Service Problem) [9].

The described management system design with a set of modules can be implemented using the
microservice architecture principles, which are used to create program systems composed of numerous
multiple services interacting with each other. These modular components are intended for independent
development, testing and deployment, which facilitates the creation of new services or a deep update
of the existing ones if necessary. Other advantages of such modules are cost reduction, speed increase
and customer service improvement. The microservice architecture guarantees independent scalability,
a faster market entry for new services and also a higher efficiency of management.

3.2. Model of Distributed Management System for Next-Generation Networks

A distributed management system (DMS) for infocommunication networks can be expressed
as a set of modules or program components (PCs) executed by processor modules (PMs). Each PC
implements a corresponding business component (BC) as a microservice described within Frameworx.
PMs can be implemented in the form of physical devices or virtual resources. PCs interact with each
other through the network adapters of PMs using the capabilities of real or virtual networks. Any
service in this management system is implemented by assigning a certain set of PCs located on separate
PMs for the execution of a given BP. All services are created by uniting heterogeneous PCs that are
formed using the virtual resources of several virtual networks. Instead of a local assignment to a
specific PC, each service is implemented with a global distribution over the whole network.

Clearly, the performance of a distributed management system (DMS) depends on the quality of
solving several tasks as follows:

• the distribution of PCs among PMs (note that (a) the number of PCs sets is often much greater than
the number of PMs and (b) the real sequence of control transfers between PCs is approximated by
an absorbing Markov chain);

• the prioritization of BPs with parallel execution as well as the elimination of dead states and
interlocks during execution;

Computers 2019, 8, 45 6 of 19

• the reduction of system cost to unite separate components of BPs, achieved via a rational integration
of PCs.

A successful solution of these tasks yields an optimal DMS in terms of the TM Forum criterion (1)

Φ = min
L∑

k=1

Pk × tk(θ, S, Q), (1)

with the following notations: tk as the execution time of the kth BP; θ as a distribution method of PCs
among PMs; S as a service schedule of requests; Q as an integration method for the separate solutions
of PMs; L as the number of BPs served by the system; finally, Pk as the execution priority of the kth BP.

To distribute PCs over PMs, consider n PCs f 1, . . . , fn and also d PMs. Assume each two PCs,
fi and fj, are exchanging joint requests with a known frequency P(i, j). The mean number of control
transfers between the ith and jth PCs can be obtained using the measurements of a program monitor of
the system. Find an analytical expression of the mean number of control transfers between PCs in the
course of service implementation.

To this end, decompose the set of PCs into d groups Φ = {F1, F2, . . . , Fd} so that

n
∪

i=1
fi =

d
∪

i=1
Fi and Fk ∩ Fl = ∅, k , l. (2)

The frequency of conflicts on the kth PM is given by

Ck =
∑
i, j

p(i, j). (3)

Then the total frequency of conflicts can be calculated as

C =
d∑

k=1

Ck =
d∑

k=1

∑
i, j

p(i, j). (4)

If PCi performs a transition between groups Fs and Ft, then the optimality criterion has the
variation (5)

∆C =
∑

i∈PMi

(P(i, j) + P(j, i)) −
∑

i∈PMs

(P(i, j) + P(j, i)). (5)

All PCi, i = 1, . . . , n, are decomposed into d groups using a system of operators R =

{Ri t, i = 1, . . . , n; t = 1, . . . , d} that formalizes the transition of PCi to another class t, i.e., the operation
Ri t(Φ). As a result, the optimal decomposition criterion has the increment ∆i t(Φ) = C(Φ)−C(Ri t(Φ)),
where C(Ri t(Φ)) is the frequency of conflicts for the operation Ri t(Φ) and C(Φ) is the preceding
frequency of conflicts.

Denote by ∆i q
i t (Φ) the increment of the values ∆i t(Φ) under transition to a new decomposition

R j qΦ, where R j q ∈ R, i.e.,

∆i q
i t (Φ) = ∆i t

(
Ri qΦ

)
− ∆i t(Φ), i = 1, . . . , n, q = 1, . . . , d. (6)

Then

∆i t

(
R j qΦ

)
= ∆i t(Φ) + ∆ j q

i t (Φ); ∆ j q
i t (Φ) = [P(i, j) + P(j, i)]

(
δt q + δs u + δs q − δt u

)
, (7)

where s and u are the indexes of groups for the PCs fi and fj in the initial decomposition; t and q are the

indexes of their groups in the new decomposition; finally, δt q =

{
1 if t = q;
0 if t , q.

Computers 2019, 8, 45 7 of 19

For this criterion, the sequential improvement algorithm has the form (8)

∆i q
i t (Φ) = ∆i t

(
Ri qΦ

)
− ∆i t(Φ). (8)

The algorithm guarantees a rational distribution of PCs among PMs under the assumption that the
sequence of control transfers between PCs is described by a Markov chain.

The block diagram of this distribution algorithm is presented in Figure 5.Computers 2019, 8, x FOR PEER REVIEW 8 of 20

Figure 5. Block diagram of program components distribution algorithm.

In accordance with this algorithm, the quality of distribution of PCs among PMs is assessed by
the frequency of resource conflicts. The variation () () ()i q

i t i t i q i tRΔ Φ = Δ Φ − Δ Φ of this frequency is

calculated if a PC performs a transition between groups. In a finite number of iterations, the
algorithm converges to a local minimum.

