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Abstract: This work presents a methodology to analyze and segment both seismocardiogram (SCG)
and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to
extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform
annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision,
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is
tested on four independent datasets, covering different measurement setups and time resolutions.
A wide application range is therefore explored, which better characterizes the robustness and
generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are
uniform across all datasets (p > 0.05 from the Kruskal–Wallis test): the average sensitivity among
datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE
and MAE scores was found (p < 0.01) in favor of datasets with higher sampling frequency. The best
RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3
and 3.6 ms. The results were compared to relevant recent literature and are found to improve both
detection performance and temporal annotation errors.

Keywords: seismocardiogram (SCG); ballistocardiogram (BCG); vital sign monitoring; Active Assisted
Living (AAL)

1. Introduction

Smart-living technologies are changing the way modern living environments are conceived.
Smart devices are increasingly populating the home scenario, fostering innovative services.
Such services can be aimed at increasing safety and supporting independent life of older adults or
people with disabilities, following the Active Assisted Living (AAL) paradigm. Highly heterogeneous
technologies converge into the AAL framework, ranging from basic telemedicine services to
non-intrusive, continuous monitoring based on simple environmental sensors [1] and behavioral
analysis techniques [2,3]. Many technologies can be exploited to compensate for specific impairments,
spanning from vocal assistance for people with visual impairment [4] to Brain–Computer Interfaces
allowing severely motor-impaired users to achieve communication and home control [5,6] exploiting
low-cost and easily deployable solutions [7].

The wide range of smart devices integrated in AAL environments feeds a large, multi-dimensional
set of information, providing a multi-faceted view of wellbeing and possible needs of monitored
persons. Recent advances in wearable and ubiquitous sensors well fit in this scenario, making simple
vital signs such as Heart Rate (HR) or physical activity very easy to collect in a continuous and
prolonged fashion, for example, by means of a wrist-worn device. Heart activity, in particular, is of
paramount importance in evaluating overall wellness in many different situations and, most notably,
in non-communicable chronic diseases frequently affecting the older population. The gold standard for
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HR estimation is Electrocardiography (ECG), which is, however, scarcely suitable for prolonged
monitoring and self-management in daily living contexts. To some extent, even continuative
monitoring of HR through photoplethysmography (PPG) may suffer limitations due to wearing
comfort and measurement accuracy [8]. Developing alternative or integrative ways to extract such
information could therefore be beneficial. An example is provided by seismocardiography (SCG) [9],
which studies cardiac activity from mechanical vibrations induced by the heart contractions. By placing
an accelerometer over the sternum of a person, it is actually possible to monitor HR and HR Variability
(HRV) indeed; extra benefits include the more detailed information about heart valve dynamics and
cardiac output that are gathered with this technique. Similarly, ballistocardiography (BCG), can perform
non-contact measurements of such quantities by studying the vibration patterns that propagate through
an object mechanically coupled to the subject. For example, a bed can be used to track HR of subjects
lying overnight [10], thus resulting in a true contactless, non intrusive measurement.

The field of cardiac signal analysis has been extensively studied in recent years. The ECG,
involved in this study as ground truth for validation, has indeed received much attention. For example,
reference [11] adopts non-linear theory to capture the whole ECG heart dynamics, highlighting
that in normal physiological conditions the cardiac activities are chaotic, while in pathological
conditions the cardiac activities approach regularity. This technique has then successfully been
applied to the electroencephalographic domain as well [12,13]. Deep learning techniques have also
been introduced, aimed at identifying abnormal heart rhythms and mechanical dysfunction and
possibly supporting healthcare decisions [14]. Recently, SCG and BCG analysis methodology are
emerging as a complement and augmentation of electrical heart activity monitoring [15,16]. Similarly
to ECG, deep-learning networks were proposed to extract information from the morphology of
cardio-mechanical signals [17,18].

In order to process cardiac signals and extract high-level information, it is important to segment
each heart cycle. Well-established techniques exist for detecting single heartbeats in the ECG, such as
the Pan–Tompkins algorithm [19]. In the same way, methodologies for SCG and BCG segmentation
have recently been proposed in the literature [20,21], either leveraging ECG supervision or proceeding
in a completely unsupervised fashion. In both scenarios, SCG or BCG waveforms are considered
separately in the literature, to the best of our knowledge. This paper, instead, presents a unified,
fully automatic and unsupervised methodology to analyze and segment SCG and BCG waveforms.
The main contributions of this paper are:

• The development of a common methodology for the analysis and segmentation of both SCG
and BCG waveforms. This is an element of novelty, allowing to treat SCG and BCG waveform
segmentation under a unified framework. Higher level models dealing with single SCG/BCG
heartbeats could thus benefit from this common extraction routine.

