
computers

Article

Indiscernibility Mask Key for Image Steganography †

Piotr Artiemjew *,‡ and Aleksandra Kislak-Malinowska ‡

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn,
10-710 Olsztyn, Poland; akis@uwm.edu.pl
* Correspondence: artem@matman.uwm.edu.pl
† Extended version of paper “Using r-indiscernibility relations to hide the presence of information for the least

significant bit steganography technique” presented at Damaševičius, R.; Vasiljeviene, G. (Eds.) Information
and Software Technologies. In Proceedings of the Communications in Computer and Information Science
(ICIST 2019), Vilnius, Lithuania, 10–12 October 2019; Volume 1078.

‡ These authors contributed equally to this work.

Received: 18 April 2020; Accepted: 6 May 2020; Published: 11 May 2020
����������
�������

Abstract: Our concern in this paper is to explore the possibility of using rough inclusions for image
steganography. We present our initial research using indiscernibility relation as a steganographic
key for hiding information into the stego carrier by means of a fixed mask. The information can be
embedded into the stego-carrier in a semi-random way, whereas the reconstruction is performed in a
deterministic way. The information shall be placed in selected bytes, which are indiscernible with the
mask to a fixed degree. The bits indiscernible with other ratios (smaller or greater) form random gaps
that lead to somehow unpredictable hiding of information presence. We assume that in our technique
it can modify bits, the change of which does not cause a visual modification detectable by human
sight, so we do not limit ourselves to the least significant bit. The only assumption is that we do not
use the position when the mask we define uses it. For simplicity’s sake, in this work we present its
operation, features, using the Least Significant Bit (LSB) method. In the experimental part, we have
implemented our method in the context of hiding image into the image. The LSB technique in its
simplest form is not resistant to stegoanalisys, so we used the well-known LSB matching method to
mask the presence of our steganographic key usage. To verify the resistance to stegoanalisys we have
conducted and discussed Chi-square and LSB enhancement test. The positive features of our method
include its simplicity and speed, to decode a message we need to hide, or pass to another channel,
a several-bit mask, degree of indiscernibility and size of the hidden file. We hope that our method
will find application in the art of creating steganographic keys.

Keywords: steganography; rough sets; indiscernibility mask key

1. Introduction

In the introduction we will present two separate parts—discuss the background of the
steganographic techniques and start to introduce the key to the surrounding theory. Let us start
with a brief introduction to steganography. Steganographic techniques are sophisticated methods
the idea of which is to hide the data inside the other to move them unnoticed [1]. Steganography is
really an old field of science, its origins go back thousands of years. Digital Data steganography has
currently been under development-it provides, among others, tools for transferring information into
digital carriers-like pictures, audio, network protocols or videos. There exist a massive number of key
based steganographic techniques, we will quote some of the most interesting ones. The application
of steganography to secure stored data elements in the cloud was proposed by Yesilyurt et al. [2].
The method for secret sharing and authorisation was proposed by Liu et al. [3]. The technique of
transferring data to the cloud from mobile devices was proposed by Xiang et al. [4]. The method of

Computers 2020, 9, 38; doi:10.3390/computers9020038 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0001-5508-9856
https://orcid.org/0000-0001-8314-0276
http://dx.doi.org/10.3390/computers9020038
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/2/38?type=check_update&version=2

Computers 2020, 9, 38 2 of 24

securing the location of nodes in the wireless sensor network was proposed by Tondwalkar et al. [5].
One of the most popular techniques-but also low resistance to damage in its pure form-is the LSB
method. Let us present selected important discoveries concerning this method. Adaptive LSB
substitution was proposed by Yang et al. [6], hybrid technic of interpolation and LSB substitution was
proposed by Jung et al. [7]. Technique based on four-pixel differencing and modified LSB substitution
was introduced by Liao et al. [8], adaptive data hiding LSB variant was shown by Khodaei et al. [9].
LSB substitution with bit inversion method was developed by Akhatar et al. [10]. Genetic algorithm in
the context of LSB was used by Sethi et al. [11]. An interesting technique to minimize cover changes
by dividing messages into blocks and hiding in appropriate areas of the image can be found in
Reference [12]. An interesting example of how to deal with the Chi square [13] and LSB enhancement
attack in the LSB method we can find in Reference [14]. And finally hybrid Canny-Sobel edge detection
was used by Setiadi [15]. We find these methods to be one of the most interesting. They solve many
problems, among others, the problem of protaction against detecting an embedded message using
Chi Square and LSB enhancement attack. For a detailed review of steganographic techniques, see
Reference [16].

All techniques are based on searching for a steganographic key, which allows the effective
hiding of data with blurring their presence in the steganographic carrier. Hiding the presence of
information in the least significant bit may, for example, consist in searching for the pixels closest to the
specific bytes of the message in the image divided into blocks-thus reducing the number of necessary
modifications-see Reference [17]. Another way to secure messages is to embed without creating value
pairs, which are detected by Chi Square, for example,-see Reference [18].

Let us now move on to a general introduction to the paradigm of granular computing, as planned.
In the paradigm of granular computing [19] in the area of rough sets [20], one of the tools for
manipulating information vectors are rough inclusions [21,22]. A rough inclusion is understood
as an inclusion of one object in another to a fixed degree. The references given indicate where
additional details can be found (very precise theoretical basis), in this paper we have concentrated
only on the details needed to understand our algorithm. Rough sets are used, among others, in the
processes of classification, regression, data grouping, boosting of classification, features selection,
attribute rankings creation and approximation of decision systems.

The question whether a rough inclusion can be useful to define steganography key motivated us
to conduct this research. In our preliminary studies for its simplicity we have decided to explore and
modify the widely used LSB technique for embedding certain information in a graphical form into
a cover picture. The considered method consists in hiding data in the last bit of pixel Bytes. To hide
the presence of information embedded with our key we used LSB matching technique, using the
penultimate bit of colour bytes. It turned out that by using an additional mask, it is possible to hide
data in RGB bytes in a semi-randomized manner. This is due to the fact that there may be many
sequences of bits, which are indiscernible with the mask in radius degree. Bytes indistinguishable in
degree radius with a mask become the stego carriers of information. Bytes indistinguishable in other
degrees are omitted when inserting information. While designing our method we have assumed that
data embedded in this way—evenly distributed in a stego carrier—shall be difficult to detect using
stegoanalisys methods-we have verified our assumption in the experimental part implementing Chi
Square attack. In addition, our message embedding key does not create consistent pairs of values
because the embedding of bits is not explicit.