3.3. Elimination of Dead States and Interlocks

DMSs for infocommunication networks have complex operation algorithms with parallel
processes. Note that some processes are interdependent because they share the same resources (e.g.,
hardware components, software tools, current information). Due to resource sharing, the interaction
of parallel processes has to be properly organized: their independent execution may cause errors,
dead states or interlocks [10–12].

The dead states and interlocks occurring in parallel business processes are eliminated by
scheduling. The efficiency of elimination is assessed using the indicator (9)

where S denotes a schedule and ti (S) is the service time of the ith request, subject to the constrain (10)

() (){ }min min iT S t S= , (9)

Figure 5. Block diagram of program components distribution algorithm.

In accordance with this algorithm, the quality of distribution of PCs among PMs is assessed by
the frequency of resource conflicts. The variation ∆i q

i t (Φ) = ∆i t
(
Ri qΦ

)
− ∆i t(Φ) of this frequency is

calculated if a PC performs a transition between groups. In a finite number of iterations, the algorithm
converges to a local minimum.

3.3. Elimination of Dead States and Interlocks

DMSs for infocommunication networks have complex operation algorithms with parallel processes.
Note that some processes are interdependent because they share the same resources (e.g., hardware
components, software tools, current information). Due to resource sharing, the interaction of parallel

Computers 2019, 8, 45 8 of 19

processes has to be properly organized: their independent execution may cause errors, dead states or
interlocks [10–12].

The dead states and interlocks occurring in parallel business processes are eliminated by scheduling.
The efficiency of elimination is assessed using the indicator (9)

Tmin(S) = min
{
ti(S)

}
, (9)

where S denotes a schedule and ti (S) is the service time of the ith request, subject to the constrain (10)

t j
p+1 − ti

p ≥ Zi
L −Z j

L + t jL, L = 1, k. (10)

The notations are the following: p as the index of the request of type i; (p + 1) as the index of the
request of type j; L as the serial number of the PM; Zi

L and Z j
L as the time cost to execute the requests of

types i and j on the Lth PM; finally, t jL as the time to execute the request of type j on the Lth PM.

Let li j = max
{
Zi

L −Z j
L + t jL

}
. Then the optimal service schedule of all requests is defined by the

condition t j
p+1 − ti

p = li j. Describe the service procedure of all n =
r∑

k=1
nk requests using a directed

symmetric graph (X, U), where X = {0, 1, . . . , r} and U is the set of arcs (i, j), 0 ≤ i, j ≤ r, each associated
with the value li j. In this case, the optimal service schedule of all requests is the smallest loop in the
graph that passes nk times through each vertex.

If xi j is the number of arcs in the desired loop, then

r∑
i, j=0

li jxi j → min,
r∑

j=0

xi j =
r∑

j=0

x j i = ni, i = 0, r, xi j ≥ 0, i, j = 0, r. (11)

The interlocks of parallel business processes are eliminated using an interpretation of the classical
file sharing example with two processes [11–14] and also the methodology of colored Petri nets
(CPN) [15], with implementation in CPN Tools [16,17].

Consider parallel BPs consisting of a sequence of operations t1, . . . , tk performed by PCs so that
each operation corresponds to a transition in a Petri net; see Figure 6. The CPN Tools user interface
determines a marking of a Petri net. Markers (often called tokens) contained in certain positions are
highlighted in green color, with specification of their number and time delay (e.g., 1‘1@0). Additionally,
a green color is used for the transitions that can be activated at a current time.

A certain number of asynchronous parallel processes are competing for the right of resource use
(RES). When a process is holding a resource, the sequence of its operations is being performed and the
resource is considered to be busy. Since the same resource can be required for several processes, there
may exist dead states and interlocks for them, as is demonstrated in Figure 7. Clearly, at the current
time the network has no transitions that can be activated.

Computers 2019, 8, 45 9 of 19

Computers 2019, 8, x FOR PEER REVIEW 9 of 20

The notations are the following: p as the index of the request of type i; ()1p+ as the index of the
request of type j; L as the serial number of the PM; i

LZ and j
LZ as the time cost to execute the

requests of types i and j on the Lth PM; finally, jLt as the time to execute the request of type j on the
Lth PM.

Let { }max i j
i j L L jLl Z Z t= − + . Then the optimal service schedule of all requests is defined by the

condition 1
j i
p p i jt t l+ − = . Describe the service procedure of all

1

r

k
k

n n
=

= requests using a directed

symmetric graph (X, U), where { }0,1, ,X r= and U is the set of arcs (i, j), 0 ,i j r≤ ≤ , each
associated with the value li j. In this case, the optimal service schedule of all requests is the smallest
loop in the graph that passes nk times through each vertex.

If xi j is the number of arcs in the desired loop, then

The interlocks of parallel business processes are eliminated using an interpretation of the
classical file sharing example with two processes [11–14] and also the methodology of colored Petri
nets (CPN) [15], with implementation in CPN Tools [16,17].

Consider parallel BPs consisting of a sequence of operations t1,…, tk performed by PCs so that
each operation corresponds to a transition in a Petri net; see Figure 6. The CPN Tools user interface
determines a marking of a Petri net. Markers (often called tokens) contained in certain positions are
highlighted in green color, with specification of their number and time delay (e.g., 1`1@0).
Additionally, a green color is used for the transitions that can be activated at a current time.

Figure 6. Initial state of execution model for two parallel BPs.