• Rigorous evaluation of the proposed methodology on a pool of four independent datasets,
featuring different measurement setups and time resolutions. This allows to better assess the
robustness and generality of the methodology, over a wide set of operating conditions. Results
show good heartbeat detection scores, in terms of sensibility and precision. Also, temporal
annotation of inter-beat intervals exhibit low RMSE and MAE errors. Such results are shown to
be comparable to and improve over related and recent literature.

The rest of the paper is organized as follows. First, related literature is introduced in Section 2.1,
whereas Section 2.2 presents the involved datasets and Section 2.3 the proposed methodology.
Evaluation metrics are introduced in Section 3.1; results of performance evaluation are presented in
Section 3.2 and their interpretation discussed in Section 3.3, whereas Section 3.3 compares the results
with other works in the literature. Finally, Section 4 draws the conclusions.
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2. Methods

2.1. Related Works

Seismocardiogram and ballistocardiogram are oscillatory signals that originate from heart activity.
More precisely, SCG is the result of mechanical vibrations induced by heart contractions, aortic and
mitral valve dynamics and the ejection of blood from the left ventricle into the vessels. BCG, instead,
is a whole-body vibration process that is related to the recoil forces originating from the propagation
of a blood pulse through the cardio-circulatory system. The study of BCG and SCG trace back to the
seminal works of Starr [22] and Salerno and Zanetti [23,24], respectively. Recently, though, thanks to
the improvements in low-power MEMS (Micro Electro Mechanical Sensors) technology, those fields of
study are gaining more popularity [9,15]. Tiny and inexpensive MEMS devices are particularly well
suited for AAL environments, fostering low intrusiveness and ease of deployment.

As mentioned, SCG can be acquired by means of an accelerometer sensor placed over the subject’s
sternum. Proper mechanical coupling between the sensor and the chest ensures high quality recording;
however, direct contact with the skin is not required: reference [25] presents a dedicated textile support,
capable of enabling day-long acquisitions. Cardiac dynamics can also be studied with the aid of
a gyroscope sensor [26]. This technique was called gyrocardiography (GCG), accordingly. Authors
of [27] combined GCG and SCG information to detect many events in the cardiac cycle. By considering
the same information, a comparison of heartbeat detection performance in healthy and coronary
artery disease patients was conducted in [28]. Moreover, non-contact HR measurements are possible,
for example, by using airborne pulse-Doppler ultrasound systems [29], microwave sensors [30] and
Doppler radar systems [31].

As far as BCG is concerned, measurement setups are quite different in terms of sensor placement and
technology. For example, reference [32] investigates the potential of limb BCG to extract cardiovascular
parameters. Instead, authors in [33] use a wrist-worn BCG sensor to compute quantities of interests
such as Pulse Transit Time (PTT). On the other hand, BCG can be measured in a non-contact fashion,
for example, by means of artificial vision techniques [34,35]. Moreover, BCG can be acquired from
objects mechanically coupled to the subject’s body, for example, a bed [36], a chair [37] or a weighting
scale [38]. Different sensing technologies are used, including load cells [39], force plates [40], piezoelectric
sensors [10] and accelerometers [41].

SCG and BCG provide information about heart and cardiovascular dynamics that enriches and
complements the electrical activity information provided by the ECG. Specific events in the SCG traces
have been linked with precise cardiac phases by means of ultrasound imaging validation [42]. Also, both
SCG and BCG were shown to be suitable for detecting atrial fibrillation (AFib). For example, a classifier
was trained on HRV and SCG spectral entropy features to detect AFib [43]. Reference [44] proposes
several machine learning algorithms to discriminate between normal, sinus rhythm and AFib in BCG
traces. In order to reduce artifacts in the SCG waveforms, authors in [45] compare different denoising
techniques. Overall, wavelet thresholding achieved the best results in terms of signal enhancement
accuracy and computational efficiency. Similarly, a method based on Empirical Mode Decomposition
(EMD) is used in [46] to reduce the noise superimposed to SCG due to walking activity. Reference [47]
proposes a methodology for robust temporal annotation of systolic and diastolic SCG complexes based on
triple integration of the magnitude of the signal, followed by a probabilistic peak classification approach.
Reference [48], on the other hand, extract features from time and frequency domain to train a Support
Vector Machine (SVM) model able to classify respiratory phases (i.e., inhale or exhale).
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As far as the BCG domain is involved, authors in [49] put efforts into developing an interpretative
model for BCG. Such model was demonstrated to be able to simulate the effect of various heart
conditions on the BCG waveforms, including the reduction of left ventricle contractility or the increased
stiffness of the left ventricle. Posture was shown to influence BCG measurements, as discussed in [50].
In this regard, reference [51] compares different setups and proposes a computational method to
reduce this effect. Authors in [52] compare different BCG heartbeat detection methods on two common
datasets, featuring subjects lying still on two different bed setups. The measurement technique in
both setups is based on load cells placed under each bed leg. The compared techniques use different
transformations including Shannon Energy and autocorrelation [53], short-time energy profiles and
filtering [36], probabilistic estimates of inter-beats intervals [54]. Overall, the last method scored
the best results in terms of detection rate and annotation accuracy. Reference [55], instead, presents
a multi-resolution wavelet analysis for processing BCG records from a chair headrest. Authors state
that the method produces better noise filtering results with respect to EMD techniques and it also
offers a computational advantage over them.