Let us discuss the next sections. Image steganography is discussed in Section 2. The issues of
stegoanalisys are discussed in Section 3. Selected techniques for securing data against attacks are
discussed in Section 4. A theoretical introduction to the indiscernibility relations in fixed degree
and our method are described in the Section 5. In Section 6 we discuss how to use our method.
The experimental results are presented in Section 7. The work is summarized in Section 8.

Computers 2020, 9, 38 3 of 24

2. Image Steganography

Considering the human eye vision limits one can modify the shades of colors in the picture
obtaining the same appearance of the pictures. And this is basically the only reason why we can use
steganographic techniques in images.

2.1. Digital Representation of the Image

A digital image can be simply represented by binary numbers of pixel colour saturation in the
relevant system. Greyscale image pixels are represented by single Bytes that take decimal values from
0 to 255. In binary format from 00000001 to 11111111. Sample change 01101011⇒ 01101010 would not
be noticeable to the human eye and in that way we could exploit that shortcoming of a human eye to
hide data. RGB image pixels are represented by triples of Bytes, which take decimal values from 0
to 255. For example, white color in decimal form is represented by (255, 255, 255) and in binary form
by (11111111, 11111111, 11111111). Data in digital systems are often shown in hexadecimal form for
reading convenience. The white color is (FF, FF, FF) where F is the letter of the hexadecimal system
alphabet to which a decimal value of 15 is assigned.

2.2. Basic LSB Technique

There are plenty techniques exploiting the limitations of the human eye while looking at the
computer image-one of them is using the least significant bit (LSB) method [23,24]. To mask the
presence of information transformations are often used-see Reference [17,25]. The LSB method consists
in modifying the least significant bit of pixel bytes-the change of which is invisible due to human sight
limitations. Let us move on to the demonstration of the use of the technique in an RGB form of image.
We want to the letter B in pixel bytes with the following representation.

11101111 11110111 11111011 11111101

11111110 11101111 11110111 11101110

The capital letter B in the ASCII array has the decimal value 65-in binary form it is 01000001. Each
decimal value of the ASCII module is written in one Byte, so we complete the received binary value
getting 01000001. In this form we can start hiding data.

11101110 11110111 11111010 11111100

11111110 11101110 11110110 11101111

The expected number of changes we make at the end of the random data is about 50 percent.

Computers 2020, 9, 38 4 of 24

The LSB method can be detected by statistical analysis of the typical occurrence of values 1 and
0 at the end of Bytes. Hence, steganographic keys are used to protect information in stego carrier.
In doing so embedding an image into a cover picture may can not be noticed to the human eye
and, what is more, resistant to statistical tests (like chi-square test) and not to be discovered by an
unauthorised person.

2.3. Limitations on the Use of Image Steganography

It is clear that the use of image steganography is detectable in one hundred percent if the attacker
has a cover with the same resolution as the stego-carrier. What is attempted to achieve in image
steganography is to embed information in such a way that its presence cannot be detected in a stego
carrier. This means that the statistics of pixel values in the image do not deviate from the typical
ones. One method of such verification is the Chi square test. Our algorithm has successfully passed
the test on the examined images, however, statistical tests are not enough to verify effective data
embedding. Visualizations based on the last beat of the Pixel Bytes allow to discover a visual trace of
the hidden message. An exemplary result of such visualization is presented in Figure 5. It is clear that
by embedding a message only in a specific area of the cover, you can see a sign of this data. To avoid
this, you can spread the data evenly over the entire image, or use higher bytes to hide the higher
bits of Bytes-using the limitations of RGB recognition by the human eye. Of course, in the context of
images, the basis for the use of steganography is the application of changes in pixel shades that are
not recorded by the human eye. The human eye is only able to recognize from 30 to 50 shades of grey
out of 255. The sensitivity of the human eye to color shades varies-see Reference [26]. The human
eye can only recognize about 10 million different colors. For example, using RGB, 24 bits per pixel,
we have 16,777,216 colors available. This is a huge field for image steganography. Another basic
limitation to the use of steganography is interference resulting from scaling, rotation of images. The use
of steganography directly with the whole spectrum of colour shades is completely immune to error
detection. Because changing one bit leads to a different hue that belongs to a domain. The solution
to this problem is to use numeric codes in which the bytes of the message are converted to code
words. The main assumption is to get such a set of hue representatives that Hamming’s minimum
distance is as large as possible. The minimum distance is simply the smallest Hamming distance
(the number of differences on individual bits) among all code word pairs representing pixels. It is well
known that when considering the minimal Hamming distance of a set of code words (C) representing
pixels-denoting by d(C). You can recognize the [d(C)− 1] errors, and and fix [d(C)−1]

2 errors. The longer
the code words the longer the distance can be, the limitation is of course the number of bits available
in the cover. By notation [x], we denote a feature of a number (its integer part).

To show the limit of use of the least significant bits of RGB bytes, we performed an additional
test. We perform an experiment to replace selected bits of RGB bytes with zero values. The effect can
be observed in Figures 1–3, for R, G and B, respectively.

Using the LSB method, it is very easy to destroy a message, simply by resetting the last bits of the
message. So it is basically the weakest steganographic technique in images. We used this technique by
its simplicity to present our new steganographic key.

Computers 2020, 9, 38 5 of 24

Figure 1. Changes in the red (R) color byte of RGB. We present the picture with the appropriate
positions of Bytes changed to zero, from the top left corner to the rows, up to the bottom right we have,
respectively changed 8 bits of Bytes, 7 and 8 bits of Bytes, ..., all bits of Bytes. You can see the limit
of modification of the least significant bits of the image, in which we do not recognize the changes.
The other colors have a zeroed eighth, least significant bit.

Computers 2020, 9, 38 6 of 24

Figure 2. Changes in the green (G) color byte of RGB. We present the picture with the appropriate
positions of Bytes changed to zero, from the top left corner to the rows, up to the bottom right we have,
respectively changed 8 bits of Bytes, 7 and 8 bits of Bytes, ..., all bits of Bytes. You can see the limit
of modification of the least significant bits of the image, in which we do not recognize the changes.
The other colors have a zeroed eighth, least significant bit.