A certain number of asynchronous parallel processes are competing for the right of resource use
(RES). When a process is holding a resource, the sequence of its operations is being performed and
the resource is considered to be busy. Since the same resource can be required for several processes,

1
j i i j
p p L L jLt t Z Z t+ − ≥ − + , 1,L k= . (10)

, 0
min

r

i j i j
i j
l x

=

→ ,
0 0

r r

i j j i i
j j
x x n

= =

= = , 0,i r= , 0i jx ≥ , , 0,i j r= . (11)

Figure 6. Initial state of execution model for two parallel BPs.

Computers 2019, 8, x FOR PEER REVIEW 10 of 20

there may exist dead states and interlocks for them, as is demonstrated in Figure 7. Clearly, at the
current time the network has no transitions that can be activated.

Figure 7. Execution model for two parallel BPs in interlock state.

The model will be analyzed using the reachable marking graph of the Petri net (Figure 8). The
states of a Petri net from which all paths of the reachable marking graph lead to a dead state (in this
example, S33) are called pre-dead states (in this example, S22, S23 and S32). A set composed of the dead
and pre-dead states is called the set of forbidden states [10]. Obviously, for a faster execution of
processes, all conflicts must be eliminated using the available system parallelism as much as
possible. Consider some ways to eliminate process interlocks and dead states.

Figure 8. Reachable marking graph of original Petri net.

The first approach is to use a well-timed forced locking of processes [10]. To this effect, define
the minimal number of processes to be locked and also the minimal number of states to preserve this

Figure 7. Execution model for two parallel BPs in interlock state.

The model will be analyzed using the reachable marking graph of the Petri net (Figure 8). The
states of a Petri net from which all paths of the reachable marking graph lead to a dead state (in this
example, S33) are called pre-dead states (in this example, S22, S23 and S32). A set composed of the
dead and pre-dead states is called the set of forbidden states [10]. Obviously, for a faster execution of
processes, all conflicts must be eliminated using the available system parallelism as much as possible.
Consider some ways to eliminate process interlocks and dead states.

Computers 2019, 8, 45 10 of 19

Computers 2019, 8, x FOR PEER REVIEW 10 of 20

there may exist dead states and interlocks for them, as is demonstrated in Figure 7. Clearly, at the
current time the network has no transitions that can be activated.

Figure 7. Execution model for two parallel BPs in interlock state.

The model will be analyzed using the reachable marking graph of the Petri net (Figure 8). The
states of a Petri net from which all paths of the reachable marking graph lead to a dead state (in this
example, S33) are called pre-dead states (in this example, S22, S23 and S32). A set composed of the dead
and pre-dead states is called the set of forbidden states [10]. Obviously, for a faster execution of
processes, all conflicts must be eliminated using the available system parallelism as much as
possible. Consider some ways to eliminate process interlocks and dead states.

Figure 8. Reachable marking graph of original Petri net.

The first approach is to use a well-timed forced locking of processes [10]. To this effect, define
the minimal number of processes to be locked and also the minimal number of states to preserve this

Figure 8. Reachable marking graph of original Petri net.

The first approach is to use a well-timed forced locking of processes [10]. To this effect, define
the minimal number of processes to be locked and also the minimal number of states to preserve
this interlock. Then transform the reachable marking graph by removing all the edges that connect
dangerous and forbidden states. This procedure yields a graph containing the safe states only.

In this example, the state S11 is the root of two dangerous segments, S21 – S31 and S12 – S13

(Figure 8). The well-timed forced locking of undesired processes can be implemented by introducing
an input position cb for the transitions t2 and t8 in the Petri net (Figure 9). In this case, following the
activation of the transition t2 (t8) and further evolvement of the process bp1 (bp2, respectively), the
token is removed from the position cb and the process bp2 (bp1, respectively) is locked.

Computers 2019, 8, x FOR PEER REVIEW 11 of 20

interlock. Then transform the reachable marking graph by removing all the edges that connect
dangerous and forbidden states. This procedure yields a graph containing the safe states only.

In this example, the state S11 is the root of two dangerous segments, S21 – S31 and S12 – S13 (Figure
8). The well-timed forced locking of undesired processes can be implemented by introducing an
input position сb for the transitions t2 and t8 in the Petri net (Figure 9). In this case, following the
activation of the transition t2 (t8) and further evolvement of the process bp1 (bp2, respectively), the
token is removed from the position сb and the process bp2 (bp1, respectively) is locked.

Figure 9. Transformed reachable marking graph of Petri net.

In accordance with the transformed reachable marking graph (Figure 9), the state S31 (S13) is the
last state of the chosen dangerous segment. Hence, the lock can be lifted after the activation of the
transition t4 (t10, respectively). To this end, the position сb must be the output position for the
transitions t4 and t10, as is illustrated in Figure 10.

Figure 10. Initial state of execution model for two parallel BPs with well-timed forced locking.

Figure 9. Transformed reachable marking graph of Petri net.

In accordance with the transformed reachable marking graph (Figure 9), the state S31 (S13) is
the last state of the chosen dangerous segment. Hence, the lock can be lifted after the activation of

Computers 2019, 8, 45 11 of 19

the transition t4 (t10, respectively). To this end, the position cb must be the output position for the
transitions t4 and t10, as is illustrated in Figure 10.

Computers 2019, 8, x FOR PEER REVIEW 11 of 20

interlock. Then transform the reachable marking graph by removing all the edges that connect
dangerous and forbidden states. This procedure yields a graph containing the safe states only.