2.2. Datasets Description and Preprocessing

This paper considers four different datasets: two of them involve SCG traces, whereas the
remaining ones focus on BCG curves. In all cases, a synchronous ECG record is present, in order
to provide the ground truth for cardiac events segmentation. Table 1 provides a summary of the
considered datasets, where Nrec is the number of records in the dataset and Fs is the adopted sampling
frequency. All subjects involved in the custom-acquired datasets (i.e., SCG-1, BCG-1 and BCG-2) were
healthy volunteers, agreeing to participate in the studies, which were conducted following the Helsinki
declaration on ethical principles.

Table 1. Summary of the datasets considered in this study.

ID Nrec Fs Brief Description

SCG-1 13 100 Hz Custom SCG dataset of sitting subjects
SCG-2 20 500 Hz CEBS database: SCG of lying subjects
BCG-1 18 250 Hz Custom BCG dataset: bed frame 1
BCG-2 42 500 Hz Custom BCG dataset: bed frame 2, three lying position per subject

Dataset SCG-1 is a collection of 4 min-long SCG traces, acquired from 13 healthy volunteers sitting
in an upright position. The acquisition setup is described more in detail in [56]. In summary, vibration
patterns were acquired by means of a tri-axial accelerometer (ADXL 355 from Analog Devices, Inc.)
placed over the subjects’ sternum, as reported in Figure 1a. Sampling frequency was set to 100 Hz as
a compromise between time resolution and low power consumption requirements, looking forward
to an embedded SCG device. Simultaneously, for benchmarking purposes only, a lead-I ECG was
acquired, shown in the same figure. Acceleration and ECG signals are synchronized by means of
a Micro Controller Unit (MCU), which collects data and streams them via TCP/IP over WiFi to
a receiving client. Such client is hosted on a desktop computer that stores data for further offline
processing. Figure 1b provides an overview of such acquisition chain, which was used for collecting
datasets SCG-1, BCG-1 and BCG-2.

Dataset SCG-2 is the publicly available CEBS dataset [57], hosted on PhysioNet [58]. It involves
50 min-long records of 20 subjects lying in the supine position. The records include a respiratory
signal, the dorso-ventral acceleration and lead-I and II ECG derivations. In practice, the electrode
and accelerometer placement is very similar to the one depicted in Figure 1b for SCG-1. The main
differences are the subject’s position (lying in this case, sitting for the other) and the sampling frequency
(5000 Hz originally, downsampled to 500 Hz for easier processing and comparison).
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The third dataset, BCG-1, is a custom setup, represented in Figure 1c. Overall, 18 healthy
volunteers were recorded for 5 min, while comfortably lying in the supine position. The BCG was
measured by sensing the micro-vibrations that couple to the bed structure. The sensing element was
the same as the setup of the SCG-1 dataset, namely an ADXL355 tri-axial accelerometer. This time,
though, the sampling frequency was set to 250 Hz. A lead-I ECG signal was acquired synchronously
for performance assessment purposes.

The last dataset, BCG-2, consists of 42 records of BCG traces acquired from 14 healthy volunteers
that were asked to lie in bed in three different positions: supine, left side and right side. This dataset
features two synchronous accelerometers, placed as reported in Figure 1d, firmly attached to the bed
spring frame (different beds were used for BCG-1 and BCG-2 dataset acquisition). The first sensor
is located below the subject’s chest, whereas the second one is approximately placed under his/her
center of mass. The accelerometer is the ADXL355 device, already used for SCG-1 and BCG-1 datasets;
thus, the acquisition scheme is the same as the one reported in Figure 1b, this time featuring two
accelerometers. As in the other cases, a synchronized lead-I ECG is acquired to provide accurate
cardiac events reference. In this experiment, sampling frequency was set to 500 Hz.

(a) (b)

(c) (d)

Figure 1. (a) Electrode and accelerometer placement for datasets SCG-1 and SCG-2; (b) hardware
acquisition setup for datasets SCG-1, BCG-1 and BCG-2; (c) BCG-1 dataset measurement protocol;
(d) BCG-2 experimental setup, featuring two accelerometers. The reference system of the accelerometers
is shown in each setup.
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In order to obtain an easier annotation of the waveforms, all signals were preprocessed. As a first
step, SCG, BCG and ECG were filtered by means of Finite Impulse Response (FIR) bandpass filters.
In particular, a pass-band of [0.5 Hz–45 Hz] was selected for ECG, whereas for the BCG and the SCG it
was set to a [2 Hz–14 Hz] range. Processing was performed with zero-phase digital filtering, in order to
keep a correct phase relationship between the ECG and the SCG/BCG traces. Successively, data were
scaled using z-scoring as follows:

szsc =
s− µs

σs
, (1)

where s is the signal of interest, µs is its mean, σs its standard deviation and szsc the z-scored signal.
It is worth underlying again that the ECG signal is used only for algorithm performance evaluation:
calibration, beat detection and annotation are performed by using the SCG or BCG waveforms only.