Computers 2020, 9, 38 7 of 24

Figure 3. Changes in the blue (B) color byte of RGB. We present the picture with the appropriate
positions of Bytes changed to zero, from the top left corner to the rows, up to the bottom right we have,
respectively changed 8 bits of Bytes, 7 and 8 bits of Bytes, ..., all bits of Bytes. You can see the limit
of modification of the least significant bits of the image, in which we do not recognize the changes.
The other colors have a zeroed eighth, least significant bit.

3. Stegoanalysis

There is a number of Stegoanalisys techniques which of course are developed along with the
evolution of new steganography methods. An interesting review can be found in References [27–29].
We can list the various options: Stego-only attack, Known-cover attack, Known-message attack,

Computers 2020, 9, 38 8 of 24

Chosen-steganography attack, Chosen-message attack, Known-steganography attack, Statistical
analysis, Structural analysis and Signature analysis. In order to study the description of these
techniques the reader can consult [27–29] and. One of the most popular stegoanalisys techniques is
chi-square attack [13], it is a simple and well-known method to test the security system against the
attacks-see Section 3.2. The method is based on the analysis of the frequency of occurrence of colour
saturation in pairs and detects summary disturbances associated with this distribution. An interesting,
simple attack to discover the existence of embedded information is LSB enhancement. The method
is described in Section 3.1. Let us present a description of selected stegoanalisys techniques, two of
which we implemented for the purpose of the work.

3.1. Stegoanalisys-LSB Enhancement Attack

The technique consists of assigning to bytes of a given colour which contain, in the least significant
bit, the value 1, value 11111111. If the last bit is zero, we leave the byte unchanged. In this technique,
by enhancing the colours of pixels that have non-zero last bits, we visualize a potentially hidden
message. Now, allow us to present the technique in a pseudo-code.

The effect of the method can be seen in the Figures 4 and 5. In particular, in Figure 5 we have a
demonstration of how the method makes the embedded information visible in the steganographic
carrier. Where in Figure 4 we have its operation shown in the picture without the message embedded.

Figure 4. Stegoanalisys-least significant bit (LSB) enhancement in a stego-carrier.

Computers 2020, 9, 38 9 of 24

Figure 5. Stegoanalisys-LSB enhancement in a stego-carrier. You can clearly see the embedded message.

3.2. Stegoanalisys-Chi Square Attack

The test is used to detect a deviation from the expected statistical dependence of frequency, colour
pairs in a fixed size of image blocks. Let us move on to a more detailed introduction with an example.
We will start by describing the preparation of a series of data from the image for analysis.

One should consider the color saturation in the range <0–255>, where we have in binary form:

0DEC : 00000000BIN

1DEC : 00000001BIN

2DEC : 00000010BIN

...

255DEC : 11111111BIN

Please consider the following colour pairs, the frequencies of which we will calculate.

PAIRS = {(0DEC, 1DEC), (2DEC, 3DEC)...(254DEC, 255DEC)}

Let us calculate an example of the observed and expected value for the selected pair. Considering
(iDEC, jDEC), where color iDEC frequency in the block of data is f req(iDEC) = 50, and frequency of jDEC
is equal f req(jDEC) = 20. The expected value for this pair is equal

expected_value(iDEC, jDEC) =
f req(iDEC) + f req(jDEC)

2

In our example it is 35.

observed_value((iDEC, jDEC) = | f req(iDEC)− expected_value(iDEC, jDEC)|

Computers 2020, 9, 38 10 of 24

In our example it is 15. So, we get the first pair of values that will feed the Chi square test. It is

(observed_value((iDEC, jDEC), expected_value(iDEC, jDEC)) = (15, 30)

The rest of the values for the remaining colour saturation pairs are calculated analogously.
The test for all pairs is repeated iteratively on a fixed block size, for example, 64, 128, 256 Bytes.
After calculating 128 pairs for a given block, we calculate p-value for the Chi square test.

χ2 = ∑
(observed_value((iDEC, jDEC)− expected_value(iDEC, jDEC))

2

expected_value(iDEC, jDEC)

χ2 summarizes the difference between our data and our independence hypothesis. For a test to be
valuable, the data must meet the following assumptions.

(1) independent observations,
(2) χ2 distribution,

To find p-value we need two values: χ2 and the number of the degrees of freedom (df).

d f = (numb_o f _rows− 1) ∗ (numb_o f _cols− 1)

In our case numb_o f _rows = 128, numb_o f _cols = 2, thus d f = 127, and p-value can be found in
1− tailed significance test table.

According to Reference [30], when some data like encrypted image is embedded into another
image the LSB values of the original data change in a way that the number of these pairs become
nearly equal while they differ so much when there is no embedding.

4. Protection against Stegoanalisys

Naturally, with the development of stegoanalisys techniques, there are methods of defense against
them, in this section we will focus on the protection against Chi-square and LSB enhancement attacks.
In order to protect the embedded information from detection, we cannot allow the cover image to
be made available, because the attacker will detect the embedded information regardless of which
technique has been used. The second important step, especially against LSB Enhancement, is the
equal distribution of messages throughout the stego-carrier (see in Figure 6). Another simple step
to make it easier to protect data against detection is to match a cover to the data, for example, by
using images with a specific colour saturation spectrum. Greyscale images are a great place to embed
data as the shades change gradually between palette entries. An interesting way, computationally
absorptive, but minimizing the number of changes in the cover, is to use data blocks and match data
to them. The basic step to hide the presence of information is to use pseudo-random distribution of
information-for example, using the RC4 algorithm-see Reference [31]. Another technique to protect
data against detection is the widely tested LSB substitution method-see References [1,6–10,18]. Another
technique worth mentioning is Data Masking-see Reference [32] (Masking changes the illumination
in the masked areas) and filtering-see Reference [33]. Minimize the statistical difference between the
cover and the image with the message embedded, for example, the frequency of color saturation pairs.
This technique protects against a Chi-square attack-see References [18,34,35].

Computers 2020, 9, 38 11 of 24

Figure 6. Stegoanalisys-LSB enhancement in a stego-carrier, randomly filled with information.