In this example, the state S11 is the root of two dangerous segments, S21 – S31 and S12 – S13 (Figure
8). The well-timed forced locking of undesired processes can be implemented by introducing an
input position сb for the transitions t2 and t8 in the Petri net (Figure 9). In this case, following the
activation of the transition t2 (t8) and further evolvement of the process bp1 (bp2, respectively), the
token is removed from the position сb and the process bp2 (bp1, respectively) is locked.

Figure 9. Transformed reachable marking graph of Petri net.

In accordance with the transformed reachable marking graph (Figure 9), the state S31 (S13) is the
last state of the chosen dangerous segment. Hence, the lock can be lifted after the activation of the
transition t4 (t10, respectively). To this end, the position сb must be the output position for the
transitions t4 and t10, as is illustrated in Figure 10.

Figure 10. Initial state of execution model for two parallel BPs with well-timed forced locking.
Figure 10. Initial state of execution model for two parallel BPs with well-timed forced locking.

The transformed reachable marking graph (Figure 9) contains the position cb in all states except for
the ones corresponding to dangerous segments. The states S12, S13, S21 and S31, which are dangerous
in the original graph, become safe lock states; the state S11 becomes the conflict state. In addition,
the forbidden states S22, S32, S23 and S33 turn out to be unreachable in the transformed graph. The
simulation of the transformed Petri net over 100 steps have testified to the efficiency of this well-timed
forced locking procedure; see the simulation results in Figure 11.

Computers 2019, 8, x FOR PEER REVIEW 12 of 20

The transformed reachable marking graph (Figure 9) contains the position cb in all states except
for the ones corresponding to dangerous segments. The states S12, S13, S21 and S31, which are
dangerous in the original graph, become safe lock states; the state S11 becomes the conflict state. In
addition, the forbidden states S22, S32, S23 and S33 turn out to be unreachable in the transformed graph.
The simulation of the transformed Petri net over 100 steps have testified to the efficiency of this
well-timed forced locking procedure; see the simulation results in Figure 11.

Figure 11. Transformed execution model for two parallel BPs: simulation results.

The second approach to eliminate the dead states and interlocks of processes is to allocate the
additional resources required for their simultaneous execution (Figure 12). In this case, the positions
с1 and с2 have single tokens, which corresponds to two units of homogeneous resource.

Figure 12. Execution model for two parallel BPs with allocation of additional resources: simulation
results.

Figure 11. Transformed execution model for two parallel BPs: simulation results.

Computers 2019, 8, 45 12 of 19

The second approach to eliminate the dead states and interlocks of processes is to allocate the
additional resources required for their simultaneous execution (Figure 12). In this case, the positions c1

and c2 have single tokens, which corresponds to two units of homogeneous resource.

Computers 2019, 8, x FOR PEER REVIEW 12 of 20

The transformed reachable marking graph (Figure 9) contains the position cb in all states except
for the ones corresponding to dangerous segments. The states S12, S13, S21 and S31, which are
dangerous in the original graph, become safe lock states; the state S11 becomes the conflict state. In
addition, the forbidden states S22, S32, S23 and S33 turn out to be unreachable in the transformed graph.
The simulation of the transformed Petri net over 100 steps have testified to the efficiency of this
well-timed forced locking procedure; see the simulation results in Figure 11.

Figure 11. Transformed execution model for two parallel BPs: simulation results.

The second approach to eliminate the dead states and interlocks of processes is to allocate the
additional resources required for their simultaneous execution (Figure 12). In this case, the positions
с1 and с2 have single tokens, which corresponds to two units of homogeneous resource.

Figure 12. Execution model for two parallel BPs with allocation of additional resources: simulation
results.

Figure 12. Execution model for two parallel BPs with allocation of additional resources:
simulation results.

Next, the third approach to eliminate the dead states and interlocks of processes is to capture
simultaneously all the resources required for a process (Figure 13). For lifting the interlock of the first
process, a position c21 is added to the original network that holds the second resource.

Computers 2019, 8, x FOR PEER REVIEW 13 of 20

Next, the third approach to eliminate the dead states and interlocks of processes is to capture
simultaneously all the resources required for a process (Figure 13). For lifting the interlock of the first
process, a position с21 is added to the original network that holds the second resource.

Figure 13. Execution model for two parallel BPs with monopolistic capture of resources: simulation
results.

The last (fourth) approach to eliminate the dead states and interlocks is to arrange the capture of
resources. Serial numbers are assigned for all types of resources and a capture discipline is defined
for all processes. In the transformed model, this approach is implemented by reassigning serial
numbers for resources and specifying choice rules for the transitions t2, t4, and t8, t10 (Figure 14).

Figure 14. Execution model for two parallel BPs with arranged capture of resources: simulation
results.

Figure 13. Execution model for two parallel BPs with monopolistic capture of resources:
simulation results.

Computers 2019, 8, 45 13 of 19

The last (fourth) approach to eliminate the dead states and interlocks is to arrange the capture of
resources. Serial numbers are assigned for all types of resources and a capture discipline is defined for
all processes. In the transformed model, this approach is implemented by reassigning serial numbers
for resources and specifying choice rules for the transitions t2, t4, and t8, t10 (Figure 14).

Computers 2019, 8, x FOR PEER REVIEW 13 of 20

Next, the third approach to eliminate the dead states and interlocks of processes is to capture
simultaneously all the resources required for a process (Figure 13). For lifting the interlock of the first
process, a position с21 is added to the original network that holds the second resource.

Figure 13. Execution model for two parallel BPs with monopolistic capture of resources: simulation
results.