2.3. Proposed Methodology for Unsupervised Heartbeat Detection and Annotation

An SCG or BCG heartbeat is a characteristic, oscillatory pattern that differs from subject to subject,
depending on many physiological and anatomical factors. Direct pattern matching without any
reference or prior knowledge is, therefore, hard to achieve. On the other hand, templates of heartbeats
can be estimated from SCG/BCG data. First of all, a rough estimate on the location of SCG/BCG
complexes is given by inspecting local signal energy variations. In fact, in presence of heartbeat
patterns, the high oscillatory behavior causes an increase in such energy. The proposed methodology
introduces a detection signal (sDET) to discover such events in SCG and BCG waveforms, defined
as follows:

sDET [n] =
M−1

∑
k=0

b[k] · s2
zsc[n− k] , (2)

where szsc is the preprocessed SCG signal and b[k], k = 0, . . . , M− 1 are the coefficients of a low-pass
FIR filter. In this work M = 256 and the cutoff frequency is set to 2 Hz as highlighted by a parametric
analysis. In order to better isolate heartbeats, the sDET signal is further processed by means of
a sliding-window filter, defined as follows:

sSQR(i) =

{
1, if sDET(i) ≥ µi:i−p + k · σi:i−p

−1, otherwise
, (3)

where µi:i−p is the average computed over the last p points (in this study, in order to have a sufficiently
sized sample, p = 4 ms · 30/Ts, where Ts is the sample interval), σi:i−p the sample standard deviation
and k is a multiplication factor that regulates how much the sample needs to stand out against the
computed window statistics. Too low values of k imply that more peaks are discovered, possibly
including spurious ones. On the other hand, too high values of k might skip potential heartbeats.
The optimal value of k = 2 was chosen after conducting a parametric sweep on the overall detection
accuracy. By construction, the sSQR signal assumes positive values when a candidate heartbeat is
considered. Such positive intervals define regions of interest in the sDET signal: the local maxima
in each of them is taken as the approximate location of a heartbeat pattern. In order to reduce
the false positives and false negatives, intervals between said maxima are accepted if they fall into
a pre-determined range (in this study [400 ms–1500 ms], corresponding to a heart rate within 40 and
150 beats per minute) and the relative variation is lower than 30%. In case one inter-beat interval results
higher than allowed, the k parameter in Equation (3) is halved, and the search is performed again.
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Once enough candidate beats have been detected, an ensemble is formed to extract a template of
the subject’s patterns. In order to do so, the detected beat complexes are aligned one to each other:
starting from the mentioned sDET maxima, phasing is refined by maximizing their cross-correlation.
Cross-correlation is performed over a finite set of possible delays, ±τS = ±200 ms, i.e., half of the
minimum allowable beat-to-beat interval. Restricting the delays to ±τS reduces the risk of spurious
misalignment and better adapts to different subjects. After alignment, a template szsc,T is finally
extracted by computing the median waveform of the ensemble.

After the unsupervised template extraction, the annotation phase follows the same steps:
candidates are first identified within positive intervals in sSQR and successively refined according to
the above criteria; then, precise time instants are marked by maximizing cross-correlation between the
previously extracted template and the SCG/BCG traces in such intervals. The processing steps are
summarized in Algorithm 1, whereas Figure 2 shows a graphical block diagram representation of the
methodology phases and the related signals and transformations.

Algorithm 1 Detection of heartbeat events.
Inputs:

• szsc: z-scored SCG/BCG signal

Begin:

• Compute sDET and sSQR according to Equations (2) and (3), respectively

• Calibration:

1. Find positive sSQR periods such that:

(a) are separated by 400 ms up to 1500 ms

(b) relative variation in separation is not greater than ±30%

2. Find sDET maxima around periods found at point 1

3. Incrementally align sample beats:

(a) align waveforms around time instants found at point 2

(b) refine alignment by performing cross-correlation of szsc within ±τS = 200 ms of the
time instants found above at point 3a

4. Extract SCG/BCG beat template (median)

• Annotation:

5. Perform steps 1–2

6. Perform steps 3a–3b by aligning the template szsc,T and the current szsc waveforms

7. Mark the maximal alignment point as heartbeat location

Return time instants of heartbeats
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Figure 2. Block diagram of Algorithm 1 with graphical plots of main signals and operations (the example
refers to ballistocardiogram (BCG) waveforms).

3. Results and Discussion

Evaluation of the proposed methodology requires first to describe the key performance indicators.
Scores will be computed for each dataset separately, both at the subject and population level.
Then, statistical comparisons will be conducted to assess differences in performance over the
considered datasets.