Let us move on to discussing our technique of creating a steganographic key. We’ll start by
introducing the necessary theory.

5. Theoretical Background for Indiscernibility in Degree

A theoretical explanation of the topic of rough inclusions can be found in Pawlak et al. [36],
Polkowski [21,22,37,38], a very detailed overview is available in Reference [39]. Let us give the basic
information needed to define our technique.

Considering the objects ob1, ob2 belonging to the decision system defined as the triple
(Universe, Attr, dec), where Universe is a set of objects, Attr a set of conditional attributes, and dec a
decision attribute. A rough inclusion is defined as follows

µ(ob2, ob1, radius)⇔ |IND(ob1, ob2)|
|Attr| ≥ radius. (1)

The granulation radius radius belongs to the set { i
|Attr| , where i = 0., 1., ..., |Attr|}

IND(ob1, ob2) = {a ∈ Attr : a(ob1) = a(ob2)}, (2)

The indiscernibility relation is an equivalence relation. radius-indiscernible mask is calculated
as below:

i f µ(ob2, ob1, radius)⇔ |IND(ob1, ob2)|
|Attr| = radius, then conceal in f ormation bit in LSB, (3)

i f µ(ob2, ob1, radius)⇔ |IND(ob1, ob2)|
|A| 6= radius, then skip the Byte. (4)

Example 1. if we chose the mask of the length 2, like: _____00_ (two 00 on the sixth and seventh position of
the bites consecutively), chose the radius equal to r = 1/2 and put the mask on byte 00110011 we could see that

Computers 2020, 9, 38 12 of 24

the difference was on one position out of two (00 versus 01)-that is why we would hide a message bit in LSB in
that case. If an exemplary byte was 00110001 the radius would be equal to 1 (different from 1/2) and in that
case the byte would be skipped. Similarly for 00110111 and the radius equal to 0 the byte would be skipped.

In our work we used rough inclusion as a steganographic key.

6. Usage of Our Steganographic Key-the Use of Rough Inclusion to Cover Up Information

Let us describe how we use our steganographic key in LSB technique. Considering the set of
RGB pixels, p1, p2, ..., pk, where each pixel is defined as:

pi = (pred
i pgreen

i pblue
i) :

pred
i = b

pred
i

1 b
pred

i
2 b

pred
i

3 b
pred

i
4 b

pred
i

5 b
pred

i
6 b

pred
i

7 b
pred

i
8

pgreen
i = b

pgreen
i

1 b
pgreen

i
2 b

pgreen
i

3 , b
pgreen

i
4 b

pgreen
i

5 b
pgreen

i
6 b

pgreen
i

7 b
pgreen

i
8

pblue
i = b

pblue
i

1 b
pblue

i
2 b

pblue
i

3 b
pblue

i
4 b

pblue
i

5 b
pblue

i
6 b

pblue
i

7 b
pblue

i
8

For example: this color is represented as (11111111 00000000 10000000) (decimal form is as
follows: (255, 0, 128)).

For a given mask mask = (mask1, mask2, ..., maskk), k < 8, the bit of information can be hidden in
the Byte (pcolor

i) of pixel pi, in case the following condition is fulfilled:

|IND(pcolor
i , mask)|

card{mask} = radius

IND(pcolor
i , mask) = {bits ∈ Byte : bit(pcolor

i) = bit(mask)},

with the assumption that bits of Bytes and mask bits are compared in the same positions in Byte. Note,
that the length of a mask must be not greater than 8-we can use maximum seven positions in a Byte to
place the mask upon, whereas the last bit is used for encoding the information in case the mask fits.

In case one uses the methodology proposed above-there are 27 different mask that can be used
(from the length 1 up to the length 7). By means of a given (fixed) mask the bits of a message can be
embedded. It was mentioned before that in doing so we obtain a kind of pseudo-randomness because
even starting from the beginning in the cover picture not every byte fits to the mask (which means
the least significant bit is not changed) and if it fits the mask with a given ratio the least significant bit
might be changed but might be also left unchanged. Let us assume again that our original bits are
as follows:

00100110 01011011 10101110 11101111

01010100 01111010 10011001 00010111

and the fixed mask is 00 on two penultimate bits with the ratio r = 0.5. Putting the mask on bytes one
can notice that only the second, the fifth and the sixth byte are used for embedding the message and
the other ones create random gaps. Let us assume that the message to hide starts with 111...-then after
putting the mask and encoding this fragment one obtains:

00100110 01011011 10101110 11101111

01010101 01111011 10011001 00010111

Notice that on the string of eight Bytes only two changes had to be made with respect to the
starting string of Bytes:

00100110 01011011 10101110 11101111

Computers 2020, 9, 38 13 of 24

01010101 01111011 10011001 00010111

Even if these two changes can be notices it is not clear which other Bytes were chosen to hide
the message.

In our experiments we considered using different masks for RGB colour.

7. Research Experiments

The diagram showing the general outline of the test we have conducted is in Figure 7, a detailed
scheme is shown in Figure 8.

Message(M) Steganographic function(F) Data with hidden message(S)

Cover(C) Steganographic key(K) Transmission channel

Decoded message(M1) Inverse steganographic function(F−1) Data with hidden message(S1)

Figure 7. Communication process-steganographic system.

Image to hide Container image

Creating a bit representation Filling the container extracting bits from the image image reconstruction

Binary data Container with hidden message Binary data 2 Reconstructed image

Figure 8. Our tests design.

We have used the bitmap library.hpp, see Reference [40]. As a stego carrier we used a picture
of 3024 by 4032 pixels from Figure 9. So we have a 3024 ∗ 4032 ∗ 3 = 36,578,304 least significant bits
available in the stego carrier.

Computers 2020, 9, 38 14 of 24

Figure 9. Image for carrying information (cover picture).

Now allow us to present the characteristics of our method using a sample mask, with sample data.
The image we hide in the first experiment is 453 by 500 pixels-see Figure 10, after breaking down

into bits we have 5,436,048 bits to hide, including 48 containing the size of the image. If we use
mask = 00 or mask = 11 as the last two bits and assume a degree of indiscernibility of 0.5 we get a
6,233,077 empty slots after embedding the image. The mask itself never changes any bit in the stego
carrier but with it we have made 2,715,254 changes during image insertion. If we use a 01 or 10 mask
we get 4,720,805 indiscernible Bytes with 2,718,786 changes in the stego carrier.