The last (fourth) approach to eliminate the dead states and interlocks is to arrange the capture of
resources. Serial numbers are assigned for all types of resources and a capture discipline is defined
for all processes. In the transformed model, this approach is implemented by reassigning serial
numbers for resources and specifying choice rules for the transitions t2, t4, and t8, t10 (Figure 14).

Figure 14. Execution model for two parallel BPs with arranged capture of resources: simulation
results.

Figure 14. Execution model for two parallel BPs with arranged capture of resources: simulation results.

The developed models eliminate the interlocks of parallel processes. The methodology of colored
Petri nets is used to analyze the complete state space of the model in order to improve the reliability
of the computing system and also to satisfy the requirements. The suggested methods and software
solutions allow us to accelerate and simplify program development. They are finely integrated into the
standard software approaches and methods and ready to be applied in practice.

3.4. Analytical Model of Integration System for PCs

In accordance with the above results, a simultaneous execution of several logically independent
parallel processes on the same resource actually increase the system cost of operational management
and reduce the system performance; for a considerable number of processes, it may even cause
network resource deficit. The structure of software-defined networking (SDN) and, in particular, the
approaches to organize logically centralized control of network elements were described in the ITU-T
Recommendations, Y.3300 series [18]; also see Figure 15. The application-control interface is intended
to implement program control of abstract network resources. The resource-control interface is intended
to implement the functions of logically centralized control of network resources.

Computers 2019, 8, 45 14 of 19

Computers 2019, 8, x FOR PEER REVIEW 14 of 20

The developed models eliminate the interlocks of parallel processes. The methodology of
colored Petri nets is used to analyze the complete state space of the model in order to improve the
reliability of the computing system and also to satisfy the requirements. The suggested methods and
software solutions allow us to accelerate and simplify program development. They are finely
integrated into the standard software approaches and methods and ready to be applied in practice.

3.4. Analytical Model of Integration System for PCs

In accordance with the above results, a simultaneous execution of several logically independent
parallel processes on the same resource actually increase the system cost of operational management
and reduce the system performance; for a considerable number of processes, it may even cause
network resource deficit. The structure of software-defined networking (SDN) and, in particular, the
approaches to organize logically centralized control of network elements were described in the
ITU-T Recommendations, Y.3300 series [18]; also see Figure 15. The application-control interface is
intended to implement program control of abstract network resources. The resource-control
interface is intended to implement the functions of logically centralized control of network
resources.

Figure 15. Structure of software-defined networking for centralized control of network resources
[18].

Assume the transitions of requests between the elements of network resources as well as their
withdrawals from the network are described by an irreducible Markov chain; in addition, let the
processes occurring in the network be the multidimensional birth and death processes. Then, an
SDN controller can be represented as a root node М of the network while the network nodes––the
program components of a physically distributed application––act as the other (М–1) nodes that
execute a corresponding business process. For the requests of the class (1,)R r= , the transition
probabilities can be described by a matrix (12)

where j
r iP n

−

 denote the probabilities of transition and j
in
−

 is the number of requests passing from

node i to node j.
Write the multidimensional random interaction process of PCs as (13)

,1,1 ,1,2 ,1,

,2,1 ,2,2 ,2,

, ,1 , ,2 , ,

...

...
...

...

r r r M

r r r Mj
r i

r M r M r M M

P P P
P P P

P n

P P P

− =

, (12)

Figure 15. Structure of software-defined networking for centralized control of network resources [18].

Assume the transitions of requests between the elements of network resources as well as their
withdrawals from the network are described by an irreducible Markov chain; in addition, let the
processes occurring in the network be the multidimensional birth and death processes. Then, an SDN
controller can be represented as a root node M of the network while the network nodes—-the program
components of a physically distributed application—-act as the other (M–1) nodes that execute a
corresponding business process. For the requests of the class R = (1, r), the transition probabilities can
be described by a matrix (12)

‖Pr

 −n j
i

‖ =
∣∣∣∣∣∣∣∣∣∣∣

Pr,1,1 Pr,1,2 . . . Pr,1,M
Pr,2,1 Pr,2,2 . . . Pr,2,M

.
Pr,M,1 Pr,M,2 . . . Pr,M,M

∣∣∣∣∣∣∣∣∣∣∣, (12)

where Pr

 −n j
i

 denote the probabilities of transition and
−

n j
i is the number of requests passing from node

i to node j.
Write the multidimensional random interaction process of PCs as (13)

N(t) =
{
n1(t),n2(t), . . . , nR(t)

}
; (13)

the probability that k requests of the rth class have to be served as P(k) = P1(k1) · P2(k2) · . . .Pn(kn),
where k = (k1, k2, . . . , kn) and ki = (ki1, ki2, . . . , kir).

Such a network can be described in the multiplicative form [19]

P(n) = G−1(N1, Nk, . . . , NR)
M∏

i=1

Zi(ni), (14)

where P(n) denotes the probability that the network is in state n,

n = (n1, n2., . . . , nM); G(NR) =
∑
k

N∏
i=2

(µ1Pi
µi

)ki

;

Zi(ni) =
ni!

r∏
R=1

µi(R)

R∏
r=1

1
nir!

lnir
ir ,

lir =
M∑

i=1
lirPi j(r), i = 1, M, r = 1, R.