3.1. Performance Metrics and Evaluation Procedures

The proposed methodology aims at detecting heartbeats and precisely estimating cardiac cycles.
In order to validate these tasks, a regular heart rhythm is assumed: in this way, it is possible to
compare the performance of the proposed methodology against the ECG reference (i.e., the absence
of ectopic beats or rhythm disturbances in the examined records allow electrical and mechanical
activity of the heart to be precisely correlated). In order to assess the performance, let us first introduce
some definitions. In particular, given an R peak, it is convenient to define a tolerance window where
the target acceleration patterns should be found. Such intervals are subject-dependent and can be
estimated from the data by collecting statistics on the delay between the R peak and the heartbeat
complexes. The length of the tolerance window was set to ±100 ms around such expected location.
However, it is worth underlying that the tolerance window is used for performance assessment
purposes only: none of the R-peak to SCG/BCG complex information was used for beat detection
and annotation. With such definition, a detection is considered correct (True Positive, or TP) if it falls
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within its tolerance window. On the other hand, a missed heartbeat between two R peaks is classified
as False Negative (FN); a beat outside the specified tolerance window and between two R peaks is
considered as a False Positive (FP), whereas a True Negative (TN) is when no beats are found between
two consecutive tolerance windows. Based on these definitions, the following metrics are introduced:

• Sensitivity, i.e., percentage of correctly identified reference points: Sens = 100% · TP/(TP + FN);
• Precision, i.e., percentage of TP in all detected points: Prec = 100% · TP/(TP + FP).

In addition, let us define tRR = {tR,i − tR,i−1}, i ∈ {1, ..., N− 1} as the time series of R-R intervals,
N being the number of detected heartbeats. Also, let tCC = {tC,i − tC,i−1}, i ∈ {1, ..., N − 1} be the
series of the complex-to-complex intervals (i.e., from SCG/BCG traces), matched to tRR. The annotation
errors can consequently be defined as:

ei = tRR,i − tCC,i, (4)

The following performance metrics are then introduced:

• Root Mean Squared Error (RMSE), RMSE=
√

1/(N − 1) ·∑N−1
i=1 e2

i ;

• Mean Absolute Error (MAE), MAE=1/(N − 1) ·∑N−1
i=1 |ei|.

3.2. Performance Results

The performance metrics described in Section 3.1 were computed over all available datasets, for
each subject in them. Table 2 reports the average score and 10th Lowest Performance Percentile (LPP)
for each metric and dataset.

Table 2. Summary of average score and 10th Lowest Performance Percentile (LPP).

Dataset Sensitivity (%) Precision (%) RMSE (ms) MAE (ms)

SCG-1
mean 98.9 97.9 8.1 4.8

10th LPP 96.2 96.3 8.2 5.7

SCG-2
mean 98.5 98.6 4.5 3.3

10th LPP 97.0 97.2 6.1 4.8

BCG-1
mean 98.4 97.6 6.8 5.0

10th LPP 96.7 95.0 10.6 7.9

BCG-2
mean 98.9 98.5 4.8 3.6

10th LPP 96.2 96.4 8.8 5.9

The average sensitivity scores are 98.9%, 98.5%, 98.4% and 98.2% for the SCG-1, SCG-2, BCG-1,
BCG-2 datasets, respectively. Furthermore, the 10th LPP performing subjects still score 96.2%, 97.0%,
96.7% and 96.2% in sensitivity on the same datasets. This implies good overall ability to detect the
vast majority of heartbeats. The box-plot in Figure 3a summarizes the sensitivity metrics of each
dataset population. As far as precision is concerned, the average scores on the SCG-1, SCG-2, BCG-1,
BCG-2 datasets are 97.9%, 98.6%, 97.6% and 98.0%, respectively. Performance remains quite stable
over the populations involved, as shown in Figure 3b; in fact, the 10th LPP still amounts to 96.3%,
97.2%, 95.0% and 96.4%, respectively. Even in this case, performance remains high, proving that the
SCG/BCG complex detections do not include much false positives. Together with the sensitivity scores,
such results confirm that the proposed methodology effectively detects heartbeats from SCG and BCG
waveforms, without recurring to any ECG information.



Computers 2020, 9, 41 10 of 20

(a) (b)

(c) (d)

Figure 3. Box-plots of scored performance metrics: (a) sensitivity, (b) precision, (c) RMSE, (d) MAE.

The quality of temporal localization of the detected heartbeats can be assessed by means of RMSE
and MAE scores. In this regard, the average RMSE performance is 8.1, 4.5, 6.8 and 5.6 ms for the SCG-1,
SCG-2, BCG-1 and BCG-2, respectively, whereas the 10th LPP are 8.2, 6.1, 10.6 and 8.8 ms. A slight
dependence on the sampling interval Ts can be observed, as it will be discussed later: higher Ts are
associated with higher RMS errors. This is due to the less fine-grained temporal resolution of the
SCG-1 and BCG-1 datasets. As far as the MAE is concerned, similar behavior is observed. The average
MAE performance is 4.8, 3.3, 5.0 and 3.6 ms, respectively, with the 10th LPP in line with such results
(5.7, 4.8, 7.9 and 5.9 ms).