Figure 10. Information to be hidden-Archimedes, bas-relief created by Reference [41].

Let us proceed with the third tests for another image to hide from Figure 11. Its size is 500× 560 pixels
so we have 6,720,048 bits to hide also taking into account three Bytes containing the size of the picture.
If we use mask = 10 or mask = 01 as the last penultimate two bits and assume a degree of indiscernibility

Computers 2020, 9, 38 15 of 24

of 0.5 we get a 5,891,420 empty slots after embedding the image. The mask itself never changes any bit in
the stego carrier but with it we have made 3,360,889 changes during image insertion.

Figure 11. Information to be hidden [42].

The fourth test for another image is to hide Figure 12. Its size is 500× 332 pixels so we have
3,984,048 bits to hide also taking into account three Bytes containing the size of the picture. If we use
mask = 10 or mask = 01 as the last penultimate two bits and assume a degree of indiscernibility of 0.5
we get a 3,388,417 empty slots after embedding the image. The mask itself never changes any bit in the
stego carrier but with it we have made 1,990,405 changes during image insertion.

Figure 12. Information to be hidden-from the collection of macrophotography [43].

In order to hide the image size into the stego carrier we used two first Bytes at the edge. The pixels
are in 24 bits RGB format thus numbering Bytes of the pixels as B1, B2, ..., B6 the size of hidden image
can be computed as

h = BDEC
1 ∗ BDEC

2 + BDEC
3

w = BDEC
4 ∗ BDEC

5 + BDEC
6

.

Computers 2020, 9, 38 16 of 24

The DEC means that the Bytes are used in decimal form. Thus in a detailed way: 451 = 255 ∗ 1+ 196
produces 11111111 00000001 11000100 500 = 255 ∗ 1+ 245 produces 11111111 00000001 11110101.

Even if the size of the embedded picture is somehow discovered there is a great difficulty to find
which Bytes contain the hidden pictures because of indiscernibility mask application. The size of the
picture could be alternatively hidden using indiscernibility mask. What is to be know in order to
recover the message? One needs to know which indiscernibility mask has been used.

In order to verify the effectiveness of our information embedding method, we performed
a Chi-square and LSB enhancement attack test [30] using the algorithms versions described in
Sections 3.1 and 3.2.

Tests of resistance to detection of the use of LSB, with the help of LSB enhancement were carried
out on 35 images from the collection [41]—the sample is in the Figure 13.

It turned out that our technique using the LSB matching method, also using the second
least significant bit is resistant to Chi-square attack and LSB enhancement (see examples in
Figures 13 and 14). However, assuming that we use images with a variety of colours. In case
of a small number of colours with a high frequency, the LSB enhancement method easily discovers the
use of our key. That is to say, we assume that our technique works when we deal with the distribution
of Chi-square colour saturation frequency.

Figure 13. Stegoanalisys-LSB enhancement in a stego-carrier. The data is protected against detection
by using the LSB Matching method (i.e., we also put the information in the second bit). In the example
we used a 00 mask, and a 1 indistinguishability level. During embedding the information. In our
experiment, we used pixels with a saturation range of [0, 120] to distribute the uniform pixels.

Computers 2020, 9, 38 17 of 24

Figure 14. Stegoanalisys-LSB enhancement in a stego-carrier. The data is protected against detection
by using the LSB Matching method (i.e., we also put the information in the second bit). In the example
we used a 00 mask, and a 1 indistinguishability level. During embedding the information, 24,319,784
empty slots were created, 1,273,791 least significant bits were changed. In our experiment, we used
pixels with a saturation range of [0, 120] to distribute the uniform pixels.

Figure 15. Stegoanalisys-LSB enhancement in a stego-carrier. The data is protected against detection
by using the LSB Matching method (i.e., we also put the information in the second bit). In the
example we used a 100 mask for R, 010 mask for G, 001 mask for B, and a 1 indistinguishability level.
During embedding the information, 3,213,4402 empty slots were created, 1,295,702 least significant bits
were changed. In our experiment, we used pixels with a saturation range of [0, 200] to distribute the
uniform pixels.

Computers 2020, 9, 38 18 of 24

Please proceed to the presentation of sample data feeding the Chi-square test from a 128 byte
data block-considering stego-carrier from Figure 9. We assume that we are considering 3000 line of
stego-carrier and file with embedded information.

It is for first 128 Bajts. (R, G, B) frequency in stego-carrier: in the spectrum [0, 255]:
(1, 1, 1), (1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 1, 1), (4, 1, 2), (1, 2, 1), (1, 1, 1),
(1, 2, 1), (5, 3, 3), (2, 4, 4), (2, 3, 2), (2, 2, 2), (3, 4, 2), (4, 5, 5), (2, 4, 2),
(6, 6, 6), (5, 5, 4), (7, 6, 5), (8, 7, 7), (9, 8, 8), (1, 2, 6), (10, 7, 7), (11, 9, 9),
(3, 1, 3), (3, 10, 3), (12, 11, 10), (2, 3, 8), (3, 4, 9), (13, 8, 3), (14, 9, 10), (4, 5, 11),
(1, 1, 1), (15, 10, 4), (1, 1, 1), (16, 3, 11), (1, 1, 1), (17, 4, 12), (18, 12, 13), (4, 2, 4),
(5, 3, 5), (6, 13, 14), (4, 14, 4), (5, 15, 5), (19, 16, 15), (7, 17, 16), (20, 18, 17), (2, 2, 2),
(2, 1, 3), (3, 3, 4), (6, 19, 6), (3, 5, 3), (2, 1, 1), (6, 4, 6), (7, 5, 7), (5, 2, 2),
(8, 20, 18), (8, 21, 8), (21, 22, 19), (22, 11, 12), (9, 6, 20), (9, 23, 9), (7, 5, 7), (4, 4, 5),
(10, 7, 10), (8, 6, 8), (6, 6, 5), (23, 24, 21), (4, 7, 4), (24, 25, 22), (11, 26, 11), (12, 27, 12),
(10, 12, 13), (13, 28, 13), (5, 8, 5), (9, 9, 9), (25, 13, 6), (14, 29, 14), (6, 6, 6), (15, 30, 15),
(7, 7, 23), (16, 31, 7), (7, 10, 6), (17, 32, 8), (18, 8, 9), (10, 11, 1), (8, 12, 7), (11, 13, 8),
(26, 33, 10), (11, 9, 11), (27, 34, 12), (19, 35, 10), (20, 36, 11), (28, 14, 16), (29, 15, 17), (21, 37, 12),
(30, 38, 13), (12, 14, 9), (13, 15, 10), (22, 10, 13), (23, 39, 14), (31, 40, 14), (24, 11, 15), (14, 16, 11),
(12, 16, 18), (25, 41, 16), (15, 17, 2), (26, 42, 17), (16, 18, 3), (9, 19, 12), (13, 43, 15), (27, 44, 18),
(8, 8, 24), (1, 1, 2), (9, 9, 25), (28, 12, 19), (32, 17, 19), (33, 13, 16), (10, 20, 13), (14, 18, 20),
(2, 2, 14), (10, 10, 26), (34, 19, 21), (15, 20, 22), (11, 3, 7), (12, 11, 27), (35, 45, 17), (17, 21, 14)