Computers 2019, 8, 45 15 of 19

As a result,

• the SDN controller capacity for a request of the rth class is (15)

λir(NR) =

NR∑
nk=1

Pi(nR, Nr)
nir
ni
µi(ni); (15)

• the number of served requests of the rth class is (16)

Lir(NR) =

NR∑
nR=1

Pi(nR, NR)nr; (16)

• the mean waiting time for a request of the rth class is (17)

Tir(Nr) =
[1 + Li(NR − 1)]

Mir
. (17)

In practice, the values of these indicators depend on system load at request arrival times. In some
state the system may block a successive call. In this case, the call is repeated N times till being served
or rejected; see Figure 16.Computers 2019, 8, x FOR PEER REVIEW 16 of 20

Figure 16. Diagram of request service procedure.

Some trivial transformations yield (20), (21)

For a maximum speed of 10 million requests (request flows) per second and a maximum delay
of 50 μs, the system has to serve up to 50 million flows per second. This example effectively
illustrates that the main load on rather limited computational resources of a network multicore
controller may considerably affect its performance. The incoming requests for such resources from
several network elements simultaneously may cause network blocking. This problem is solved using
the distributed control of parallel processes: all PCs are divided into segments associated with
corresponding controllers. Note that each segment must contain the PCs with the greatest
probabilities of interaction; see Figure 17.

Figure 17. Diagram of distributed control of network elements.

1

1 1
() (1) 1 (1 ())

iN
i

suc blk blk rej
i j

P N P P P j
−

= =

 = − + −

 ∏ ,
(20)

1

1 1
() (1) (1) (1 ())

iN
i

rej blk rej blk rej rej
i j

P N P P P P i P j
−

= =

 = + + −

 ∏ . (21)

Figure 16. Diagram of request service procedure.

Hence, the probability of a successful call is (18)

Psuc(N) = PN−1
blk

(
1− Prej(1)

) (
1− Prej(2)

)
. . .

(
1− Prej(N − 1)

)
(1− Pblk). (18)

The probability of a rejected call (19)

Prej(N) = PN
blk

(
1− Prej(1)

)(
1− Prej(2)

) (
1− Prej(N − 1)

)
. (19)

Computers 2019, 8, 45 16 of 19

Some trivial transformations yield (20), (21)

Psuc(N) = (1− Pblk)

1 +
N−1∑
i=1

Pi
blk

i∏
j=1

(1− Prej(j))

, (20)

Prej(N) = Pblk

Prej(1) +
N−1∑
i=1

Pi
blkPrej(i + 1)

i∏
j=1

(1− Prej(j))

. (21)

For a maximum speed of 10 million requests (request flows) per second and a maximum delay of 50
µs, the system has to serve up to 50 million flows per second. This example effectively illustrates that the
main load on rather limited computational resources of a network multicore controller may considerably
affect its performance. The incoming requests for such resources from several network elements
simultaneously may cause network blocking. This problem is solved using the distributed control of
parallel processes: all PCs are divided into segments associated with corresponding controllers. Note
that each segment must contain the PCs with the greatest probabilities of interaction; see Figure 17.

Computers 2019, 8, x FOR PEER REVIEW 16 of 20

Figure 16. Diagram of request service procedure.

Some trivial transformations yield (20), (21)

For a maximum speed of 10 million requests (request flows) per second and a maximum delay
of 50 μs, the system has to serve up to 50 million flows per second. This example effectively
illustrates that the main load on rather limited computational resources of a network multicore
controller may considerably affect its performance. The incoming requests for such resources from
several network elements simultaneously may cause network blocking. This problem is solved using
the distributed control of parallel processes: all PCs are divided into segments associated with
corresponding controllers. Note that each segment must contain the PCs with the greatest
probabilities of interaction; see Figure 17.

Figure 17. Diagram of distributed control of network elements.

1

1 1
() (1) 1 (1 ())

iN
i

suc blk blk rej
i j

P N P P P j
−

= =

 = − + −

 ∏ ,
(20)

1

1 1
() (1) (1) (1 ())

iN
i

rej blk rej blk rej rej
i j

P N P P P P i P j
−

= =

 = + + −

 ∏ . (21)

Figure 17. Diagram of distributed control of network elements.

A segmentation Φ of the set of PCs is described by matrices (22)

V = ‖Vik‖
n m
i=1, k=1 and L = ‖li j‖

n
i, j=1, (22)

where Vik =

{
1 if BCi ∈ Φk,
0 otherwise;

li j =

{
1 if BCi ∈ Φk;
0 otherwise.

Obviously, the elements of the matrix L are expressed through the elements of the matrix V as

follows: li j =
n∑

k=1
VikV jk0.

Let mi be the mean number of executions of the ith PC. Control is transferred to the jth block with
a probability pij. Hence, the product miPi j gives the mean number of control transfers between the ith
and jth blocks.

The mean number of transitions from the kth fragment can be written as (23)

n∑
k=1

n∑
j=1

mipi jVik
(
1−V jk

)
, (23)

Computers 2019, 8, 45 17 of 19

where Vjk takes into account the BCs from the kth fragment only and the factor (1-Vjk) eliminates the
transitions from the blocks j , i belonging to the kth segment. Then the mean number of intersegment
transitions is (24)

C =
n∑

k=1

n∑
i=1

n∑
j=1

mipi jVik
(
1−V jk

)
0
. (24)

Therefore, the expression
n∑

k=1

n∑
i=1

n∑
j=1

mipi jVikV jk determines the mean number of transitions

between the BCs of a segment. Then the optimization problem has the form
n∑

k=1

n∑
i=1

n∑
j=1

mipi jVikV jk =
n∑
i

n∑
j

qi jli j → min subject to the constraint
∑

i∈Φk

Si ≤ B, where Si is the memory

size required for executing the jth PC; B denotes a maximum admissible memory size for a segment.
Construct the transition probability matrix for a Markov chain of n PCs using the formulas

Q = ‖Pi j‖
n
i, j=1, Pi j ==

gi j∑
j

gi j
, where gij is the mean number of control transfers between the ith and jth

PCs and Pij is the probability of control transfer to the jth PC.
Describe the segmentation Φ of the set of all PCs in the following way:

V = ‖νik‖
n m
i=1, k=1, L = ‖li j‖

n
i, j, where νik =

{
1 if PCi ∈ Φk,
0 otherwise;

li j =

{
1 if blocks i, j ∈ Φk,
0 otherwise.