A further visualization of the agreement between ECG and SCG/BCG heartbeat intervals is
provided by the statistical characterization of errors (ei). The graphs in Figure 4 show a Kernel Density
Estimate (KDE) of the distribution of such errors: a Gaussian kernel is used with bandwidth parameter
set to one sampling interval Ts. Individual subjects’ KDE are drawn as light blue traces, whereas
their population-wide aggregation is shown as a ticker dark blue line. In each plot, the ±RMSE bars
are reported as well, for an easier comparison. In general, it can be noticed that the stochastic errors
ei can be described as a zero-mean process, despite differences in the sampling period Ts. Instead,
as previously noticed, the spread of errors tends to increase with decreasing sampling frequency.
In fact, the 95% Highest Density Intervals of ei, under which 95% of observation lie, are ≈ ±20 ms for
SCG-1 (Ts = 10 ms, Figure 4a), ≈ ±16 ms for BCG-1 (Ts = 4 ms, Figure 4c), ≈ ±10 ms for SCG-2 and
BCG-2 (Ts = 2 ms, Figure 4b,d, respectively). Furthermore, KDE estimates of BCG-2 are shown in
Figure 5, grouped by different lying positions. The behavior is quite stable and, as it will be discussed
later, no significant performance differences are observed in relation to different lying positions.
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(a) (b)

(c) (d)

Figure 4. Kernel Density Estimates (KDE) of annotation errors ei defined in Equation (4): (a) SCG-1,
(b) SCG-2, (c) BCG-1, (d) BCG-2.

(a) (b) (c)

Figure 5. Kernel Density Estimates (KDE) of annotation errors ei for dataset BCG-2, split by resting
position: (a) supine, (b) left side, (c) right side.

Finally, another useful representation of the agreement between tRR and tCC is shown in the
Bland–Altman plots in Figure 6. In these graphs, the measurement errors ei are plotted against the
average of the measurements being compared, i.e., (tRR,i + tCC,i)/2. This allows highlighting patterns
in errors i.e., to detect dependencies with respect to the measured intervals. From inspection of such
plots, errors are distributed quite evenly around 0, as confirmed by the KDE plots. Similarly to Figure 4,
the ±RMSE levels are reported: overall, good agreement can be observed.
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(a) (b)

(c) (d)

Figure 6. Bland–Altman plots of tRR, tCC agreement: (a) SCG-1, (b) SCG-2, (c) BCG-1, (d) BCG-2.

3.3. Discussion

The proposed methodology has been evaluated on four different datasets, collected with different
aims, measurement protocols and temporal resolutions. Therefore, a wide range of scenarios was
sampled, allowing to set up a more accurate statistical characterization. Two statistical tests were used
to assess the difference in performance scores:

• Kruskal–Wallis test, a non-parametric method to asses whether scores from each dataset all belong
to the same distribution. In case the test is significant, it is possible to reject such null hypothesis.

• Mann–Whitney U test, similar to Kruskal–Wallis, but applied to just two populations.

Since multiple comparisons are performed (one per metric for Kruskal–Wallis, one per metric and
couple of datasets for Mann–Whitney U tests), the p-values are adjusted using the Benjamini–Hochberg
correction: padj = p ·M/ri, where M is the number of tests conducted and ri is the rank of the i-th
p-value in ascending order.

First of all, the BCG-2 dataset was inspected to test whether lying positions have an effect on
the performance scores. Table 3 reports the results of Kruskal–Wallis tests on sensitivity, precision,
RMSE and MAE. Single asterisk marks indicate significance at the 0.05 level, whereas double asterisks
represent the 0.01 level. It can be noticed that the null hypothesis cannot be rejected: therefore, there is
not enough evidence to support that scores do not come from a single distribution. Thus, the BCG-2
results can be considered together when comparing its performance to the other datasets.
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Table 3. Kruskal test for differences between lying positions in dataset BCG-2.