RGB frequency in stego-carrier with embedded data-from Figure 16: in the spectrum [0, 255]:
(1, 1, 1), (1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 1, 1), (1, 1, 1), (2, 2, 2), (1, 1, 1),
(1, 1, 1), (3, 3, 3), (4, 4, 4), (2, 2, 2), (2, 2, 2), (4, 4, 4), (5, 5, 5), (2, 2, 2),
(6, 6, 6), (5, 5, 5), (6, 6, 6), (7, 7, 7), (8, 8, 8), (2, 2, 2), (7, 7, 7), (9, 9, 9),
(3, 3, 3), (3, 3, 3), (10, 10, 10), (3, 3, 3), (4, 4, 4), (8, 8, 8), (9, 9, 9), (5, 5, 5),
(1, 1, 1), (10, 10, 10), (1, 1, 1), (11, 11, 11), (1, 1, 1), (12, 12, 12), (13, 13, 13), (4, 4, 4),
(5, 5, 5), (14, 14, 14), (4, 4, 4), (5, 5, 5), (15, 15, 15), (16, 16, 16), (17, 17, 17), (2, 2, 2),
(1, 1, 1), (3, 3, 3), (6, 6, 6), (3, 3, 3), (1, 1, 1), (6, 6, 6), (7, 7, 7), (2, 2, 2),
(18, 18, 18), (8, 8, 8), (19, 19, 19), (11, 11, 11), (20, 20, 20), (9, 9, 9), (7, 7, 7), (4, 4, 4),
(10, 10, 10), (8, 8, 8), (6, 6, 6), (21, 21, 21), (4, 4, 4), (22, 22, 22), (11, 11, 11), (12, 12, 12),
(12, 12, 12), (13, 13, 13), (5, 5, 5), (9, 9, 9), (13, 13, 13), (14, 14, 14), (6, 6, 6), (15, 15, 15),
(7, 7, 23), (16, 16, 7), (7, 7, 2), (17, 17, 8), (18, 18, 9), (10, 10, 5), (8, 8, 3), (11, 11, 6),
(23, 23, 10), (24, 24, 11), (25, 25, 12), (19, 19, 10), (20, 20, 11), (14, 14, 16), (15, 15, 17), (21, 21, 12),
(26, 26, 13), (12, 12, 7), (13, 13, 8), (22, 22, 13), (23, 23, 14), (27, 27, 14), (24, 24, 15), (14, 14, 9),
(16, 16, 18), (25, 25, 16), (15, 15, 10), (26, 26, 17), (16, 16, 11), (9, 9, 4), (28, 28, 15), (27, 27, 18),
(8, 8, 24), (1, 1, 3), (9, 9, 25), (28, 28, 19), (17, 17, 19), (29, 29, 16), (10, 10, 5), (18, 18, 20),
(2, 2, 7), (10, 10, 26), (19, 19, 21), (20, 20, 22), (3, 3, 14), (11, 11, 27), (30, 30, 17), (17, 17, 12)

Computers 2020, 9, 38 19 of 24

Figure 16. A picture with hidden information-there is Figure 10 hidden with use of mask 10.

Based on above data R pairs for stego-carrier are as follows, Chi− square = 32.99
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (3, 7), (5, 22), (10, 25),
(5, 7), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

In case of embedded data, Chi− square = 33.71
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

Computers 2020, 9, 38 20 of 24

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (3, 7), (5, 22), (5, 25),
(4, 7), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

Based on above data G pairs (observed, expected) for stego-carrier are as follows,
Chi− square = 15.42.
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (1, 2), (8, 13), (16, 29), (5, 15), (1, 2), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

In case of embedded data, Chi− square = 42.39
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (1, 2), (3, 13), (1, 29), (5, 15), (1, 2), (1, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

Computers 2020, 9, 38 21 of 24

Based on above data B pairs (observed, expected) for stego-carrier are as follows,
Chi− square = 42.32.
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0),
(6, 8), (1, 18), (2, 24), (4, 10), (0, 2), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

In case of embedded data, Chi− square = 43.45.
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(3, 8), (1, 18), (2, 24), (4, 10), (1, 2), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)

For all data blocks in the container and image with the message embedded, chi− square < 50,
and p-value = 1, its proof that there is no significant difference-with significance 0.05. Message can be
detected in case the Chi-square is larger than 154.

8. Conclusions

In this article we have applied rough inclusions to form the steganographic key. The use of
rough inclusions and an additional mask to indicate the bytes in which the information is embedded
allows the data to be hidden in a semi-random way, which-with evenly distributed in the stego
carrier-hides their presence. We have conducted experiments which present our technique and its
features. For demonstration purposes we used selected masks and indiscernibility levels. Using our
method when embedding information a large number of random gaps are created in which the data is

Computers 2020, 9, 38 22 of 24

not hidden. For the simplicity of presentation we chose the LSB method as a base to demonstrate our
key. We used a simple LSB matching technique to hide embedded data by using our steganographic
key. The hiding method proved to be resistant to Chi Square attack and LSB enhancement-assuming
that the images we use contain the entire color palette. In images where we have a small number of
distinguishable colors, it is difficult to hide the presence of the contained information against an LSB
enhancement attack. Another problem is the use of an indiscernible mask with a certain tolerance,
if we apply the LSB enhancement tolerance it can expose the presence of the message. From our
preliminary results we can see that precise indication of the degree of indiscernibility works effectively.