Write the constraints
n∑

j=1
S jli j ≤ B, where Si is the memory size for the ith PC; B is the memory size

for a segment Φk.

Calculate the mean number of transitions from the kth segment as C =
n∑

i=1

n∑
j=1

miPi jνik, where mi is

the mean number of executions of the ith PC.
Minimize the mean number of intersegment transitions C =

n∑
k=1

n∑
i=1

n∑
j=1

miPi jνikν jk =
n∑

i=1

n∑
j=1

gi jli j,

where Pi j =
gi j∑

j
gi j

, subject to the constraints
n∑

j=1
S jli j ≤ B, li j + lit + l jt − 2li jlitl jt ≤ 1 for ∀i, j, t. These

constraints guarantee that each PC belongs to a single segment Φk.

3.5. Simulation Results of Request Service Procedure

An example of the graph of the request implementation procedure is shown in Figure 18. The
memory distribution among the elements of a BP (the so-called business components, BCs) is presented
in Table 1.

Computers 2019, 8, x FOR PEER REVIEW 18 of 20

An example of the graph of the request implementation procedure is shown in Figure 18. The
memory distribution among the elements of a BP (the so-called business components, BCs) is
presented in Table 1.

Figure 18. Graph of request implementation procedure.

Table 1. Memory distribution among business components (BCs).

Elements of business process

1 2 3 4 5 6
Size of BC,

in Kb
3000 2000 1500 1000 700 500

The mean number of control transfers gij can be obtained using a program monitor of this
system. The results of measurements are combined in Table 2.

Table 2. The mean number of control transfers gij.

Value i
Value j

1 2 3 4 5 6
1 0 372 – 12 – –
2 – 0 270 – – 9
3 – – 0 227 13 –
4 – – – 0 732 –
5 – – – – 0 21
6 – – – – – 0

Here the desired variables are the elements of the matrix
, 1

n

ij i j
L l

=
= ,

where
1if blocks and belong toa singlefragment,
0otherwise.ij

i j
l

=

The implementation times of the sequence of PCs are given in Table 3.

Table 3. Implementations of different configurations of BP elements.

The Number of
Intersegment
Transitions

The Elements of Matrix L Implementation
Time, in ms

l12 l13 l14 l23 l25 l26 l56 l46

0 1 1 1 1 1 1 1 1 3.57
30 0 0 1 1 1 1 1 1 3.72

100 1 1 0 0 1 1 1 1 3.85
200 1 1 1 1 0 0 1 1 4.03
1000 1 1 1 1 1 1 0 0 5.71
2000 0 0 0 0 1 1 1 1 7.31

Clearly, the optimal combination consists of the following PCs: 1–5, 1–6, 1–4, 2–3, 2–5, 2–6, 4–6,
5–6. All PCs of a business process have to be divided into two segments: PCs 1–4–5–6 and 2–3, or
PCs 1–4 and 2–3–5–6. The execution time of the business process (service implementation) has been
reduced from 4.416 to 3.681 ms, which is 17%.

Figure 18. Graph of request implementation procedure.

Table 1. Memory distribution among business components (BCs).

Elements of Business Process

1 2 3 4 5 6

Size of BC, in Kb 3000 2000 1500 1000 700 500

Computers 2019, 8, 45 18 of 19

The mean number of control transfers gij can be obtained using a program monitor of this system.
The results of measurements are combined in Table 2.

Table 2. The mean number of control transfers gij.

Value i
Value j

1 2 3 4 5 6

1 0 372 – 12 – –
2 – 0 270 – – 9
3 – – 0 227 13 –
4 – – – 0 732 –
5 – – – – 0 21
6 – – – – – 0

Here the desired variables are the elements of the matrix L = ‖li j‖
n
i, j=1, where li j ={

1 if blocks i and j belong to a single fragment,
0 otherwise.

The implementation times of the sequence of PCs are given in Table 3.

Table 3. Implementations of different configurations of BP elements.

The Number of
Intersegment Transitions

The Elements of Matrix L Implementation
Time, in msl12 l13 l14 l23 l25 l26 l56 l46

0 1 1 1 1 1 1 1 1 3.57
30 0 0 1 1 1 1 1 1 3.72
100 1 1 0 0 1 1 1 1 3.85
200 1 1 1 1 0 0 1 1 4.03

1000 1 1 1 1 1 1 0 0 5.71
2000 0 0 0 0 1 1 1 1 7.31

Clearly, the optimal combination consists of the following PCs: 1–5, 1–6, 1–4, 2–3, 2–5, 2–6, 4–6,
5–6. All PCs of a business process have to be divided into two segments: PCs 1–4–5–6 and 2–3, or
PCs 1–4 and 2–3–5–6. The execution time of the business process (service implementation) has been
reduced from 4.416 to 3.681 ms, which is 17%.