padj padj < 0.05 padj < 0.01

Sensitivity 0.9057
Precision 0.9677

RMSE 0.7842
MAE 0.5213

Table 4 reports, instead, the results of Kruskal–Wallis tests for differences between the performance
scores of all presented datasets. From a statistical point of view, sensitivity and precision fail to reject the
null hypothesis (padj ≈ 0.63 and padj ≈ 0.07, respectively). This implies that the proposed methodology
exhibits consistent behavior in the ability to detect cardiac events from SCG and BCG traces unsupervised.
On the other hand, at least one dataset exhibits a different RMSE and MAE distribution that allows to
reject the null hypothesis (padj < 0.01). In order to better investigate the differences between couples of
datasets, Mann–Whitney tests were performed, as mentioned. The results of such analyses are reported
in Table 5. Pair-wise comparisons in terms of sensitivity and precision confirm that no statistically
significant difference can be found. On the other hand, some differences emerge in the RMSE and MAE
scores: in particular, dataset SCG-1 significantly differs from SCG-2 and BCG-2 (padj < 0.01 for RMSE
and padj < 0.03 for MAE). The larger sampling interval (Ts = 10 ms for the former, Ts = 2 ms for
the others) might thus have an impact: this is to be expected, since peak annotation strongly depends
on the temporal resolution of the A/D conversion. Other support to this observation is provided by
a lower MAE for SCG-2 and BCG-2, compared to that of BCG-1, sampled at Ts = 4 ms (padj ≈ 0.01
and padj ≈ 0.03, respectively); similarly, RMSE is significantly different between BCG-1 and SCG-2
(padj ≈ 0.01). On the other hand, no statistically significant difference is observed in RMSE or MAE for
datasets SCG-2 and BCG-2, both sampled at the highest frequency. It is worth underlying, however,
that some application scenarios might need lower sampling rates, in order to promote power saving or
to match the little available computational resources.

Table 4. Kruskal test for differences between datasets.

padj padj < 0.05 padj < 0.01

Sensitivity 0.6290
Precision 0.0663

RMSE 0.0003 * **
MAE 0.0036 * **

Table 5. Mann–Whitney significance tests for differences between datasets.

Metric Dataset a Dataset b padj padj < 0.05 padj < 0.01

Sensitivity SCG-1 SCG-2 0.1526
SCG-1 BCG-1 0.2031
SCG-1 BCG-2 0.1630
SCG-2 BCG-1 0.4683
SCG-2 BCG-2 0.4447
BCG-1 BCG-2 0.4268

Precision SCG-1 SCG-2 0.1514
SCG-1 BCG-1 0.0534
SCG-1 BCG-2 0.0634
SCG-2 BCG-1 0.0514
SCG-2 BCG-2 0.1591
BCG-1 BCG-2 0.1507
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Table 5. Cont.

Metric Dataset a Dataset b padj padj < 0.05 padj < 0.01

RMSE SCG-1 SCG-2 0.0006 * **
SCG-1 BCG-1 0.1422
SCG-1 BCG-2 0.0083 * **
SCG-2 BCG-1 0.0117 *
SCG-2 BCG-2 0.0686
BCG-1 BCG-2 0.0502

MAE SCG-1 SCG-2 0.0121 *
SCG-1 BCG-1 0.4762
SCG-1 BCG-2 0.0273 *
SCG-2 BCG-1 0.0117 *
SCG-2 BCG-2 0.1501
BCG-1 BCG-2 0.0331 *

Comparison with Related Literature

In relation to other works in literature, the proposed methodology exhibits good results. As far
as SCG is concerned, reference [59] focuses on the detection of the aortic valve opening patterns:
a sensitivity score of 94% is reported, with 90% precision. Moreover, reference [60] attempts to isolate
systolic and diastolic complexes in the SCG by means of a moving average method; overall, an error
rate of 4% is reported for systole events (higher than the 10th LPP in each dataset) and 9% for diastole.
Reference [61], instead, quantifies SCG annotation performance during a lower body negative pressure
test in lying position. An annotation error of 9± 9 ms (mean±standard deviation) is declared. In a
similar setting [62], an RMSE of 40, 71, 26, 51, and 27 ms are reported for increasing levels of lower
body negative pressure; in turn, the average sensitivity in beat detection is 97.2%, 93.0%, 76.9%,
61.6%, 65.0%, respectively. In [63], a smartphone placed over the sternum of supine-lying subjects
was used to acquire 5 min-long SCG traces. Over a cohort of 11 volunteers, one was discarded
due to low signal quality (coverage ≈ 91%). On the remaining subjects, the declared sensitivity
was 99.5%, with a 97.4% precision; on the other hand, the beat to beat errors exhibited a standard
deviation of approximately 17.5 ms, which is higher than the performance reported in all datasets
of the present work. Reference [28], instead, combines accelerometer and gyroscope information to
detect heartbeats. High accuracy and precision scores are achieved (99.9% and 99.6%, respectively).
However, approximately 6.6% of data were discarded in preprocessing, to remove potential artifacts.
In the present work, no information was discarded from analysis, instead. The same reference presents
a mean RMSE of 5.6 ms, with a sampling rate of 800 Hz (≈ 4.5 Ts). In the case of the SCG-2 dataset,
which features a comparable sampling frequency (Fs = 500 Hz), a lower RMSE error is achieved (4.5 ms,
on average). Similarly, reference [47] achieves a very low RMSE error (less than 3.2 ms); however,
the reported heartbeat detection rate varies between 32% and 14% when using the SCG traces only.
In [64], authors train several ML algorithms to perform annotation of a subset of the CEBS database
(i.e., the same as dataset SCG-2). In particular, they first segment traces based on the concurrent
ECG, identifying different regions of interest; annotation is then formulated as a series of binary
classification of SCG maxima within such regions. The models are trained on a subset of 6000 cardiac
cycles and cross-validated on 3000 (out of approximately 68,000, which are actually fully accounted for
in our evaluations). The best reported average sensitivity and precision scores of maxima annotation
(9 classes in total) are, approximately, 97% and 95%, respectively. Furthermore, the RMSE error for AO
(best performing) and IM are 3.2 and 3.9 ms, respectively. However, RMSE in that work is computed
with respect to the reference R peak, whereas in the present work the error is computed between
consecutive annotation: this implies an advantage of a