Another research topic will be the use of methods to protect the embedded information from
damage, among other things, we plan to use selected codes to increase the Hamming distance of the
embedded data bytes. We treat our results as preliminary, in future works we plan to test the whole
spectrum of possible masks and techniques of hiding the presence embedded with our information
key. This work is the starting point for a series of studies on the application of out granular computing
tools in steganography.

Author Contributions: Conceptualization, P.A.; Methodology, P.A. and A.K.-M.; Software, P.A. and A.K.-M.;
Validation, P.A.; Formal Analysis, P.A.; Investigation, P.A.; Resources, P.A. and A.K.-M.; Writing—Original Draft
Preparation, P.A. and A.K.-M.; Writing—Review and Editing, P.A. and A.K.-M.; Visualization, P.A.; Project
Administration, P.A. Funding Acquisition, P.A. and A.K.-M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been fully supported by the grant from Ministry of Science and Higher Education of the
Republic of Poland under the project number 23.610.007-300.

Acknowledgments: The research has been supported by grant 23.610.007-000 from Ministry of Science and Higher
Education of the Republic of Poland.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Zakaria, A.A.; Hussain, M.; Wahab, A.W.A.; Idris, M.Y.I.; Abdullah, N.A.; Jung, K.-H. High-Capacity Image
Steganography with Minimum Modified Bits Based on Data Mapping and LSB Substitution. Appl. Sci.
2018, 8, 2199. [CrossRef]

2. Yesilyurt, M.; Yalman, Y. New approach for cloud computing security: Using data hiding methods. Sadhana
2016, 41, 1289–1298. [CrossRef]

3. Liu, Y.N.; Zhong, Q.; Xie, M.; Chen, Z.B. A novel multiple-level secret image sharing scheme. Multimed.
Tools Appl. 2018, 77, 6017–6031. [CrossRef]

4. Xiang, T.; Hu, J.; Sun, J. Outsourcing chaotic selective image encryption to the cloud with steganography.
Digit. Signal Process. 2015, 43, 28–37. [CrossRef]

5. Tondwalkar, A.; Jani, P.V. Secure localisation of wireless devices with application to sensor networks using
steganography. Proc. Comput. Sci. 2016, 78, 610–616. [CrossRef]

6. Yang, H.; Sun, X.; Sun, G. A high-capacity image data hiding scheme using adaptive LSB substitution.
Radio Eng. 2009, 18, 509–516.

7. Jung, K.H.; Yoo, K.Y. Steganographic method based on interpolation and LSB substitution of digital images.
Multimed. Tools Appl. 2015, 74, 2143–2155. [CrossRef]

8. Liao, X.; Wen, Q.Y.; Zhang, J. A steganographic method for digital images with four-pixel differencing and
modified LSB substitution. J. Vis. Commun. Image Represent. 2011, 22, 1–8. [CrossRef]

9. Khodaei, M.; Bigham, B.S.; Faez, K. Adaptive data hiding, using pixel-value-differencing and LSB
substitution. Cybern. Syst. 2016, 47, 617–628. [CrossRef]

10. Akhtar, N. An LSB substitution with bit inversion steganography method. In Proceedings of the 3rd
International Conference on Advanced Computing, Networking and Informatics, New Delhi, India, 25–27
February 2016; pp. 515–521.

11. Sethi, P.; Kapoor, V. A proposed novel architecture for information hiding in image steganography by using
genetic algorithm and cryptography. Proc. Comput. Sci. 2016, 87, 61–66. [CrossRef]

http://dx.doi.org/10.3390/app8112199
http://dx.doi.org/10.1007/s12046-016-0558-8
http://dx.doi.org/10.1007/s11042-017-4512-5
http://dx.doi.org/10.1016/j.dsp.2015.05.006
http://dx.doi.org/10.1016/j.procs.2016.02.107
http://dx.doi.org/10.1007/s11042-013-1832-y
http://dx.doi.org/10.1016/j.jvcir.2010.08.007
http://dx.doi.org/10.1080/01969722.2016.1214459
http://dx.doi.org/10.1016/j.procs.2016.05.127

Computers 2020, 9, 38 23 of 24

12. Al-Husainy, M.A.F. Message Segmentation to Enhance the Security of LSB Image Steganography. Int. J. Adv.
Comput. Sci. Appl. 2012. [CrossRef]

13. Westfeld, A.; Pfitzmann, A. Attacks on Steganographic Systems. In Breaking the Steganographic Utilities
EzStego, Jsteg, Steganos, and S-Tools and Some Lessons Learned; Springer: Berlin, Germany, 2000.

14. Afrakhteh, M.; Ibrahim, S. Enhanced Least Significant Bit Scheme Robust against Chi-Squared Attack.
In Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling
and Computer Simulation, Bornea, Malaysia, 26–28 May 2010; pp. 286–290.

15. Setiadi, D.R.I.M.; Jumanto, J. An enhanced LSB-image steganography using the hybrid Canny-Sobel edge
detection. Cybern. Inf. Technol. 2018, 18, 74–88. [CrossRef]

16. Fridrich, J. Steganography in Digital Media: Principles, Algorithms, and Applications; Cambridge University
Press: Cambridge, UK, 2009. [CrossRef]

17. Shehzad, D.; Dag, T. LSB Image Steganography Based on Blocks Matrix Determinant Method, KSII Transactions on
Internet and Information Systems; KSII Publisher: Gangnam-gu, South Korea, 2019; Volume 13, pp. 3778–3793.

18. Sun, H.M.; Wang, K.H.; Liang, C.C.; Kao, Y.S. A LSB Substitution Compatible Steganography. In Proceedings
of the IEEE Region 10 Conference, Taipei, Taiwan, 30 October–2 November 2007.

19. Zadeh, L.A. Fuzzy sets and information granularity. In Advances in Fuzzy Set Theory and Applications;
Gupta, M., Ragade, R., Yager, R.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1979; pp. 3–18.

20. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
21. Polkowski, L. Rough Sets. In Mathematical Foundations; Physica Verlag: Heidelberg, Germany, 2002.
22. Polkowski, L. Formal granular calculi based on rough inclusions. In Proceedings of the IEEE 2005 Conference

on Granular Computing GrC05, Beijing, China, 25–27 July 2005; IEEE Press: Piscataway, NJ, USA, 2005;
pp. 57–62.

23. Morkel, T.; Eloff, J.H.; Olivier, M.S. An Overview of Image Steganography; ISSA: Phoenix, AZ, USA, 2005;
pp. 1–11.

24. Neeta, D.; Snehal, K.; Jacobs, D. Implementation of LSB steganography and its evaluation for various bits.
In Proceedings of the 1st International Conference on Digital Information Management, Porto, Portugal,
19–21 September 2006; pp. 173–178.

25. Juneja, M.; Sandhu, P.S. Improved LSB based Steganography Techniques for Color Images in Spatial Domain.
Int. J. Netw. Secur. 2014, 16, 452–462.

26. Robinson, S.J.; Schmidt, J.T. Fluorescent Penetrant Sensitivity and Removability-What the Eye Can See,
a Fluorometer Can Measure. Mater. Eval. 1984, 42, 1029–1034.

27. Krenn, R. Steganography and Steganalysis. Available online: http://www.krenn.nl/univ/cry/steg/article.
pdf (accessed on 5 May 2020).

28. Silman, J. Steganography and Steganalysis: An overview. Sans Institute. Available online: https://www.
researchgate.net/publication/242743284_Steganography_and_Steganalysis_An_Overview (accessed on
5 May 2020).

29. Wang, H.; Wang, S. Cyber warfare: Steganography vs. steganalysis. Commun. ACM 2004, 47, 76–82.
[CrossRef]

30. Westfeld, A.; Pfitzmann, A. Attack on Steganographic Systems, Lectures Notes in Computer Science; Springer:
Berlin, Germany, 2000; Volume 1768, pp. 61–75.

31. Chefranov, A.G.; Mazurova, T.A. Pseudo-Random Number Generator RC4 Period Improvement.
In Proceedings of the 2006 IEEE International Conference on Automation, Quality and Testing, Robotics,
Cluj-Napoca, Romania, 25–28 May 2006; pp. 38–41.

32. Radhakrishnan, R.; Kharrazi, M.; Memon, N. Data Masking: A New Approach for Steganography? J. VLSI
Signal Process Syst. Signal Image Video Technol. 2005, 41, 293–303. [CrossRef]

33. Sultana, S.; Khanam, A.; Islam, M.R.; Nitu, A.M.; Uddin, M.P.; Afjal, M.I.; Rabbi, M.F. A Modified Filtering
Approach of LSB Image Steganography Using Stream Builder along with AES Encryption. Recent Trends Inf.
Technol. Appl. 2018, 1, 1–10.

34. Sun, H.M.; Chen, Y.H.; Wang, K.H. An Image Data Hiding Scheme being Perfectly Imperceptible to
Histogram Attacks. Image Vis. Comput. N. Z. IVCNZ 2006, 16, 27–29.

35. Franz, E. Steganography preserving statistical properties. In Proceedings of the 5th International Workshop
on Information Hiding, Noordwijkerhout, The Netherlands, 7–9 October 2002; Volume 2578, pp. 278–294.

http://dx.doi.org/10.14569/IJACSA.2012.030310
http://dx.doi.org/10.2478/cait-2018-0029
http://dx.doi.org/10.1017/CBO9781139192903
http://dx.doi.org/10.1007/BF01001956
http://www.krenn.nl/univ/cry/steg/article.pdf
http://www.krenn.nl/univ/cry/steg/article.pdf
https://www.researchgate.net/publication/ 242743284_Steganography_and_Steganalysis_An_Overview
https://www.researchgate.net/publication/ 242743284_Steganography_and_Steganalysis_An_Overview
http://dx.doi.org/10.1145/1022594.1022597
http://dx.doi.org/10.1007/s11265-005-4153-1

Computers 2020, 9, 38 24 of 24

36. Pawlak, Z.; Grzymala-Busse, J.; Slowinski, R.; Ziarko, W. Rough sets. Commun. ACM 1995, 38, 88–95.
[CrossRef]

37. Polkowski, L. Granulation of knowledge in decision systems: The approach based on rough inclusions.
The method and its applications. In Proceedings of the RSEISP 07, Warsaw, Poland, 28–30 June 2007; Springer:
Berlin, Germany, 2007; Volume 4585, pp. 271–279.

38. Polkowski, L. A unified approach to granulation of knowledge and granular computing based on rough
mereology: A survey. In Handbook of Granular Computing; Pedrycz, W., Skowron, A., Kreinovich, V., Eds.;
John Wiley and Sons Ltd.: Chichester, UK, 2008; pp. 375–400.

39. Polkowski, L. Approximate Reasoning by Parts. An Introduction to Rough Mereology; Springer: Berlin, Germany,
2011.

40. Partow, A. C++ Bitmap Library. Available online: http://partow.net/programming/bitmap/index.html
(accessed on 5 May 2020).

41. Artiemjew, L. Collection of Artistic Works. Available online: http://el-art.com.pl (accessed on 5 May 2020).
42. Artiemjew, L. The Image of Lech Artiemjew-Polish Mathematician, Sculptor, Painter and Musician. Available

online: http://el-art.com.pl (accessed on 5 May 2020).
43. Artiemjew, P. Macro Photography Collection. Available online: http://el-art.com.pl (accessed on 5 May

2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/219717.219791
http://partow.net/programming/bitmap/index.html
http://el-art.com.pl
http://el-art.com.pl
http://el-art.com.pl
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Image Steganography
	Digital Representation of the Image
	Basic LSB Technique
	Limitations on the Use of Image Steganography

	Stegoanalysis
	Stegoanalisys-LSB Enhancement Attack
	Stegoanalisys-Chi Square Attack

	Protection against Stegoanalisys
	 Theoretical Background for Indiscernibility in Degree
	Usage of Our Steganographic Key-the Use of Rough Inclusion to Cover Up Information
	Research Experiments
	Conclusions
	References