The main limitations of the developed models, which are related to the accuracy of the research
results, are determined by the assumption that the phases of receiving and processing packages
are independent.

4. Conclusions

In this paper, the formal design problem of distributed operational management and support
systems for communication companies and the main approaches to this problem have been considered.
An iterative convergent algorithm for distributing program components among program modules that
implements a corresponding microservice or business component in the Frameworx description has
been presented. A service schedule of requests with the colored Petri nets formalization that minimizes
the number of delayed requests has been developed. An integration algorithm for program components
that minimizes the system cost of their interaction has been proposed. All these results contribute to the
efficient design of distributed operational management systems for next-generation telecommunication
networks and also determine a flexible, software-defined and cost-saving architecture of management
systems for infocommunication networks and services.

Author Contributions: Formal analysis, S.Y.; Methodology, V.M.; Validation, G.L.; Visualization, N.B.

Funding: This research was funded by the Russian Foundation for Basic Research (RFBR), grant number
19-07-00856\19.

Computers 2019, 8, 45 19 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hanhua, L.; Yashi, W.; Lijuan, M.; Zhenqi, H. OSS/BSS framework based on NGOSS. In Proceedings of the
2009 International Forum on Computer Science-Technology and Applications, Washington, DC, USA, 25–27
December 2009. [CrossRef]

2. Kot, T.; Reverchuk, A.; Globa, L.; Schill, A. A novel approach to increase efficiency of OSS/BSS workflow
planning and design. In Proceedings of the International Conference on Business Information Systems,
Berlin, Germany, 21–23 May 2012. [CrossRef]

3. Sathyan, J. Fundamentals of EMS, NMS and OSS/BSS; Auerbach Publications: New York, NY, USA, 2010.
4. Simoes, J.; Wahle, S. The future of services in next generation networks. IEEE Potentials 2011, 30, 24–29.

[CrossRef]
5. Lechler, T.; Taylor, B.J.; Klingenberg, B. The Telecommunications Carriers’ Dilemma: Innovation vs. Network

Operation. In Proceedings of the Portland International Center for Management of Engineering and
Technology, Portland, OR, USA, 5–9 August 2007. [CrossRef]

6. TM Forum. Available online: http://www.tmforum.org/ (accessed on 30 January 2019).
7. Open Digital Architecture. Available online: http://www.tmforum.org/resources/whitepapers/open-digital-

architecture/ (accessed on 30 January 2019).
8. ITU-T Recommendations Y series. Available online: https://www.itu.int/itu-t/recommendations/index.aspx?

ser=Y (accessed on 30 January 2019).
9. Frameworx TM Forum. Available online: https://www.tmforum.org/tm-forum-frameworx-2/ (accessed on

30 January 2019).
10. Lee, E.A. The problem with threads. Computer 2006, 39, 33–42. [CrossRef]
11. Sutter, H.; Larus, J. Software and the concurrency revolution. Queue 2005, 3, 54–62. [CrossRef]
12. Olszewski, M.; Ansel, J.; Amarasinghe, S. Kendo: efficient deterministic multithreading in software.

ACM Sigplan Notices 2009, 44, 97–108. [CrossRef]
13. Bic, L.; Shaw, A.C. The Logical Design of Operating Systems, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River,

NJ, USA, 1988.
14. Piyl, Y.I. Ustranenie vzaimnoi blokirovki parallel’nykh protsessov pri statisticheskom raspredelenii resursov

[Elimination of mutual blocking of parallel processes in statistical resource allocation]. In Network Protocols
and Management in Distributed Computing Systems: A Compilation; USSR Acad. of Sciences: Moscow, Russia,
1986; pp. 116–125. (In Russian)

15. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use; Springer: Berlin/Heidelberg,
Germany, 2013.

16. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for modelling and validation of
concurrent systems. Int. J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]

17. CPN Tools. Available online: http://cpntools.org/. (accessed on 30 January 2019).
18. ITU-T Recommendation Y.3300: Framework of software-defined networking. Available online: https:

//www.itu.int/rec/T-REC-Y.3300-201406-I/en (accessed on 30 January 2019).
19. Whitt, W. Performance of the queueing network analyzer. Bell Syst. Tech. J. 1983, 62, 2817–2843. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IFCSTA.2009.120
http://dx.doi.org/10.1007/978-3-642-30359-3_13
http://dx.doi.org/10.1109/MPOT.2010.939761
http://dx.doi.org/10.1109/PICMET.2007.4349638
http://www.tmforum.org/
http://www.tmforum.org/resources/whitepapers/ open-digital-architecture/
http://www.tmforum.org/resources/whitepapers/ open-digital-architecture/
https://www.itu.int/itu-t/recommendations/ index.aspx?ser=Y
https://www.itu.int/itu-t/recommendations/ index.aspx?ser=Y
https://www.tmforum.org/tm-forum-frameworx-2/
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1145/1095408.1095421
http://dx.doi.org/10.1145/1508284.1508256
http://dx.doi.org/10.1007/s10009-007-0038-x
http://cpntools.org/.
https://www.itu.int/rec/T-REC-Y.3300-201406-I/en
https://www.itu.int/rec/T-REC-Y.3300-201406-I/en
http://dx.doi.org/10.1002/j.1538-7305.1983.tb03205.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Methods
	Frameworx TM Forum
	Model of Distributed Management System for Next-Generation Networks
	Elimination of Dead States and Interlocks
	Analytical Model of Integration System for PCs
	Simulation Results of Request Service Procedure

	Conclusions
	References