√
2 factor between the former and the latter

(i.e., RMSEAO−AO ≈
√

2 · RMSER−AO). In light of such considerations, the proposed methodology
offers slightly improved annotation performance, accounting for the full CEBS dataset; furthermore,
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the sensitivity and precision scores of this work were achieved in an unsupervised fashion, i.e., without
recurring to the ECG information.

As far as the BCG is concerned, the achieved precision is comparable to other works in
literature [65,66]; on the other hand, sensitivity improves over related literature (e.g., a best score of
92.7% reported in [66]). Reference [67] tests the performance of a piezoelectric sensor for a smart chair:
an MAE 7.7 ms is reported, higher than the 10th LPP reported in this work. In a similar measurement
setting, reference [68] reports an error standard deviation of 14.35 ms at a sampling frequency of
1000 Hz. Furthermore, reference [65] compares different setups in terms of sex, single/double bed and
sensor type. For single beds, an MAE of 13.22 ms is achieved at a sample frequency of 300 Hz, higher
than the ones reported in our datasets (5.0 ms at Fs = 250 Hz on BCG-1 and 3.6 ms at Fs = 500 Hz
on BCG-2). A similar setup, featuring a commercial, accelerometer-based solution [69], achieved
−0.5 ± 1.6 beats per minute (mean± standard deviation, i.e., −8.3 ± 26.7 ms) in HR estimation
accuracy. The best-performing peak detection method described in reference [52] (already mentioned
in Section 2.1) scored a 95.0% sensitivity, with a 7.8 ms average standard deviation between real and
detected peaks, both resulting in lower performance, compared to the presented methodology.

Overall, the performance comparisons highlighted good behavior of the presented methodology
in both SCG and BCG scenarios. Nonetheless, as a final remark, it is worth mentioning some limitations
of this work. In particular, this work focuses on solutions suitable for domestic environments,
in a continuous, multi-dimensional monitoring scenario. Therefore, the tool is not intended as
a replacement for clinical instruments, dealing with heart pathology detection and classification;
instead, the purpose is to pick up long-term trends and patterns in a non-obtrusive fashion. Moreover,
the emphasis on SCG-1 and SCG-2 datasets is on static or quasi-static conditions. This, however,
does not preclude application in real cases: indeed, many motion artifact-free periods can be monitored
throughout the full day (e.g., rest or sleep periods), especially in continuous monitoring of senior-users
in smart AAL environments. Future developments include training machine learning models to
discriminate between motion-intensive and quiet periods. The same sensors will thus allow to assess
motion intensity, quantity and quality during “active” periods and SCG heart parameters during “still”
intervals. As far as the BCG is concerned, experiments were carried out in lab-controlled conditions.
However, long-term, unconstrained measurements scenarios at home are being investigated at the
moment. Encouraging preliminary results were observed: data obtained from one subject, recorded for
approximately six hours during a nights sleep, are in line with the lab results. Indeed, approximately
only 2% of the data was discarded, due to motion artifacts corrupting the ECG (i.e., the ground truth)
and thus making validation of BCG not feasible. On the valid data, a 95.4% sensitivity was achieved,
with a 94.8% precision and an RMSE and MAE of just 5.12 and 3.54 ms, respectively.

4. Conclusions

This work presented a unified methodology to analyze and segment SCG and BCG waveforms.
The main algorithmic features were introduced, organized into two distinct phases: candidate
heartbeats detection and local refinements for accurate annotation. The methodology was tested on
four datasets, two of which related to SCG waveforms and two to bed-based, BCG ones. Such datasets
cover different measurement setups and time resolutions, allowing to explore the performance of the
proposed methodology on a wide range of application scenarios. Overall, detection performance is
stable across all datasets, as highlighted by statistical tests performed on sensitivity and precision
scores. On the other hand, datasets with higher sampling frequency exhibited the lowest annotation
errors (in terms of RMSE and MAE). The novel, unified methodology allows for developing common
analysis tools suitable for both SCG and BCG signals. Such versatility does not imply any performance
loss: on the contrary, detection performance is shown to improve over specific literature work in both
cases. The proposed methodology can be easily adapted in the future to operate on streaming data.
In this regard, a centralized server can receive compressed time series data, as suggested in [70,71].
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Another possible scenario, instead, is to limit the temporal span of the analyses to a few heartbeats and
focus on an embedded implementation of the algorithm.
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